/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #include "cl_collision.h" #include "image.h" #include "r_shadow.h" // must match ptype_t values particletype_t particletype[pt_total] = { {PBLEND_INVALID, PARTICLE_INVALID, false}, //pt_dead (should never happen) {PBLEND_ALPHA, PARTICLE_BILLBOARD, false}, //pt_alphastatic {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_static {PBLEND_ADD, PARTICLE_SPARK, false}, //pt_spark {PBLEND_ADD, PARTICLE_HBEAM, false}, //pt_beam {PBLEND_ADD, PARTICLE_SPARK, false}, //pt_rain {PBLEND_ADD, PARTICLE_ORIENTED_DOUBLESIDED, false}, //pt_raindecal {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_snow {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_bubble {PBLEND_INVMOD, PARTICLE_BILLBOARD, false}, //pt_blood {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_smoke {PBLEND_INVMOD, PARTICLE_ORIENTED_DOUBLESIDED, false}, //pt_decal {PBLEND_ALPHA, PARTICLE_BILLBOARD, false}, //pt_entityparticle }; #define PARTICLEEFFECT_UNDERWATER 1 #define PARTICLEEFFECT_NOTUNDERWATER 2 #define PARTICLEEFFECT_FORCENEAREST 4 #define PARTICLEEFFECT_DEFINED 2147483648U typedef struct particleeffectinfo_s { int effectnameindex; // which effect this belongs to // PARTICLEEFFECT_* bits int flags; // blood effects may spawn very few particles, so proper fraction-overflow // handling is very important, this variable keeps track of the fraction double particleaccumulator; // the math is: countabsolute + requestedcount * countmultiplier * quality // absolute number of particles to spawn, often used for decals // (unaffected by quality and requestedcount) float countabsolute; // multiplier for the number of particles CL_ParticleEffect was told to // spawn, most effects do not really have a count and hence use 1, so // this is often the actual count to spawn, not merely a multiplier float countmultiplier; // if > 0 this causes the particle to spawn in an evenly spaced line from // originmins to originmaxs (causing them to describe a trail, not a box) float trailspacing; // type of particle to spawn (defines some aspects of behavior) ptype_t particletype; // blending mode used on this particle type pblend_t blendmode; // orientation of this particle type (BILLBOARD, SPARK, BEAM, etc) porientation_t orientation; // range of colors to choose from in hex RRGGBB (like HTML color tags), // randomly interpolated at spawn unsigned int color[2]; // a random texture is chosen in this range (note the second value is one // past the last choosable, so for example 8,16 chooses any from 8 up and // including 15) // if start and end of the range are the same, no randomization is done int tex[2]; // range of size values randomly chosen when spawning, plus size increase over time float size[3]; // range of alpha values randomly chosen when spawning, plus alpha fade float alpha[3]; // how long the particle should live (note it is also removed if alpha drops to 0) float time[2]; // how much gravity affects this particle (negative makes it fly up!) float gravity; // how much bounce the particle has when it hits a surface // if negative the particle is removed on impact float bounce; // if in air this friction is applied // if negative the particle accelerates float airfriction; // if in liquid (water/slime/lava) this friction is applied // if negative the particle accelerates float liquidfriction; // these offsets are added to the values given to particleeffect(), and // then an ellipsoid-shaped jitter is added as defined by these // (they are the 3 radii) float stretchfactor; // stretch velocity factor (used for sparks) float originoffset[3]; float relativeoriginoffset[3]; float velocityoffset[3]; float relativevelocityoffset[3]; float originjitter[3]; float velocityjitter[3]; float velocitymultiplier; // an effect can also spawn a dlight float lightradiusstart; float lightradiusfade; float lighttime; float lightcolor[3]; qbool lightshadow; int lightcubemapnum; float lightcorona[2]; unsigned int staincolor[2]; // note: 0x808080 = neutral (particle's own color), these are modding factors for the particle's original color! int staintex[2]; float stainalpha[2]; float stainsize[2]; // other parameters float rotate[4]; // min/max base angle, min/max rotation over time } particleeffectinfo_t; char particleeffectname[MAX_PARTICLEEFFECTNAME][64]; int numparticleeffectinfo; particleeffectinfo_t particleeffectinfo[MAX_PARTICLEEFFECTINFO]; static int particlepalette[256]; /* 0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b, // 0-7 0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb, // 8-15 0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b, // 16-23 0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23, // 24-31 0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767, // 32-39 0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb, // 40-47 0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07, // 48-55 0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f, // 56-63 0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000, // 64-71 0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000, // 72-79 0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307, // 80-87 0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723, // 88-95 0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b, // 96-103 0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b, // 104-111 0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733, // 112-119 0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397, // 120-127 0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b, // 128-135 0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707, // 136-143 0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b, // 144-151 0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707, // 152-159 0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353, // 160-167 0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07, // 168-175 0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f, // 176-183 0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07, // 184-191 0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307, // 192-199 0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700, // 200-207 0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f, // 208-215 0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f, // 216-223 0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b, // 224-231 0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b, // 232-239 0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000, // 240-247 0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53 // 248-255 */ int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61}; int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66}; int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3}; //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff}; // particletexture_t is a rectangle in the particlefonttexture typedef struct particletexture_s { rtexture_t *texture; float s1, t1, s2, t2; } particletexture_t; static rtexturepool_t *particletexturepool; static rtexture_t *particlefonttexture; static particletexture_t particletexture[MAX_PARTICLETEXTURES]; skinframe_t *decalskinframe; // texture numbers in particle font static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7}; static const int tex_bulletdecal[8] = {8, 9, 10, 11, 12, 13, 14, 15}; static const int tex_blooddecal[8] = {16, 17, 18, 19, 20, 21, 22, 23}; static const int tex_bloodparticle[8] = {24, 25, 26, 27, 28, 29, 30, 31}; static const int tex_rainsplash = 32; static const int tex_particle = 63; static const int tex_bubble = 62; static const int tex_raindrop = 61; static const int tex_beam = 60; particleeffectinfo_t baselineparticleeffectinfo = { 0, //int effectnameindex; // which effect this belongs to // PARTICLEEFFECT_* bits 0, //int flags; // blood effects may spawn very few particles, so proper fraction-overflow // handling is very important, this variable keeps track of the fraction 0.0, //double particleaccumulator; // the math is: countabsolute + requestedcount * countmultiplier * quality // absolute number of particles to spawn, often used for decals // (unaffected by quality and requestedcount) 0.0f, //float countabsolute; // multiplier for the number of particles CL_ParticleEffect was told to // spawn, most effects do not really have a count and hence use 1, so // this is often the actual count to spawn, not merely a multiplier 0.0f, //float countmultiplier; // if > 0 this causes the particle to spawn in an evenly spaced line from // originmins to originmaxs (causing them to describe a trail, not a box) 0.0f, //float trailspacing; // type of particle to spawn (defines some aspects of behavior) pt_alphastatic, //ptype_t particletype; // blending mode used on this particle type PBLEND_ALPHA, //pblend_t blendmode; // orientation of this particle type (BILLBOARD, SPARK, BEAM, etc) PARTICLE_BILLBOARD, //porientation_t orientation; // range of colors to choose from in hex RRGGBB (like HTML color tags), // randomly interpolated at spawn {0xFFFFFF, 0xFFFFFF}, //unsigned int color[2]; // a random texture is chosen in this range (note the second value is one // past the last choosable, so for example 8,16 chooses any from 8 up and // including 15) // if start and end of the range are the same, no randomization is done {63, 63 /* tex_particle */}, //int tex[2]; // range of size values randomly chosen when spawning, plus size increase over time {1, 1, 0.0f}, //float size[3]; // range of alpha values randomly chosen when spawning, plus alpha fade {0.0f, 256.0f, 256.0f}, //float alpha[3]; // how long the particle should live (note it is also removed if alpha drops to 0) {16777216.0f, 16777216.0f}, //float time[2]; // how much gravity affects this particle (negative makes it fly up!) 0.0f, //float gravity; // how much bounce the particle has when it hits a surface // if negative the particle is removed on impact 0.0f, //float bounce; // if in air this friction is applied // if negative the particle accelerates 0.0f, //float airfriction; // if in liquid (water/slime/lava) this friction is applied // if negative the particle accelerates 0.0f, //float liquidfriction; // these offsets are added to the values given to particleeffect(), and // then an ellipsoid-shaped jitter is added as defined by these // (they are the 3 radii) 1.0f, //float stretchfactor; // stretch velocity factor (used for sparks) {0.0f, 0.0f, 0.0f}, //float originoffset[3]; {0.0f, 0.0f, 0.0f}, //float relativeoriginoffset[3]; {0.0f, 0.0f, 0.0f}, //float velocityoffset[3]; {0.0f, 0.0f, 0.0f}, //float relativevelocityoffset[3]; {0.0f, 0.0f, 0.0f}, //float originjitter[3]; {0.0f, 0.0f, 0.0f}, //float velocityjitter[3]; 0.0f, //float velocitymultiplier; // an effect can also spawn a dlight 0.0f, //float lightradiusstart; 0.0f, //float lightradiusfade; 16777216.0f, //float lighttime; {1.0f, 1.0f, 1.0f}, //float lightcolor[3]; true, //qbool lightshadow; 0, //int lightcubemapnum; {1.0f, 0.25f}, //float lightcorona[2]; {(unsigned int)-1, (unsigned int)-1}, //unsigned int staincolor[2]; // note: 0x808080 = neutral (particle's own color), these are modding factors for the particle's original color! {-1, -1}, //int staintex[2]; {1.0f, 1.0f}, //float stainalpha[2]; {2.0f, 2.0f}, //float stainsize[2]; // other parameters {0.0f, 360.0f, 0.0f, 0.0f}, //float rotate[4]; // min/max base angle, min/max rotation over time }; cvar_t cl_particles = {CF_CLIENT | CF_ARCHIVE, "cl_particles", "1", "enables particle effects"}; cvar_t cl_particles_quality = {CF_CLIENT | CF_ARCHIVE, "cl_particles_quality", "1", "multiplies number of particles"}; cvar_t cl_particles_alpha = {CF_CLIENT | CF_ARCHIVE, "cl_particles_alpha", "1", "multiplies opacity of particles"}; cvar_t cl_particles_size = {CF_CLIENT | CF_ARCHIVE, "cl_particles_size", "1", "multiplies particle size"}; cvar_t cl_particles_quake = {CF_CLIENT | CF_ARCHIVE, "cl_particles_quake", "0", "makes particle effects look mostly like the ones in Quake"}; cvar_t cl_particles_blood = {CF_CLIENT | CF_ARCHIVE, "cl_particles_blood", "1", "enables blood effects"}; cvar_t cl_particles_blood_alpha = {CF_CLIENT | CF_ARCHIVE, "cl_particles_blood_alpha", "1", "opacity of blood, does not affect decals"}; cvar_t cl_particles_blood_decal_alpha = {CF_CLIENT | CF_ARCHIVE, "cl_particles_blood_decal_alpha", "1", "opacity of blood decal"}; cvar_t cl_particles_blood_decal_scalemin = {CF_CLIENT | CF_ARCHIVE, "cl_particles_blood_decal_scalemin", "1.5", "minimal random scale of decal"}; cvar_t cl_particles_blood_decal_scalemax = {CF_CLIENT | CF_ARCHIVE, "cl_particles_blood_decal_scalemax", "2", "maximal random scale of decal"}; cvar_t cl_particles_blood_bloodhack = {CF_CLIENT | CF_ARCHIVE, "cl_particles_blood_bloodhack", "1", "make certain quake particle() calls create blood effects instead"}; cvar_t cl_particles_bulletimpacts = {CF_CLIENT | CF_ARCHIVE, "cl_particles_bulletimpacts", "1", "enables bulletimpact effects"}; cvar_t cl_particles_explosions_sparks = {CF_CLIENT | CF_ARCHIVE, "cl_particles_explosions_sparks", "1", "enables sparks from explosions"}; cvar_t cl_particles_explosions_shell = {CF_CLIENT | CF_ARCHIVE, "cl_particles_explosions_shell", "0", "enables polygonal shell from explosions"}; cvar_t cl_particles_rain = {CF_CLIENT | CF_ARCHIVE, "cl_particles_rain", "1", "enables rain effects"}; cvar_t cl_particles_snow = {CF_CLIENT | CF_ARCHIVE, "cl_particles_snow", "1", "enables snow effects"}; cvar_t cl_particles_smoke = {CF_CLIENT | CF_ARCHIVE, "cl_particles_smoke", "1", "enables smoke (used by multiple effects)"}; cvar_t cl_particles_smoke_alpha = {CF_CLIENT | CF_ARCHIVE, "cl_particles_smoke_alpha", "0.5", "smoke brightness"}; cvar_t cl_particles_smoke_alphafade = {CF_CLIENT | CF_ARCHIVE, "cl_particles_smoke_alphafade", "0.55", "brightness fade per second"}; cvar_t cl_particles_sparks = {CF_CLIENT | CF_ARCHIVE, "cl_particles_sparks", "1", "enables sparks (used by multiple effects)"}; cvar_t cl_particles_bubbles = {CF_CLIENT | CF_ARCHIVE, "cl_particles_bubbles", "1", "enables bubbles (used by multiple effects)"}; cvar_t cl_particles_visculling = {CF_CLIENT | CF_ARCHIVE, "cl_particles_visculling", "0", "perform a costly check if each particle is visible before drawing"}; cvar_t cl_particles_collisions = {CF_CLIENT | CF_ARCHIVE, "cl_particles_collisions", "1", "allow costly collision detection on particles (sparks that bounce, particles not going through walls, blood hitting surfaces, etc)"}; cvar_t cl_particles_forcetraileffects = {CF_CLIENT, "cl_particles_forcetraileffects", "0", "force trails to be displayed even if a non-trail draw primitive was used (debug/compat feature)"}; cvar_t cl_decals = {CF_CLIENT | CF_ARCHIVE, "cl_decals", "1", "enables decals (bullet holes, blood, etc)"}; cvar_t cl_decals_time = {CF_CLIENT | CF_ARCHIVE, "cl_decals_time", "20", "how long before decals start to fade away"}; cvar_t cl_decals_fadetime = {CF_CLIENT | CF_ARCHIVE, "cl_decals_fadetime", "1", "how long decals take to fade away"}; cvar_t cl_decals_newsystem_intensitymultiplier = {CF_CLIENT | CF_ARCHIVE, "cl_decals_newsystem_intensitymultiplier", "2", "boosts intensity of decals (because the distance fade can make them hard to see otherwise)"}; cvar_t cl_decals_newsystem_immediatebloodstain = {CF_CLIENT | CF_ARCHIVE, "cl_decals_newsystem_immediatebloodstain", "2", "0: no on-spawn blood stains; 1: on-spawn blood stains for pt_blood; 2: always use on-spawn blood stains"}; cvar_t cl_decals_newsystem_bloodsmears = {CF_CLIENT | CF_ARCHIVE, "cl_decals_newsystem_bloodsmears", "1", "enable use of particle velocity as decal projection direction rather than surface normal"}; cvar_t cl_decals_models = {CF_CLIENT | CF_ARCHIVE, "cl_decals_models", "0", "enables decals on animated models"}; cvar_t cl_decals_bias = {CF_CLIENT | CF_ARCHIVE, "cl_decals_bias", "0.125", "distance to bias decals from surface to prevent depth fighting"}; cvar_t cl_decals_max = {CF_CLIENT | CF_ARCHIVE, "cl_decals_max", "4096", "maximum number of decals allowed to exist in the world at once"}; static void CL_Particles_ParseEffectInfo(const char *textstart, const char *textend, const char *filename) { int arrayindex; int argc; int i; int linenumber; particleeffectinfo_t *info = NULL; const char *text = textstart; char argv[16][1024]; for (linenumber = 1;;linenumber++) { argc = 0; for (arrayindex = 0;arrayindex < 16;arrayindex++) argv[arrayindex][0] = 0; for (;;) { if (!COM_ParseToken_Simple(&text, true, false, true)) return; if (!strcmp(com_token, "\n")) break; if (argc < 16) { strlcpy(argv[argc], com_token, sizeof(argv[argc])); argc++; } } if (argc < 1) continue; #define checkparms(n) if (argc != (n)) {Con_Printf("%s:%i: error while parsing: %s given %i parameters, should be %i parameters\n", filename, linenumber, argv[0], argc, (n));break;} #define readints(array, n) checkparms(n+1);for (arrayindex = 0;arrayindex < argc - 1;arrayindex++) array[arrayindex] = strtol(argv[1+arrayindex], NULL, 0) #define readfloats(array, n) checkparms(n+1);for (arrayindex = 0;arrayindex < argc - 1;arrayindex++) array[arrayindex] = atof(argv[1+arrayindex]) #define readint(var) checkparms(2);var = strtol(argv[1], NULL, 0) #define readfloat(var) checkparms(2);var = atof(argv[1]) #define readbool(var) checkparms(2);var = strtol(argv[1], NULL, 0) != 0 if (!strcmp(argv[0], "effect")) { int effectnameindex; checkparms(2); if (numparticleeffectinfo >= MAX_PARTICLEEFFECTINFO) { Con_Printf("%s:%i: too many effects!\n", filename, linenumber); break; } for (effectnameindex = 1;effectnameindex < MAX_PARTICLEEFFECTNAME;effectnameindex++) { if (particleeffectname[effectnameindex][0]) { if (!strcmp(particleeffectname[effectnameindex], argv[1])) break; } else { strlcpy(particleeffectname[effectnameindex], argv[1], sizeof(particleeffectname[effectnameindex])); break; } } // if we run out of names, abort if (effectnameindex == MAX_PARTICLEEFFECTNAME) { Con_Printf("%s:%i: too many effects!\n", filename, linenumber); break; } for(i = 0; i < numparticleeffectinfo; ++i) { info = particleeffectinfo + i; if(!(info->flags & PARTICLEEFFECT_DEFINED)) if(info->effectnameindex == effectnameindex) break; } if(i < numparticleeffectinfo) continue; info = particleeffectinfo + numparticleeffectinfo++; // copy entire info from baseline, then fix up the nameindex *info = baselineparticleeffectinfo; info->effectnameindex = effectnameindex; continue; } else if (info == NULL) { Con_Printf("%s:%i: command %s encountered before effect\n", filename, linenumber, argv[0]); break; } info->flags |= PARTICLEEFFECT_DEFINED; if (!strcmp(argv[0], "countabsolute")) {readfloat(info->countabsolute);} else if (!strcmp(argv[0], "count")) {readfloat(info->countmultiplier);} else if (!strcmp(argv[0], "type")) { checkparms(2); if (!strcmp(argv[1], "alphastatic")) info->particletype = pt_alphastatic; else if (!strcmp(argv[1], "static")) info->particletype = pt_static; else if (!strcmp(argv[1], "spark")) info->particletype = pt_spark; else if (!strcmp(argv[1], "beam")) info->particletype = pt_beam; else if (!strcmp(argv[1], "rain")) info->particletype = pt_rain; else if (!strcmp(argv[1], "raindecal")) info->particletype = pt_raindecal; else if (!strcmp(argv[1], "snow")) info->particletype = pt_snow; else if (!strcmp(argv[1], "bubble")) info->particletype = pt_bubble; else if (!strcmp(argv[1], "blood")) {info->particletype = pt_blood;info->gravity = 1;} else if (!strcmp(argv[1], "smoke")) info->particletype = pt_smoke; else if (!strcmp(argv[1], "decal")) info->particletype = pt_decal; else if (!strcmp(argv[1], "entityparticle")) info->particletype = pt_entityparticle; else Con_Printf("%s:%i: unrecognized particle type %s\n", filename, linenumber, argv[1]); info->blendmode = particletype[info->particletype].blendmode; info->orientation = particletype[info->particletype].orientation; } else if (!strcmp(argv[0], "blend")) { checkparms(2); if (!strcmp(argv[1], "alpha")) info->blendmode = PBLEND_ALPHA; else if (!strcmp(argv[1], "add")) info->blendmode = PBLEND_ADD; else if (!strcmp(argv[1], "invmod")) info->blendmode = PBLEND_INVMOD; else Con_Printf("%s:%i: unrecognized blendmode %s\n", filename, linenumber, argv[1]); } else if (!strcmp(argv[0], "orientation")) { checkparms(2); if (!strcmp(argv[1], "billboard")) info->orientation = PARTICLE_BILLBOARD; else if (!strcmp(argv[1], "spark")) info->orientation = PARTICLE_SPARK; else if (!strcmp(argv[1], "oriented")) info->orientation = PARTICLE_ORIENTED_DOUBLESIDED; else if (!strcmp(argv[1], "beam")) info->orientation = PARTICLE_HBEAM; else Con_Printf("%s:%i: unrecognized orientation %s\n", filename, linenumber, argv[1]); } else if (!strcmp(argv[0], "color")) {readints(info->color, 2);} else if (!strcmp(argv[0], "tex")) {readints(info->tex, 2);} else if (!strcmp(argv[0], "size")) {readfloats(info->size, 2);} else if (!strcmp(argv[0], "sizeincrease")) {readfloat(info->size[2]);} else if (!strcmp(argv[0], "alpha")) {readfloats(info->alpha, 3);} else if (!strcmp(argv[0], "time")) {readfloats(info->time, 2);} else if (!strcmp(argv[0], "gravity")) {readfloat(info->gravity);} else if (!strcmp(argv[0], "bounce")) {readfloat(info->bounce);} else if (!strcmp(argv[0], "airfriction")) {readfloat(info->airfriction);} else if (!strcmp(argv[0], "liquidfriction")) {readfloat(info->liquidfriction);} else if (!strcmp(argv[0], "originoffset")) {readfloats(info->originoffset, 3);} else if (!strcmp(argv[0], "relativeoriginoffset")) {readfloats(info->relativeoriginoffset, 3);} else if (!strcmp(argv[0], "velocityoffset")) {readfloats(info->velocityoffset, 3);} else if (!strcmp(argv[0], "relativevelocityoffset")) {readfloats(info->relativevelocityoffset, 3);} else if (!strcmp(argv[0], "originjitter")) {readfloats(info->originjitter, 3);} else if (!strcmp(argv[0], "velocityjitter")) {readfloats(info->velocityjitter, 3);} else if (!strcmp(argv[0], "velocitymultiplier")) {readfloat(info->velocitymultiplier);} else if (!strcmp(argv[0], "lightradius")) {readfloat(info->lightradiusstart);} else if (!strcmp(argv[0], "lightradiusfade")) {readfloat(info->lightradiusfade);} else if (!strcmp(argv[0], "lighttime")) {readfloat(info->lighttime);} else if (!strcmp(argv[0], "lightcolor")) {readfloats(info->lightcolor, 3);} else if (!strcmp(argv[0], "lightshadow")) {readbool(info->lightshadow);} else if (!strcmp(argv[0], "lightcubemapnum")) {readint(info->lightcubemapnum);} else if (!strcmp(argv[0], "lightcorona")) {readints(info->lightcorona, 2);} else if (!strcmp(argv[0], "underwater")) {checkparms(1);info->flags |= PARTICLEEFFECT_UNDERWATER;} else if (!strcmp(argv[0], "notunderwater")) {checkparms(1);info->flags |= PARTICLEEFFECT_NOTUNDERWATER;} else if (!strcmp(argv[0], "trailspacing")) {readfloat(info->trailspacing);if (info->trailspacing > 0) info->countmultiplier = 1.0f / info->trailspacing;} else if (!strcmp(argv[0], "stretchfactor")) {readfloat(info->stretchfactor);} else if (!strcmp(argv[0], "staincolor")) {readints(info->staincolor, 2);} else if (!strcmp(argv[0], "stainalpha")) {readfloats(info->stainalpha, 2);} else if (!strcmp(argv[0], "stainsize")) {readfloats(info->stainsize, 2);} else if (!strcmp(argv[0], "staintex")) {readints(info->staintex, 2);} else if (!strcmp(argv[0], "stainless")) {info->staintex[0] = -2; info->staincolor[0] = (unsigned int)-1; info->staincolor[1] = (unsigned int)-1; info->stainalpha[0] = 1; info->stainalpha[1] = 1; info->stainsize[0] = 2; info->stainsize[1] = 2; } else if (!strcmp(argv[0], "rotate")) {readfloats(info->rotate, 4);} else if (!strcmp(argv[0], "forcenearest")) {checkparms(1);info->flags |= PARTICLEEFFECT_FORCENEAREST;} else Con_Printf("%s:%i: skipping unknown command %s\n", filename, linenumber, argv[0]); #undef checkparms #undef readints #undef readfloats #undef readint #undef readfloat } } int CL_ParticleEffectIndexForName(const char *name) { int i; for (i = 1;i < MAX_PARTICLEEFFECTNAME && particleeffectname[i][0];i++) if (!strcmp(particleeffectname[i], name)) return i; return 0; } const char *CL_ParticleEffectNameForIndex(int i) { if (i < 1 || i >= MAX_PARTICLEEFFECTNAME) return NULL; return particleeffectname[i]; } // MUST match effectnameindex_t in client.h static const char *standardeffectnames[EFFECT_TOTAL] = { "", "TE_GUNSHOT", "TE_GUNSHOTQUAD", "TE_SPIKE", "TE_SPIKEQUAD", "TE_SUPERSPIKE", "TE_SUPERSPIKEQUAD", "TE_WIZSPIKE", "TE_KNIGHTSPIKE", "TE_EXPLOSION", "TE_EXPLOSIONQUAD", "TE_TAREXPLOSION", "TE_TELEPORT", "TE_LAVASPLASH", "TE_SMALLFLASH", "TE_FLAMEJET", "EF_FLAME", "TE_BLOOD", "TE_SPARK", "TE_PLASMABURN", "TE_TEI_G3", "TE_TEI_SMOKE", "TE_TEI_BIGEXPLOSION", "TE_TEI_PLASMAHIT", "EF_STARDUST", "TR_ROCKET", "TR_GRENADE", "TR_BLOOD", "TR_WIZSPIKE", "TR_SLIGHTBLOOD", "TR_KNIGHTSPIKE", "TR_VORESPIKE", "TR_NEHAHRASMOKE", "TR_NEXUIZPLASMA", "TR_GLOWTRAIL", "SVC_PARTICLE" }; static void CL_Particles_LoadEffectInfo(const char *customfile) { int i; int filepass; unsigned char *filedata; fs_offset_t filesize; char filename[MAX_QPATH]; numparticleeffectinfo = 0; memset(particleeffectinfo, 0, sizeof(particleeffectinfo)); memset(particleeffectname, 0, sizeof(particleeffectname)); for (i = 0;i < EFFECT_TOTAL;i++) strlcpy(particleeffectname[i], standardeffectnames[i], sizeof(particleeffectname[i])); for (filepass = 0;;filepass++) { if (filepass == 0) { if (customfile) strlcpy(filename, customfile, sizeof(filename)); else strlcpy(filename, "effectinfo.txt", sizeof(filename)); } else if (filepass == 1) { if (!cl.worldbasename[0] || customfile) continue; dpsnprintf(filename, sizeof(filename), "%s_effectinfo.txt", cl.worldnamenoextension); } else break; filedata = FS_LoadFile(filename, tempmempool, true, &filesize); if (!filedata) continue; CL_Particles_ParseEffectInfo((const char *)filedata, (const char *)filedata + filesize, filename); Mem_Free(filedata); } } static void CL_Particles_LoadEffectInfo_f(cmd_state_t *cmd) { CL_Particles_LoadEffectInfo(Cmd_Argc(cmd) > 1 ? Cmd_Argv(cmd, 1) : NULL); } /* =============== CL_InitParticles =============== */ void CL_ReadPointFile_f(cmd_state_t *cmd); void CL_Particles_Init (void) { Cmd_AddCommand(CF_CLIENT, "pointfile", CL_ReadPointFile_f, "display point file produced by qbsp when a leak was detected in the map (a line leading through the leak hole, to an entity inside the level)"); Cmd_AddCommand(CF_CLIENT, "cl_particles_reloadeffects", CL_Particles_LoadEffectInfo_f, "reloads effectinfo.txt and maps/levelname_effectinfo.txt (where levelname is the current map) if parameter is given, loads from custom file (no levelname_effectinfo are loaded in this case)"); Cvar_RegisterVariable (&cl_particles); Cvar_RegisterVariable (&cl_particles_quality); Cvar_RegisterVariable (&cl_particles_alpha); Cvar_RegisterVariable (&cl_particles_size); Cvar_RegisterVariable (&cl_particles_quake); Cvar_RegisterVariable (&cl_particles_blood); Cvar_RegisterVariable (&cl_particles_blood_alpha); Cvar_RegisterVariable (&cl_particles_blood_decal_alpha); Cvar_RegisterVariable (&cl_particles_blood_decal_scalemin); Cvar_RegisterVariable (&cl_particles_blood_decal_scalemax); Cvar_RegisterVariable (&cl_particles_blood_bloodhack); Cvar_RegisterVariable (&cl_particles_explosions_sparks); Cvar_RegisterVariable (&cl_particles_explosions_shell); Cvar_RegisterVariable (&cl_particles_bulletimpacts); Cvar_RegisterVariable (&cl_particles_rain); Cvar_RegisterVariable (&cl_particles_snow); Cvar_RegisterVariable (&cl_particles_smoke); Cvar_RegisterVariable (&cl_particles_smoke_alpha); Cvar_RegisterVariable (&cl_particles_smoke_alphafade); Cvar_RegisterVariable (&cl_particles_sparks); Cvar_RegisterVariable (&cl_particles_bubbles); Cvar_RegisterVariable (&cl_particles_visculling); Cvar_RegisterVariable (&cl_particles_collisions); Cvar_RegisterVariable (&cl_particles_forcetraileffects); Cvar_RegisterVariable (&cl_decals); Cvar_RegisterVariable (&cl_decals_time); Cvar_RegisterVariable (&cl_decals_fadetime); Cvar_RegisterVariable (&cl_decals_newsystem_intensitymultiplier); Cvar_RegisterVariable (&cl_decals_newsystem_immediatebloodstain); Cvar_RegisterVariable (&cl_decals_newsystem_bloodsmears); Cvar_RegisterVariable (&cl_decals_models); Cvar_RegisterVariable (&cl_decals_bias); Cvar_RegisterVariable (&cl_decals_max); } void CL_Particles_Shutdown (void) { } void CL_SpawnDecalParticleForSurface(int hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha); void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2); // list of all 26 parameters: // ptype - any of the pt_ enum values (pt_static, pt_blood, etc), see ptype_t near the top of this file // pcolor1,pcolor2 - minimum and maximum ranges of color, randomly interpolated to decide particle color // ptex - any of the tex_ values such as tex_smoke[rand()&7] or tex_particle // psize - size of particle (or thickness for PARTICLE_SPARK and PARTICLE_*BEAM) // palpha - opacity of particle as 0-255 (can be more than 255) // palphafade - rate of fade per second (so 256 would mean a 256 alpha particle would fade to nothing in 1 second) // ptime - how long the particle can live (note it is also removed if alpha drops to nothing) // pgravity - how much effect gravity has on the particle (0-1) // pbounce - how much bounce the particle has when it hits a surface (0-1), -1 makes a blood splat when it hits a surface, 0 does not even check for collisions // px,py,pz - starting origin of particle // pvx,pvy,pvz - starting velocity of particle // pfriction - how much the particle slows down per second (0-1 typically, can slowdown faster than 1) // blendmode - one of the PBLEND_ values // orientation - one of the PARTICLE_ values // staincolor1, staincolor2: minimum and maximum ranges of stain color, randomly interpolated to decide stain color (-1 to use none) // staintex: any of the tex_ values such as tex_smoke[rand()&7] or tex_particle (-1 to use none) // stainalpha: opacity of the stain as factor for alpha // stainsize: size of the stain as factor for palpha // angle: base rotation of the particle geometry around its center normal // spin: rotation speed of the particle geometry around its center normal particle_t *CL_NewParticle(const vec3_t sortorigin, unsigned short ptypeindex, int pcolor1, int pcolor2, int ptex, float psize, float psizeincrease, float palpha, float palphafade, float pgravity, float pbounce, float px, float py, float pz, float pvx, float pvy, float pvz, float pairfriction, float pliquidfriction, float originjitter, float velocityjitter, qbool pqualityreduction, float lifetime, float stretch, pblend_t blendmode, porientation_t orientation, int staincolor1, int staincolor2, int staintex, float stainalpha, float stainsize, float angle, float spin, float tint[4]) { int l1, l2, r, g, b; particle_t *part; vec3_t v; if (!cl_particles.integer) return NULL; for (;cl.free_particle < cl.max_particles && cl.particles[cl.free_particle].typeindex;cl.free_particle++); if (cl.free_particle >= cl.max_particles) return NULL; if (!lifetime) lifetime = palpha / min(1, palphafade); part = &cl.particles[cl.free_particle++]; if (cl.num_particles < cl.free_particle) cl.num_particles = cl.free_particle; memset(part, 0, sizeof(*part)); VectorCopy(sortorigin, part->sortorigin); part->typeindex = ptypeindex; part->blendmode = blendmode; if(orientation == PARTICLE_HBEAM || orientation == PARTICLE_VBEAM) { particletexture_t *tex = &particletexture[ptex]; if(tex->t1 == 0 && tex->t2 == 1) // full height of texture? part->orientation = PARTICLE_VBEAM; else part->orientation = PARTICLE_HBEAM; } else part->orientation = orientation; l2 = (int)lhrandom(0.5, 256.5); l1 = 256 - l2; part->color[0] = ((((pcolor1 >> 16) & 0xFF) * l1 + ((pcolor2 >> 16) & 0xFF) * l2) >> 8) & 0xFF; part->color[1] = ((((pcolor1 >> 8) & 0xFF) * l1 + ((pcolor2 >> 8) & 0xFF) * l2) >> 8) & 0xFF; part->color[2] = ((((pcolor1 >> 0) & 0xFF) * l1 + ((pcolor2 >> 0) & 0xFF) * l2) >> 8) & 0xFF; if (vid.sRGB3D) { part->color[0] = (unsigned char)floor(Image_LinearFloatFromsRGB(part->color[0]) * 255.0f + 0.5f); part->color[1] = (unsigned char)floor(Image_LinearFloatFromsRGB(part->color[1]) * 255.0f + 0.5f); part->color[2] = (unsigned char)floor(Image_LinearFloatFromsRGB(part->color[2]) * 255.0f + 0.5f); } part->alpha = palpha; part->alphafade = palphafade; part->staintexnum = staintex; if(staincolor1 >= 0 && staincolor2 >= 0) { l2 = (int)lhrandom(0.5, 256.5); l1 = 256 - l2; if(blendmode == PBLEND_INVMOD) { r = ((((staincolor1 >> 16) & 0xFF) * l1 + ((staincolor2 >> 16) & 0xFF) * l2) * (255 - part->color[0])) / 0x8000; // staincolor 0x808080 keeps color invariant g = ((((staincolor1 >> 8) & 0xFF) * l1 + ((staincolor2 >> 8) & 0xFF) * l2) * (255 - part->color[1])) / 0x8000; b = ((((staincolor1 >> 0) & 0xFF) * l1 + ((staincolor2 >> 0) & 0xFF) * l2) * (255 - part->color[2])) / 0x8000; } else { r = ((((staincolor1 >> 16) & 0xFF) * l1 + ((staincolor2 >> 16) & 0xFF) * l2) * part->color[0]) / 0x8000; // staincolor 0x808080 keeps color invariant g = ((((staincolor1 >> 8) & 0xFF) * l1 + ((staincolor2 >> 8) & 0xFF) * l2) * part->color[1]) / 0x8000; b = ((((staincolor1 >> 0) & 0xFF) * l1 + ((staincolor2 >> 0) & 0xFF) * l2) * part->color[2]) / 0x8000; } if(r > 0xFF) r = 0xFF; if(g > 0xFF) g = 0xFF; if(b > 0xFF) b = 0xFF; } else { r = part->color[0]; // -1 is shorthand for stain = particle color g = part->color[1]; b = part->color[2]; } part->staincolor[0] = r; part->staincolor[1] = g; part->staincolor[2] = b; part->stainalpha = palpha * stainalpha; part->stainsize = psize * stainsize; if(tint) { if(blendmode != PBLEND_INVMOD) // invmod is immune to tinting { part->color[0] *= tint[0]; part->color[1] *= tint[1]; part->color[2] *= tint[2]; } part->alpha *= tint[3]; part->alphafade *= tint[3]; part->stainalpha *= tint[3]; } part->texnum = ptex; part->size = psize; part->sizeincrease = psizeincrease; part->gravity = pgravity; part->bounce = pbounce; part->stretch = stretch; VectorRandom(v); part->org[0] = px + originjitter * v[0]; part->org[1] = py + originjitter * v[1]; part->org[2] = pz + originjitter * v[2]; part->vel[0] = pvx + velocityjitter * v[0]; part->vel[1] = pvy + velocityjitter * v[1]; part->vel[2] = pvz + velocityjitter * v[2]; part->time2 = 0; part->airfriction = pairfriction; part->liquidfriction = pliquidfriction; part->die = cl.time + lifetime; part->delayedspawn = cl.time; // part->delayedcollisions = 0; part->qualityreduction = pqualityreduction; part->angle = angle; part->spin = spin; // if it is rain or snow, trace ahead and shut off collisions until an actual collision event needs to occur to improve performance if (part->typeindex == pt_rain) { int i; particle_t *part2; vec3_t endvec; trace_t trace; // turn raindrop into simple spark and create delayedspawn splash effect part->typeindex = pt_spark; part->bounce = 0; VectorMA(part->org, lifetime, part->vel, endvec); trace = CL_TraceLine(part->org, endvec, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK, 0, 0, collision_extendmovelength.value, true, false, NULL, false, false); part->die = cl.time + lifetime * trace.fraction; part2 = CL_NewParticle(endvec, pt_raindecal, pcolor1, pcolor2, tex_rainsplash, part->size, part->size * 20, part->alpha, part->alpha / 0.4, 0, 0, trace.endpos[0] + trace.plane.normal[0], trace.endpos[1] + trace.plane.normal[1], trace.endpos[2] + trace.plane.normal[2], trace.plane.normal[0], trace.plane.normal[1], trace.plane.normal[2], 0, 0, 0, 0, pqualityreduction, 0, 1, PBLEND_ADD, PARTICLE_ORIENTED_DOUBLESIDED, -1, -1, -1, 1, 1, 0, 0, NULL); if (part2) { part2->delayedspawn = part->die; part2->die += part->die - cl.time; for (i = rand() & 7;i < 10;i++) { part2 = CL_NewParticle(endvec, pt_spark, pcolor1, pcolor2, tex_particle, 0.25f, 0, part->alpha * 2, part->alpha * 4, 1, 0.1, trace.endpos[0] + trace.plane.normal[0], trace.endpos[1] + trace.plane.normal[1], trace.endpos[2] + trace.plane.normal[2], trace.plane.normal[0] * 16, trace.plane.normal[1] * 16, trace.plane.normal[2] * 16 + cl.movevars_gravity * 0.04, 0, 0, 0, 32, pqualityreduction, 0, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL); if (part2) { part2->delayedspawn = part->die; part2->die += part->die - cl.time; } } } } #if 0 else if (part->bounce != 0 && part->gravity == 0 && part->typeindex != pt_snow) { float lifetime = part->alpha / (part->alphafade ? part->alphafade : 1); vec3_t endvec; trace_t trace; VectorMA(part->org, lifetime, part->vel, endvec); trace = CL_TraceLine(part->org, endvec, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY, true, false, NULL, false); part->delayedcollisions = cl.time + lifetime * trace.fraction - 0.1; } #endif return part; } static void CL_ImmediateBloodStain(particle_t *part) { vec3_t v; int staintex; // blood creates a splash at spawn, not just at impact, this makes monsters bloody where they are shot if (part->staintexnum >= 0 && cl_decals.integer) { VectorCopy(part->vel, v); VectorNormalize(v); staintex = part->staintexnum; R_DecalSystem_SplatEntities(part->org, v, 1-part->staincolor[0]*(1.0f/255.0f), 1-part->staincolor[1]*(1.0f/255.0f), 1-part->staincolor[2]*(1.0f/255.0f), part->stainalpha*(1.0f/255.0f), particletexture[staintex].s1, particletexture[staintex].t1, particletexture[staintex].s2, particletexture[staintex].t2, part->stainsize); } // blood creates a splash at spawn, not just at impact, this makes monsters bloody where they are shot if (part->typeindex == pt_blood && cl_decals.integer) { VectorCopy(part->vel, v); VectorNormalize(v); staintex = tex_blooddecal[rand()&7]; R_DecalSystem_SplatEntities(part->org, v, part->color[0]*(1.0f/255.0f), part->color[1]*(1.0f/255.0f), part->color[2]*(1.0f/255.0f), part->alpha*(1.0f/255.0f), particletexture[staintex].s1, particletexture[staintex].t1, particletexture[staintex].s2, particletexture[staintex].t2, part->size * 2); } } void CL_SpawnDecalParticleForSurface(int hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha) { int l1, l2; entity_render_t *ent = &cl.entities[hitent].render; unsigned char color[3]; if (!cl_decals.integer) return; if (!ent->allowdecals) return; l2 = (int)lhrandom(0.5, 256.5); l1 = 256 - l2; color[0] = ((((color1 >> 16) & 0xFF) * l1 + ((color2 >> 16) & 0xFF) * l2) >> 8) & 0xFF; color[1] = ((((color1 >> 8) & 0xFF) * l1 + ((color2 >> 8) & 0xFF) * l2) >> 8) & 0xFF; color[2] = ((((color1 >> 0) & 0xFF) * l1 + ((color2 >> 0) & 0xFF) * l2) >> 8) & 0xFF; if (vid.sRGB3D) R_DecalSystem_SplatEntities(org, normal, Image_LinearFloatFromsRGB(color[0]), Image_LinearFloatFromsRGB(color[1]), Image_LinearFloatFromsRGB(color[2]), alpha*(1.0f/255.0f), particletexture[texnum].s1, particletexture[texnum].t1, particletexture[texnum].s2, particletexture[texnum].t2, size); else R_DecalSystem_SplatEntities(org, normal, color[0]*(1.0f/255.0f), color[1]*(1.0f/255.0f), color[2]*(1.0f/255.0f), alpha*(1.0f/255.0f), particletexture[texnum].s1, particletexture[texnum].t1, particletexture[texnum].s2, particletexture[texnum].t2, size); } void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2) { int i; vec_t bestfrac; vec3_t bestorg; vec3_t bestnormal; vec3_t org2; int besthitent = 0, hitent; trace_t trace; bestfrac = 10; for (i = 0;i < 32;i++) { VectorRandom(org2); VectorMA(org, maxdist, org2, org2); trace = CL_TraceLine(org, org2, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_SKY, 0, 0, collision_extendmovelength.value, true, false, &hitent, false, true); // take the closest trace result that doesn't end up hitting a NOMARKS // surface (sky for example) if (bestfrac > trace.fraction && !(trace.hitq3surfaceflags & Q3SURFACEFLAG_NOMARKS)) { bestfrac = trace.fraction; besthitent = hitent; VectorCopy(trace.endpos, bestorg); VectorCopy(trace.plane.normal, bestnormal); } } if (bestfrac < 1) CL_SpawnDecalParticleForSurface(besthitent, bestorg, bestnormal, color1, color2, texnum, size, alpha); } // generates a cubemap name with prefix flags based on info flags (for now only `!`) static char *LightCubemapNumToName(char *vabuf, size_t vasize, int lightcubemapnum, int flags) { if (lightcubemapnum <= 0) return NULL; // `!` is prepended if the cubemap must be nearest-filtered if (flags & PARTICLEEFFECT_FORCENEAREST) return va(vabuf, vasize, "!cubemaps/%i", lightcubemapnum); return va(vabuf, vasize, "cubemaps/%i", lightcubemapnum); } static void CL_Sparks(const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, float sparkcount); static void CL_Smoke(const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, float smokecount); static void CL_NewParticlesFromEffectinfo(int effectnameindex, float pcount, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor, qbool spawndlight, qbool spawnparticles, float tintmins[4], float tintmaxs[4], float fade, qbool wanttrail); static void CL_ParticleEffect_Fallback(int effectnameindex, float count, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor, qbool spawndlight, qbool spawnparticles, qbool wanttrail) { vec3_t center; matrix4x4_t lightmatrix; particle_t *part; VectorLerp(originmins, 0.5, originmaxs, center); Matrix4x4_CreateTranslate(&lightmatrix, center[0], center[1], center[2]); if (effectnameindex == EFFECT_SVC_PARTICLE) { if (cl_particles.integer) { // bloodhack checks if this effect's color matches regular or lightning blood and if so spawns a blood effect instead if (count == 1024) CL_NewParticlesFromEffectinfo(EFFECT_TE_EXPLOSION, 1, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); else if (cl_particles_blood_bloodhack.integer && !cl_particles_quake.integer && (palettecolor == 73 || palettecolor == 225)) CL_NewParticlesFromEffectinfo(EFFECT_TE_BLOOD, count / 2.0f, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); else { count *= cl_particles_quality.value; for (;count > 0;count--) { int k = particlepalette[(palettecolor & ~7) + (rand()&7)]; CL_NewParticle(center, pt_alphastatic, k, k, tex_particle, 1.5, 0, 255, 0, 0.15, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 8, 3, true, lhrandom(0.1, 0.4), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } } } else if (effectnameindex == EFFECT_TE_WIZSPIKE) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 30*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 20, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); else if (effectnameindex == EFFECT_TE_KNIGHTSPIKE) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 226, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); else if (effectnameindex == EFFECT_TE_SPIKE) { if (cl_particles_bulletimpacts.integer) { if (cl_particles_quake.integer) { if (cl_particles_smoke.integer) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 10*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); } else { CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 4*count); CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 15*count); CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } // bullet hole R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); } else if (effectnameindex == EFFECT_TE_SPIKEQUAD) { if (cl_particles_bulletimpacts.integer) { if (cl_particles_quake.integer) { if (cl_particles_smoke.integer) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 10*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); } else { CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 4*count); CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 15*count); CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } // bullet hole R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); CL_AllocLightFlash(NULL, &lightmatrix, 100, 0.15f, 0.15f, 1.5f, 500, 0.2, NULL, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_SUPERSPIKE) { if (cl_particles_bulletimpacts.integer) { if (cl_particles_quake.integer) { if (cl_particles_smoke.integer) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); } else { CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 8*count); CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 30*count); CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } // bullet hole R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); } else if (effectnameindex == EFFECT_TE_SUPERSPIKEQUAD) { if (cl_particles_bulletimpacts.integer) { if (cl_particles_quake.integer) { if (cl_particles_smoke.integer) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); } else { CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 8*count); CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 30*count); CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } // bullet hole R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); CL_AllocLightFlash(NULL, &lightmatrix, 100, 0.15f, 0.15f, 1.5f, 500, 0.2, NULL, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_BLOOD) { if (!cl_particles_blood.integer) return; if (cl_particles_quake.integer) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 2*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 73, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); else { static double bloodaccumulator = 0; qbool immediatebloodstain = (cl_decals_newsystem_immediatebloodstain.integer >= 1); //CL_NewParticle(center, pt_alphastatic, 0x4f0000,0x7f0000, tex_particle, 2.5, 0, 256, 256, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 1, 4, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, NULL); bloodaccumulator += count * 0.333 * cl_particles_quality.value; for (;bloodaccumulator > 0;bloodaccumulator--) { part = CL_NewParticle(center, pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, 0, cl_particles_blood_alpha.value * 768, cl_particles_blood_alpha.value * 384, 1, -1, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 0, 64, true, 0, 1, PBLEND_INVMOD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); if (immediatebloodstain && part) { immediatebloodstain = false; CL_ImmediateBloodStain(part); } } } } else if (effectnameindex == EFFECT_TE_SPARK) CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, count); else if (effectnameindex == EFFECT_TE_PLASMABURN) { // plasma scorch mark R_Stain(center, 40, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(center, 6, 6, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); CL_AllocLightFlash(NULL, &lightmatrix, 200, 1, 1, 1, 1000, 0.2, NULL, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_GUNSHOT) { if (cl_particles_bulletimpacts.integer) { if (cl_particles_quake.integer) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); else { CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 4*count); CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 20*count); CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } // bullet hole R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); } else if (effectnameindex == EFFECT_TE_GUNSHOTQUAD) { if (cl_particles_bulletimpacts.integer) { if (cl_particles_quake.integer) CL_NewParticlesFromEffectinfo(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0, spawndlight, spawnparticles, NULL, NULL, 1, wanttrail); else { CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 4*count); CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 20*count); CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } // bullet hole R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); CL_AllocLightFlash(NULL, &lightmatrix, 100, 0.15f, 0.15f, 1.5f, 500, 0.2, NULL, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_EXPLOSION) { CL_ParticleExplosion(center); CL_AllocLightFlash(NULL, &lightmatrix, 350, 4.0f, 2.0f, 0.50f, 700, 0.5, NULL, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_EXPLOSIONQUAD) { CL_ParticleExplosion(center); CL_AllocLightFlash(NULL, &lightmatrix, 350, 2.5f, 2.0f, 4.0f, 700, 0.5, NULL, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_TAREXPLOSION) { if (cl_particles_quake.integer) { int i; for (i = 0;i < 1024 * cl_particles_quality.value;i++) { if (i & 1) CL_NewParticle(center, pt_alphastatic, particlepalette[66], particlepalette[71], tex_particle, 1.5f, 0, 255, 0, 0, 0, center[0], center[1], center[2], 0, 0, 0, -4, -4, 16, 256, true, (rand() & 1) ? 1.4 : 1.0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); else CL_NewParticle(center, pt_alphastatic, particlepalette[150], particlepalette[155], tex_particle, 1.5f, 0, 255, 0, 0, 0, center[0], center[1], center[2], 0, 0, lhrandom(-256, 256), 0, 0, 16, 0, true, (rand() & 1) ? 1.4 : 1.0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } else CL_ParticleExplosion(center); CL_AllocLightFlash(NULL, &lightmatrix, 600, 1.6f, 0.8f, 2.0f, 1200, 0.5, NULL, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_SMALLFLASH) CL_AllocLightFlash(NULL, &lightmatrix, 200, 2, 2, 2, 1000, 0.2, NULL, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); else if (effectnameindex == EFFECT_TE_FLAMEJET) { count *= cl_particles_quality.value; while (count-- > 0) CL_NewParticle(center, pt_smoke, 0x6f0f00, 0xe3974f, tex_particle, 4, 0, lhrandom(64, 128), 384, -1, 1.1, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 0, 128, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else if (effectnameindex == EFFECT_TE_LAVASPLASH) { float i, j, inc, vel; vec3_t dir, org; inc = 8 / cl_particles_quality.value; for (i = -128;i < 128;i += inc) { for (j = -128;j < 128;j += inc) { dir[0] = j + lhrandom(0, inc); dir[1] = i + lhrandom(0, inc); dir[2] = 256; org[0] = center[0] + dir[0]; org[1] = center[1] + dir[1]; org[2] = center[2] + lhrandom(0, 64); vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale CL_NewParticle(center, pt_alphastatic, particlepalette[224], particlepalette[231], tex_particle, 1.5f, 0, 255, 0, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, true, lhrandom(2, 2.62), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } } else if (effectnameindex == EFFECT_TE_TELEPORT) { float i, j, k, inc, vel; vec3_t dir; if (cl_particles_quake.integer) inc = 4 / cl_particles_quality.value; else inc = 8 / cl_particles_quality.value; for (i = -16;i < 16;i += inc) { for (j = -16;j < 16;j += inc) { for (k = -24;k < 32;k += inc) { VectorSet(dir, i*8, j*8, k*8); VectorNormalize(dir); vel = lhrandom(50, 113); if (cl_particles_quake.integer) CL_NewParticle(center, pt_alphastatic, particlepalette[7], particlepalette[14], tex_particle, 1.5f, 0, 255, 0, 0, 0, center[0] + i + lhrandom(0, inc), center[1] + j + lhrandom(0, inc), center[2] + k + lhrandom(0, inc), dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, true, lhrandom(0.2, 0.34), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); else CL_NewParticle(center, pt_alphastatic, particlepalette[7], particlepalette[14], tex_particle, 1.5f, 0, inc * lhrandom(37, 63), inc * 187, 0, 0, center[0] + i + lhrandom(0, inc), center[1] + j + lhrandom(0, inc), center[2] + k + lhrandom(0, inc), dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } } if (!cl_particles_quake.integer) CL_NewParticle(center, pt_static, 0xffffff, 0xffffff, tex_particle, 30, 0, 256, 512, 0, 0, center[0], center[1], center[2], 0, 0, 0, 0, 0, 0, 0, false, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); CL_AllocLightFlash(NULL, &lightmatrix, 200, 2.0f, 2.0f, 2.0f, 400, 99.0f, NULL, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_TEI_G3) CL_NewParticle(center, pt_beam, 0xFFFFFF, 0xFFFFFF, tex_beam, 8, 0, 256, 256, 0, 0, originmins[0], originmins[1], originmins[2], originmaxs[0], originmaxs[1], originmaxs[2], 0, 0, 0, 0, false, 0, 1, PBLEND_ADD, PARTICLE_HBEAM, -1, -1, -1, 1, 1, 0, 0, NULL); else if (effectnameindex == EFFECT_TE_TEI_SMOKE) { if (cl_particles_smoke.integer) { count *= 0.25f * cl_particles_quality.value; while (count-- > 0) CL_NewParticle(center, pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 5, 0, 255, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 1.5f, 6.0f, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } else if (effectnameindex == EFFECT_TE_TEI_BIGEXPLOSION) { CL_ParticleExplosion(center); CL_AllocLightFlash(NULL, &lightmatrix, 500, 2.5f, 2.0f, 1.0f, 500, 9999, NULL, -1, true, 1, 0.25, 0.5, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_TE_TEI_PLASMAHIT) { float f; R_Stain(center, 40, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(center, 6, 8, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); if (cl_particles_smoke.integer) for (f = 0;f < count;f += 4.0f / cl_particles_quality.value) CL_NewParticle(center, pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 5, 0, 255, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 20, 155, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); if (cl_particles_sparks.integer) for (f = 0;f < count;f += 1.0f / cl_particles_quality.value) CL_NewParticle(center, pt_spark, 0x2030FF, 0x80C0FF, tex_particle, 2.0f, 0, lhrandom(64, 255), 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 0, 465, true, 0, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL); CL_AllocLightFlash(NULL, &lightmatrix, 500, 0.6f, 1.2f, 2.0f, 2000, 9999, NULL, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_EF_FLAME) { if (!spawnparticles) count = 0; count *= 300 * cl_particles_quality.value; while (count-- > 0) CL_NewParticle(center, pt_smoke, 0x6f0f00, 0xe3974f, tex_particle, 4, 0, lhrandom(64, 128), 384, -1, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 16, 128, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); CL_AllocLightFlash(NULL, &lightmatrix, 200, 2.0f, 1.5f, 0.5f, 0, 0, NULL, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (effectnameindex == EFFECT_EF_STARDUST) { if (!spawnparticles) count = 0; count *= 200 * cl_particles_quality.value; while (count-- > 0) CL_NewParticle(center, pt_static, 0x903010, 0xFFD030, tex_particle, 4, 0, lhrandom(64, 128), 128, 1, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0.2, 0.8, 16, 128, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); CL_AllocLightFlash(NULL, &lightmatrix, 200, 1.0f, 0.7f, 0.3f, 0, 0, NULL, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (!strncmp(particleeffectname[effectnameindex], "TR_", 3)) { vec3_t dir, pos; float len, dec, qd; int smoke, blood, bubbles, r, color, spawnedcount; if (spawndlight && r_refdef.scene.numlights < MAX_DLIGHTS) { vec4_t light; Vector4Set(light, 0, 0, 0, 0); if (effectnameindex == EFFECT_TR_ROCKET) Vector4Set(light, 3.0f, 1.5f, 0.5f, 200); else if (effectnameindex == EFFECT_TR_VORESPIKE) { if (gamemode == GAME_PRYDON && !cl_particles_quake.integer) Vector4Set(light, 0.3f, 0.6f, 1.2f, 100); else Vector4Set(light, 1.2f, 0.5f, 1.0f, 200); } else if (effectnameindex == EFFECT_TR_NEXUIZPLASMA) Vector4Set(light, 0.75f, 1.5f, 3.0f, 200); if (light[3]) { matrix4x4_t traillightmatrix; Matrix4x4_CreateFromQuakeEntity(&traillightmatrix, originmaxs[0], originmaxs[1], originmaxs[2], 0, 0, 0, light[3]); R_RTLight_Update(&r_refdef.scene.templights[r_refdef.scene.numlights], false, &traillightmatrix, light, -1, NULL, true, 1, 0.25, 0, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); r_refdef.scene.lights[r_refdef.scene.numlights] = &r_refdef.scene.templights[r_refdef.scene.numlights];r_refdef.scene.numlights++; } } if (!spawnparticles) return; if (originmaxs[0] == originmins[0] && originmaxs[1] == originmins[1] && originmaxs[2] == originmins[2]) return; VectorSubtract(originmaxs, originmins, dir); len = VectorNormalizeLength(dir); if (ent) { dec = -ent->persistent.trail_time; ent->persistent.trail_time += len; if (ent->persistent.trail_time < 0.01f) return; // if we skip out, leave it reset ent->persistent.trail_time = 0.0f; } else dec = 0; // advance into this frame to reach the first puff location VectorMA(originmins, dec, dir, pos); len -= dec; smoke = cl_particles.integer && cl_particles_smoke.integer; blood = cl_particles.integer && cl_particles_blood.integer; bubbles = cl_particles.integer && cl_particles_bubbles.integer && !cl_particles_quake.integer && (CL_PointSuperContents(pos) & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME)); qd = 1.0f / cl_particles_quality.value; spawnedcount = 0; while (len >= 0 && ++spawnedcount <= 16384) { dec = 3; if (blood) { if (effectnameindex == EFFECT_TR_BLOOD) { if (cl_particles_quake.integer) { color = particlepalette[67 + (rand()&3)]; CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0.25, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 3, 0, true, 2, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else { dec = 16; CL_NewParticle(center, pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, 0, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 1, -1, pos[0], pos[1], pos[2], lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 0, 64, true, 0, 1, PBLEND_INVMOD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } else if (effectnameindex == EFFECT_TR_SLIGHTBLOOD) { if (cl_particles_quake.integer) { dec = 6; color = particlepalette[67 + (rand()&3)]; CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0.25, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 3, 0, true, 2, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else { dec = 32; CL_NewParticle(center, pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, 0, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 1, -1, pos[0], pos[1], pos[2], lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 0, 64, true, 0, 1, PBLEND_INVMOD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } } if (smoke) { if (effectnameindex == EFFECT_TR_ROCKET) { if (cl_particles_quake.integer) { r = rand()&3; color = particlepalette[ramp3[r]]; CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, -0.10, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 3, 0, true, 0.1372549*(6-r), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else { CL_NewParticle(center, pt_smoke, 0x303030, 0x606060, tex_smoke[rand()&7], 3, 0, cl_particles_smoke_alpha.value*62, cl_particles_smoke_alphafade.value*62, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); CL_NewParticle(center, pt_static, 0x801010, 0xFFA020, tex_smoke[rand()&7], 3, 0, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 20, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } else if (effectnameindex == EFFECT_TR_GRENADE) { if (cl_particles_quake.integer) { r = 2 + (rand()%4); color = particlepalette[ramp3[r]]; CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, -0.15, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 3, 0, true, 0.1372549*(6-r), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else { CL_NewParticle(center, pt_smoke, 0x303030, 0x606060, tex_smoke[rand()&7], 3, 0, cl_particles_smoke_alpha.value*50, cl_particles_smoke_alphafade.value*75, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } else if (effectnameindex == EFFECT_TR_WIZSPIKE) { if (cl_particles_quake.integer) { dec = 6; color = particlepalette[52 + (rand()&7)]; CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 30*dir[1], 30*-dir[0], 0, 0, 0, 0, 0, true, 0.5, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 30*-dir[1], 30*dir[0], 0, 0, 0, 0, 0, true, 0.5, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else if (gamemode == GAME_GOODVSBAD2) { dec = 6; CL_NewParticle(center, pt_static, 0x00002E, 0x000030, tex_particle, 6, 0, 128, 384, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else { color = particlepalette[20 + (rand()&7)]; CL_NewParticle(center, pt_static, color, color, tex_particle, 2, 0, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } else if (effectnameindex == EFFECT_TR_KNIGHTSPIKE) { if (cl_particles_quake.integer) { dec = 6; color = particlepalette[230 + (rand()&7)]; CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 30*dir[1], 30*-dir[0], 0, 0, 0, 0, 0, true, 0.5, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 30*-dir[1], 30*dir[0], 0, 0, 0, 0, 0, true, 0.5, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else { color = particlepalette[226 + (rand()&7)]; CL_NewParticle(center, pt_static, color, color, tex_particle, 2, 0, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } else if (effectnameindex == EFFECT_TR_VORESPIKE) { if (cl_particles_quake.integer) { color = particlepalette[152 + (rand()&3)]; CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 8, 0, true, 0.3, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else if (gamemode == GAME_GOODVSBAD2) { dec = 6; CL_NewParticle(center, pt_alphastatic, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, 6, 0, 255, 384, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else if (gamemode == GAME_PRYDON) { dec = 6; CL_NewParticle(center, pt_static, 0x103040, 0x204050, tex_particle, 6, 0, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else CL_NewParticle(center, pt_static, 0x502030, 0x502030, tex_particle, 3, 0, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else if (effectnameindex == EFFECT_TR_NEHAHRASMOKE) { dec = 7; CL_NewParticle(center, pt_alphastatic, 0x303030, 0x606060, tex_smoke[rand()&7], 7, 0, 64, 320, 0, 0, pos[0], pos[1], pos[2], 0, 0, lhrandom(4, 12), 0, 0, 0, 4, false, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else if (effectnameindex == EFFECT_TR_NEXUIZPLASMA) { dec = 4; CL_NewParticle(center, pt_static, 0x283880, 0x283880, tex_particle, 4, 0, 255, 1024, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 16, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else if (effectnameindex == EFFECT_TR_GLOWTRAIL) CL_NewParticle(center, pt_alphastatic, particlepalette[palettecolor], particlepalette[palettecolor], tex_particle, 5, 0, 128, 320, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } if (bubbles) { if (effectnameindex == EFFECT_TR_ROCKET) CL_NewParticle(center, pt_bubble, 0x404040, 0x808080, tex_bubble, 2, 0, lhrandom(128, 512), 512, -0.25, 1.5, pos[0], pos[1], pos[2], 0, 0, 0, 0.0625, 0.25, 0, 16, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); else if (effectnameindex == EFFECT_TR_GRENADE) CL_NewParticle(center, pt_bubble, 0x404040, 0x808080, tex_bubble, 2, 0, lhrandom(128, 512), 512, -0.25, 1.5, pos[0], pos[1], pos[2], 0, 0, 0, 0.0625, 0.25, 0, 16, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } // advance to next time and position dec *= qd; len -= dec; VectorMA (pos, dec, dir, pos); } if (ent) ent->persistent.trail_time = len; } else Con_DPrintf("CL_ParticleEffect_Fallback: no fallback found for effect %s\n", particleeffectname[effectnameindex]); } // this is also called on point effects with spawndlight = true and // spawnparticles = true static void CL_NewParticlesFromEffectinfo(int effectnameindex, float pcount, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor, qbool spawndlight, qbool spawnparticles, float tintmins[4], float tintmaxs[4], float fade, qbool wanttrail) { qbool found = false; char vabuf[1024]; if (effectnameindex < 1 || effectnameindex >= MAX_PARTICLEEFFECTNAME || !particleeffectname[effectnameindex][0]) { Con_DPrintf("Unknown effect number %i received from server\n", effectnameindex); return; // no such effect } if (!cl_particles_quake.integer && particleeffectinfo[0].effectnameindex) { int effectinfoindex; int supercontents; int tex, staintex; particleeffectinfo_t *info; vec3_t center; vec3_t traildir; vec3_t trailpos; vec3_t rvec; vec3_t angles; vec3_t velocity; vec3_t forward; vec3_t right; vec3_t up; vec_t traillen; vec_t trailstep; qbool underwater; qbool immediatebloodstain; particle_t *part; float avgtint[4], tint[4], tintlerp; // note this runs multiple effects with the same name, each one spawns only one kind of particle, so some effects need more than one VectorLerp(originmins, 0.5, originmaxs, center); supercontents = CL_PointSuperContents(center); underwater = (supercontents & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME)) != 0; VectorSubtract(originmaxs, originmins, traildir); traillen = VectorLength(traildir); VectorNormalize(traildir); if(tintmins) { Vector4Lerp(tintmins, 0.5, tintmaxs, avgtint); } else { Vector4Set(avgtint, 1, 1, 1, 1); } for (effectinfoindex = 0, info = particleeffectinfo;effectinfoindex < MAX_PARTICLEEFFECTINFO && info->effectnameindex;effectinfoindex++, info++) { if ((info->effectnameindex == effectnameindex) && (info->flags & PARTICLEEFFECT_DEFINED)) { qbool definedastrail = info->trailspacing > 0; qbool drawastrail = wanttrail; if (cl_particles_forcetraileffects.integer) drawastrail = drawastrail || definedastrail; found = true; if ((info->flags & PARTICLEEFFECT_UNDERWATER) && !underwater) continue; if ((info->flags & PARTICLEEFFECT_NOTUNDERWATER) && underwater) continue; // spawn a dlight if requested if (info->lightradiusstart > 0 && spawndlight) { matrix4x4_t tempmatrix; if (drawastrail) Matrix4x4_CreateTranslate(&tempmatrix, originmaxs[0], originmaxs[1], originmaxs[2]); else Matrix4x4_CreateTranslate(&tempmatrix, center[0], center[1], center[2]); if (info->lighttime > 0 && info->lightradiusfade > 0) { // light flash (explosion, etc) // called when effect starts CL_AllocLightFlash(NULL, &tempmatrix, info->lightradiusstart, info->lightcolor[0]*avgtint[0]*avgtint[3], info->lightcolor[1]*avgtint[1]*avgtint[3], info->lightcolor[2]*avgtint[2]*avgtint[3], info->lightradiusfade, info->lighttime, LightCubemapNumToName(vabuf, sizeof(vabuf), info->lightcubemapnum, info->flags), -1, info->lightshadow, info->lightcorona[0], info->lightcorona[1], 0, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); } else if (r_refdef.scene.numlights < MAX_DLIGHTS) { // glowing entity // called by CL_LinkNetworkEntity Matrix4x4_Scale(&tempmatrix, info->lightradiusstart, 1); rvec[0] = info->lightcolor[0]*avgtint[0]*avgtint[3]; rvec[1] = info->lightcolor[1]*avgtint[1]*avgtint[3]; rvec[2] = info->lightcolor[2]*avgtint[2]*avgtint[3]; R_RTLight_Update(&r_refdef.scene.templights[r_refdef.scene.numlights], false, &tempmatrix, rvec, -1, LightCubemapNumToName(vabuf, sizeof(vabuf), info->lightcubemapnum, info->flags), info->lightshadow, info->lightcorona[0], info->lightcorona[1], 0, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE); r_refdef.scene.lights[r_refdef.scene.numlights] = &r_refdef.scene.templights[r_refdef.scene.numlights];r_refdef.scene.numlights++; } } if (!spawnparticles) continue; // spawn particles tex = info->tex[0]; if (info->tex[1] > info->tex[0]) { tex = (int)lhrandom(info->tex[0], info->tex[1]); tex = min(tex, info->tex[1] - 1); } if(info->staintex[0] < 0) staintex = info->staintex[0]; else { staintex = (int)lhrandom(info->staintex[0], info->staintex[1]); staintex = min(staintex, info->staintex[1] - 1); } if (info->particletype == pt_decal) { VectorMAM(0.5f, velocitymins, 0.5f, velocitymaxs, velocity); AnglesFromVectors(angles, velocity, NULL, false); AngleVectors(angles, forward, right, up); VectorMAMAMAM(1.0f, center, info->relativeoriginoffset[0], forward, info->relativeoriginoffset[1], right, info->relativeoriginoffset[2], up, trailpos); CL_SpawnDecalParticleForPoint(trailpos, info->originjitter[0], lhrandom(info->size[0], info->size[1]), lhrandom(info->alpha[0], info->alpha[1])*avgtint[3], tex, info->color[0], info->color[1]); } else if (info->orientation == PARTICLE_HBEAM) { if (!drawastrail) continue; AnglesFromVectors(angles, traildir, NULL, false); AngleVectors(angles, forward, right, up); VectorMAMAM(info->relativeoriginoffset[0], forward, info->relativeoriginoffset[1], right, info->relativeoriginoffset[2], up, trailpos); CL_NewParticle(center, info->particletype, info->color[0], info->color[1], tex, lhrandom(info->size[0], info->size[1]), info->size[2], lhrandom(info->alpha[0], info->alpha[1]), info->alpha[2], 0, 0, originmins[0] + trailpos[0], originmins[1] + trailpos[1], originmins[2] + trailpos[2], originmaxs[0], originmaxs[1], originmaxs[2], 0, 0, 0, 0, false, lhrandom(info->time[0], info->time[1]), info->stretchfactor, info->blendmode, info->orientation, info->staincolor[0], info->staincolor[1], staintex, lhrandom(info->stainalpha[0], info->stainalpha[1]), lhrandom(info->stainsize[0], info->stainsize[1]), 0, 0, tintmins ? avgtint : NULL); } else { float cnt; if (!cl_particles.integer) continue; switch (info->particletype) { case pt_smoke: if (!cl_particles_smoke.integer) continue;break; case pt_spark: if (!cl_particles_sparks.integer) continue;break; case pt_bubble: if (!cl_particles_bubbles.integer) continue;break; case pt_blood: if (!cl_particles_blood.integer) continue;break; case pt_rain: if (!cl_particles_rain.integer) continue;break; case pt_snow: if (!cl_particles_snow.integer) continue;break; default: break; } cnt = info->countabsolute; cnt += (pcount * info->countmultiplier) * cl_particles_quality.value; // if drawastrail is not set, we will // use the regular cnt-based random // particle spawning at the center; so // do NOT apply trailspacing then! if (drawastrail && definedastrail) cnt += (traillen / info->trailspacing) * cl_particles_quality.value; cnt *= fade; if (cnt == 0) continue; // nothing to draw info->particleaccumulator += cnt; if (drawastrail || definedastrail) immediatebloodstain = false; else immediatebloodstain = ((cl_decals_newsystem_immediatebloodstain.integer >= 1) && (info->particletype == pt_blood)) || ((cl_decals_newsystem_immediatebloodstain.integer >= 2) && staintex); if (drawastrail) { VectorCopy(originmins, trailpos); trailstep = traillen / cnt; } else { VectorCopy(center, trailpos); trailstep = 0; } if (trailstep == 0) { VectorMAM(0.5f, velocitymins, 0.5f, velocitymaxs, velocity); AnglesFromVectors(angles, velocity, NULL, false); } else AnglesFromVectors(angles, traildir, NULL, false); AngleVectors(angles, forward, right, up); VectorMAMAMAM(1.0f, trailpos, info->relativeoriginoffset[0], forward, info->relativeoriginoffset[1], right, info->relativeoriginoffset[2], up, trailpos); VectorMAMAM(info->relativevelocityoffset[0], forward, info->relativevelocityoffset[1], right, info->relativevelocityoffset[2], up, velocity); info->particleaccumulator = bound(0, info->particleaccumulator, 16384); for (;info->particleaccumulator >= 1;info->particleaccumulator--) { if (info->tex[1] > info->tex[0]) { tex = (int)lhrandom(info->tex[0], info->tex[1]); tex = min(tex, info->tex[1] - 1); } if (!(drawastrail || definedastrail)) { trailpos[0] = lhrandom(originmins[0], originmaxs[0]); trailpos[1] = lhrandom(originmins[1], originmaxs[1]); trailpos[2] = lhrandom(originmins[2], originmaxs[2]); } if(tintmins) { tintlerp = lhrandom(0, 1); Vector4Lerp(tintmins, tintlerp, tintmaxs, tint); } VectorRandom(rvec); part = CL_NewParticle(center, info->particletype, info->color[0], info->color[1], tex, lhrandom(info->size[0], info->size[1]), info->size[2], lhrandom(info->alpha[0], info->alpha[1]), info->alpha[2], info->gravity, info->bounce, trailpos[0] + info->originoffset[0] + info->originjitter[0] * rvec[0], trailpos[1] + info->originoffset[1] + info->originjitter[1] * rvec[1], trailpos[2] + info->originoffset[2] + info->originjitter[2] * rvec[2], lhrandom(velocitymins[0], velocitymaxs[0]) * info->velocitymultiplier + info->velocityoffset[0] + info->velocityjitter[0] * rvec[0] + velocity[0], lhrandom(velocitymins[1], velocitymaxs[1]) * info->velocitymultiplier + info->velocityoffset[1] + info->velocityjitter[1] * rvec[1] + velocity[1], lhrandom(velocitymins[2], velocitymaxs[2]) * info->velocitymultiplier + info->velocityoffset[2] + info->velocityjitter[2] * rvec[2] + velocity[2], info->airfriction, info->liquidfriction, 0, 0, info->countabsolute <= 0, lhrandom(info->time[0], info->time[1]), info->stretchfactor, info->blendmode, info->orientation, info->staincolor[0], info->staincolor[1], staintex, lhrandom(info->stainalpha[0], info->stainalpha[1]), lhrandom(info->stainsize[0], info->stainsize[1]), lhrandom(info->rotate[0], info->rotate[1]), lhrandom(info->rotate[2], info->rotate[3]), tintmins ? tint : NULL); if (immediatebloodstain && part) { immediatebloodstain = false; CL_ImmediateBloodStain(part); } if (trailstep) VectorMA(trailpos, trailstep, traildir, trailpos); } } } } } if (!found) CL_ParticleEffect_Fallback(effectnameindex, pcount, originmins, originmaxs, velocitymins, velocitymaxs, ent, palettecolor, spawndlight, spawnparticles, wanttrail); } void CL_ParticleTrail(int effectnameindex, float pcount, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor, qbool spawndlight, qbool spawnparticles, float tintmins[4], float tintmaxs[4], float fade) { CL_NewParticlesFromEffectinfo(effectnameindex, pcount, originmins, originmaxs, velocitymins, velocitymaxs, ent, palettecolor, spawndlight, spawnparticles, tintmins, tintmaxs, fade, true); } void CL_ParticleBox(int effectnameindex, float pcount, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor, qbool spawndlight, qbool spawnparticles, float tintmins[4], float tintmaxs[4], float fade) { CL_NewParticlesFromEffectinfo(effectnameindex, pcount, originmins, originmaxs, velocitymins, velocitymaxs, ent, palettecolor, spawndlight, spawnparticles, tintmins, tintmaxs, fade, false); } // note: this one ONLY does boxes! void CL_ParticleEffect(int effectnameindex, float pcount, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor) { CL_ParticleBox(effectnameindex, pcount, originmins, originmaxs, velocitymins, velocitymaxs, ent, palettecolor, true, true, NULL, NULL, 1); } /* =============== CL_EntityParticles =============== */ void CL_EntityParticles (const entity_t *ent) { int i, j; vec_t pitch, yaw, dist = 64, beamlength = 16; vec3_t org, v; static vec3_t avelocities[NUMVERTEXNORMALS]; if (!cl_particles.integer) return; if (cl.time <= cl.oldtime) return; // don't spawn new entity particles while paused Matrix4x4_OriginFromMatrix(&ent->render.matrix, org); if (!avelocities[0][0]) for (i = 0;i < NUMVERTEXNORMALS;i++) for (j = 0;j < 3;j++) avelocities[i][j] = lhrandom(0, 2.55); for (i = 0;i < NUMVERTEXNORMALS;i++) { yaw = cl.time * avelocities[i][0]; pitch = cl.time * avelocities[i][1]; v[0] = org[0] + m_bytenormals[i][0] * dist + (cos(pitch)*cos(yaw)) * beamlength; v[1] = org[1] + m_bytenormals[i][1] * dist + (cos(pitch)*sin(yaw)) * beamlength; v[2] = org[2] + m_bytenormals[i][2] * dist + (-sin(pitch)) * beamlength; CL_NewParticle(org, pt_entityparticle, particlepalette[0x6f], particlepalette[0x6f], tex_particle, 1, 0, 255, 0, 0, 0, v[0], v[1], v[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } void CL_ReadPointFile_f(cmd_state_t *cmd) { double org[3], leakorg[3]; vec3_t vecorg; int r, c, s; char *pointfile = NULL, *pointfilepos, *t, tchar; char name[MAX_QPATH]; if (!cl.worldmodel) return; dpsnprintf(name, sizeof(name), "%s.pts", cl.worldnamenoextension); pointfile = (char *)FS_LoadFile(name, tempmempool, true, NULL); if (!pointfile) { Con_Printf("Could not open %s\n", name); return; } Con_Printf("Reading %s...\n", name); VectorClear(leakorg); c = 0; s = 0; pointfilepos = pointfile; while (*pointfilepos) { while (*pointfilepos == '\n' || *pointfilepos == '\r') pointfilepos++; if (!*pointfilepos) break; t = pointfilepos; while (*t && *t != '\n' && *t != '\r') t++; tchar = *t; *t = 0; #if _MSC_VER >= 1400 #define sscanf sscanf_s #endif r = sscanf (pointfilepos,"%lf %lf %lf", &org[0], &org[1], &org[2]); VectorCopy(org, vecorg); *t = tchar; pointfilepos = t; if (r != 3) break; if (c == 0) VectorCopy(org, leakorg); c++; if (cl.num_particles < cl.max_particles - 3) { s++; CL_NewParticle(vecorg, pt_alphastatic, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, 2, 0, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, true, 1<<30, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } Mem_Free(pointfile); VectorCopy(leakorg, vecorg); Con_Printf("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, leakorg[0], leakorg[1], leakorg[2]); if (c == 0) { return; } CL_NewParticle(vecorg, pt_beam, 0xFF0000, 0xFF0000, tex_beam, 64, 0, 255, 0, 0, 0, org[0] - 4096, org[1], org[2], org[0] + 4096, org[1], org[2], 0, 0, 0, 0, false, 1<<30, 1, PBLEND_ADD, PARTICLE_HBEAM, -1, -1, -1, 1, 1, 0, 0, NULL); CL_NewParticle(vecorg, pt_beam, 0x00FF00, 0x00FF00, tex_beam, 64, 0, 255, 0, 0, 0, org[0], org[1] - 4096, org[2], org[0], org[1] + 4096, org[2], 0, 0, 0, 0, false, 1<<30, 1, PBLEND_ADD, PARTICLE_HBEAM, -1, -1, -1, 1, 1, 0, 0, NULL); CL_NewParticle(vecorg, pt_beam, 0x0000FF, 0x0000FF, tex_beam, 64, 0, 255, 0, 0, 0, org[0], org[1], org[2] - 4096, org[0], org[1], org[2] + 4096, 0, 0, 0, 0, false, 1<<30, 1, PBLEND_ADD, PARTICLE_HBEAM, -1, -1, -1, 1, 1, 0, 0, NULL); } /* =============== CL_ParseParticleEffect Parse an effect out of the server message =============== */ void CL_ParseParticleEffect (void) { vec3_t org, dir; int i, count, msgcount, color; MSG_ReadVector(&cl_message, org, cls.protocol); for (i=0 ; i<3 ; i++) dir[i] = MSG_ReadChar(&cl_message) * (1.0 / 16.0); msgcount = MSG_ReadByte(&cl_message); color = MSG_ReadByte(&cl_message); if (msgcount == 255) count = 1024; else count = msgcount; CL_ParticleEffect(EFFECT_SVC_PARTICLE, count, org, org, dir, dir, NULL, color); } /* =============== CL_ParticleExplosion =============== */ void CL_ParticleExplosion (const vec3_t org) { int i; trace_t trace; //vec3_t v; //vec3_t v2; R_Stain(org, 96, 40, 40, 40, 64, 88, 88, 88, 64); CL_SpawnDecalParticleForPoint(org, 40, 48, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); if (cl_particles_quake.integer) { for (i = 0;i < 1024;i++) { int r, color; r = rand()&3; if (i & 1) { color = particlepalette[ramp1[r]]; CL_NewParticle(org, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, -4, -4, 16, 256, true, 0.1006 * (8 - r), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else { color = particlepalette[ramp2[r]]; CL_NewParticle(org, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, 1, 1, 16, 256, true, 0.0669 * (8 - r), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } } else { i = CL_PointSuperContents(org); if (i & (SUPERCONTENTS_SLIME | SUPERCONTENTS_WATER)) { if (cl_particles.integer && cl_particles_bubbles.integer) for (i = 0;i < 128 * cl_particles_quality.value;i++) CL_NewParticle(org, pt_bubble, 0x404040, 0x808080, tex_bubble, 2, 0, lhrandom(128, 255), 128, -0.125, 1.5, org[0], org[1], org[2], 0, 0, 0, 0.0625, 0.25, 16, 96, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } else { if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer) { for (i = 0;i < 512 * cl_particles_quality.value;i++) { int k = 0; vec3_t v, v2; do { VectorRandom(v2); VectorMA(org, 128, v2, v); trace = CL_TraceLine(org, v, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, 0, 0, collision_extendmovelength.value, true, false, NULL, false, false); } while (k++ < 16 && trace.fraction < 0.1f); VectorSubtract(trace.endpos, org, v2); VectorScale(v2, 2.0f, v2); CL_NewParticle(org, pt_spark, 0x903010, 0xFFD030, tex_particle, 1.0f, 0, lhrandom(0, 255), 512, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL); } } } } if (cl_particles_explosions_shell.integer) R_NewExplosion(org); } /* =============== CL_ParticleExplosion2 =============== */ void CL_ParticleExplosion2 (const vec3_t org, int colorStart, int colorLength) { int i, k; if (!cl_particles.integer) return; for (i = 0;i < 512 * cl_particles_quality.value;i++) { k = particlepalette[colorStart + (i % colorLength)]; if (cl_particles_quake.integer) CL_NewParticle(org, pt_alphastatic, k, k, tex_particle, 1, 0, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, -4, -4, 16, 256, true, 0.3, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); else CL_NewParticle(org, pt_alphastatic, k, k, tex_particle, lhrandom(0.5, 1.5), 0, 255, 512, 0, 0, org[0], org[1], org[2], 0, 0, 0, lhrandom(1.5, 3), lhrandom(1.5, 3), 8, 192, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } static void CL_Sparks(const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, float sparkcount) { vec3_t center; VectorMAM(0.5f, originmins, 0.5f, originmaxs, center); if (cl_particles_sparks.integer) { sparkcount *= cl_particles_quality.value; while(sparkcount-- > 0) CL_NewParticle(center, pt_spark, particlepalette[0x68], particlepalette[0x6f], tex_particle, 0.5f, 0, lhrandom(64, 255), 512, 1, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]) + cl.movevars_gravity * 0.1f, 0, 0, 0, 64, true, 0, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL); } } static void CL_Smoke(const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, float smokecount) { vec3_t center; VectorMAM(0.5f, originmins, 0.5f, originmaxs, center); if (cl_particles_smoke.integer) { smokecount *= cl_particles_quality.value; while(smokecount-- > 0) CL_NewParticle(center, pt_smoke, 0x101010, 0x101010, tex_smoke[rand()&7], 2, 2, 255, 256, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 0, smokecount > 0 ? 16 : 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } void CL_ParticleCube (const vec3_t mins, const vec3_t maxs, const vec3_t dir, int count, int colorbase, vec_t gravity, vec_t randomvel) { vec3_t center; int k; if (!cl_particles.integer) return; VectorMAM(0.5f, mins, 0.5f, maxs, center); count = (int)(count * cl_particles_quality.value); while (count--) { k = particlepalette[colorbase + (rand()&3)]; CL_NewParticle(center, pt_alphastatic, k, k, tex_particle, 2, 0, 255, 128, gravity, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0], dir[1], dir[2], 0, 0, 0, randomvel, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } } void CL_ParticleRain (const vec3_t mins, const vec3_t maxs, const vec3_t dir, int count, int colorbase, int type) { int k; float minz, maxz, lifetime = 30; vec3_t org; if (!cl_particles.integer) return; if (dir[2] < 0) // falling { minz = maxs[2] + dir[2] * 0.1; maxz = maxs[2]; if (cl.worldmodel) lifetime = (maxz - cl.worldmodel->normalmins[2]) / max(1, -dir[2]); } else // rising?? { minz = mins[2]; maxz = maxs[2] + dir[2] * 0.1; if (cl.worldmodel) lifetime = (cl.worldmodel->normalmaxs[2] - minz) / max(1, dir[2]); } count = (int)(count * cl_particles_quality.value); switch(type) { case 0: if (!cl_particles_rain.integer) break; count *= 4; // ick, this should be in the mod or maps? while(count--) { k = particlepalette[colorbase + (rand()&3)]; VectorSet(org, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz)); if (gamemode == GAME_GOODVSBAD2) CL_NewParticle(org, pt_rain, k, k, tex_particle, 20, 0, lhrandom(32, 64), 0, 0, -1, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, 0, 0, true, lifetime, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL); else CL_NewParticle(org, pt_rain, k, k, tex_particle, 0.5, 0, lhrandom(32, 64), 0, 0, -1, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, 0, 0, true, lifetime, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL); } break; case 1: if (!cl_particles_snow.integer) break; while(count--) { k = particlepalette[colorbase + (rand()&3)]; VectorSet(org, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz)); if (gamemode == GAME_GOODVSBAD2) CL_NewParticle(org, pt_snow, k, k, tex_particle, 20, 0, lhrandom(64, 128), 0, 0, -1, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, 0, 0, true, lifetime, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); else CL_NewParticle(org, pt_snow, k, k, tex_particle, 1, 0, lhrandom(64, 128), 0, 0, -1, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, 0, 0, true, lifetime, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL); } break; default: Con_Printf ("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type); } } cvar_t r_drawparticles = {CF_CLIENT, "r_drawparticles", "1", "enables drawing of particles"}; static cvar_t r_drawparticles_drawdistance = {CF_CLIENT | CF_ARCHIVE, "r_drawparticles_drawdistance", "2000", "particles further than drawdistance*size will not be drawn"}; static cvar_t r_drawparticles_nearclip_min = {CF_CLIENT | CF_ARCHIVE, "r_drawparticles_nearclip_min", "4", "particles closer than drawnearclip_min will not be drawn"}; static cvar_t r_drawparticles_nearclip_max = {CF_CLIENT | CF_ARCHIVE, "r_drawparticles_nearclip_max", "4", "particles closer than drawnearclip_min will be faded"}; cvar_t r_drawdecals = {CF_CLIENT, "r_drawdecals", "1", "enables drawing of decals"}; static cvar_t r_drawdecals_drawdistance = {CF_CLIENT | CF_ARCHIVE, "r_drawdecals_drawdistance", "500", "decals further than drawdistance*size will not be drawn"}; #define PARTICLETEXTURESIZE 64 #define PARTICLEFONTSIZE (PARTICLETEXTURESIZE*8) static unsigned char shadebubble(float dx, float dy, vec3_t light) { float dz, f, dot; vec3_t normal; dz = 1 - (dx*dx+dy*dy); if (dz > 0) // it does hit the sphere { f = 0; // back side normal[0] = dx;normal[1] = dy;normal[2] = dz; VectorNormalize(normal); dot = DotProduct(normal, light); if (dot > 0.5) // interior reflection f += ((dot * 2) - 1); else if (dot < -0.5) // exterior reflection f += ((dot * -2) - 1); // front side normal[0] = dx;normal[1] = dy;normal[2] = -dz; VectorNormalize(normal); dot = DotProduct(normal, light); if (dot > 0.5) // interior reflection f += ((dot * 2) - 1); else if (dot < -0.5) // exterior reflection f += ((dot * -2) - 1); f *= 128; f += 16; // just to give it a haze so you can see the outline f = bound(0, f, 255); return (unsigned char) f; } else return 0; } int particlefontwidth, particlefontheight, particlefontcellwidth, particlefontcellheight, particlefontrows, particlefontcols; static void CL_Particle_PixelCoordsForTexnum(int texnum, int *basex, int *basey, int *width, int *height) { *basex = (texnum % particlefontcols) * particlefontcellwidth; *basey = ((texnum / particlefontcols) % particlefontrows) * particlefontcellheight; *width = particlefontcellwidth; *height = particlefontcellheight; } static void setuptex(int texnum, unsigned char *data, unsigned char *particletexturedata) { int basex, basey, w, h, y; CL_Particle_PixelCoordsForTexnum(texnum, &basex, &basey, &w, &h); if(w != PARTICLETEXTURESIZE || h != PARTICLETEXTURESIZE) Sys_Error("invalid particle texture size for autogenerating"); for (y = 0;y < PARTICLETEXTURESIZE;y++) memcpy(particletexturedata + ((basey + y) * PARTICLEFONTSIZE + basex) * 4, data + y * PARTICLETEXTURESIZE * 4, PARTICLETEXTURESIZE * 4); } static void particletextureblotch(unsigned char *data, float radius, float red, float green, float blue, float alpha) { int x, y; float cx, cy, dx, dy, f, iradius; unsigned char *d; cx = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f; cy = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f; iradius = 1.0f / radius; alpha *= (1.0f / 255.0f); for (y = 0;y < PARTICLETEXTURESIZE;y++) { for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - cx); dy = (y - cy); f = (1.0f - sqrt(dx * dx + dy * dy) * iradius) * alpha; if (f > 0) { if (f > 1) f = 1; d = data + (y * PARTICLETEXTURESIZE + x) * 4; d[0] += (int)(f * (blue - d[0])); d[1] += (int)(f * (green - d[1])); d[2] += (int)(f * (red - d[2])); } } } } #if 0 static void particletextureclamp(unsigned char *data, int minr, int ming, int minb, int maxr, int maxg, int maxb) { int i; for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4) { data[0] = bound(minb, data[0], maxb); data[1] = bound(ming, data[1], maxg); data[2] = bound(minr, data[2], maxr); } } #endif static void particletextureinvert(unsigned char *data) { int i; for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4) { data[0] = 255 - data[0]; data[1] = 255 - data[1]; data[2] = 255 - data[2]; } } // Those loops are in a separate function to work around an optimization bug in Mac OS X's GCC static void R_InitBloodTextures (unsigned char *particletexturedata) { int i, j, k, m; size_t datasize = PARTICLETEXTURESIZE*PARTICLETEXTURESIZE*4; unsigned char *data = (unsigned char *)Mem_Alloc(tempmempool, datasize); // blood particles for (i = 0;i < 8;i++) { memset(data, 255, datasize); for (k = 0;k < 24;k++) particletextureblotch(data, PARTICLETEXTURESIZE/16, 96, 0, 0, 160); //particletextureclamp(data, 32, 32, 32, 255, 255, 255); particletextureinvert(data); setuptex(tex_bloodparticle[i], data, particletexturedata); } // blood decals for (i = 0;i < 8;i++) { memset(data, 255, datasize); m = 8; for (j = 1;j < 10;j++) for (k = min(j, m - 1);k < m;k++) particletextureblotch(data, (float)j*PARTICLETEXTURESIZE/64.0f, 96, 0, 0, 320 - j * 8); //particletextureclamp(data, 32, 32, 32, 255, 255, 255); particletextureinvert(data); setuptex(tex_blooddecal[i], data, particletexturedata); } Mem_Free(data); } //uncomment this to make engine save out particle font to a tga file when run //#define DUMPPARTICLEFONT static void R_InitParticleTexture (void) { int x, y, d, i, k, m; int basex, basey, w, h; float dx, dy, f, s1, t1, s2, t2; vec3_t light; char *buf; fs_offset_t filesize; char texturename[MAX_QPATH]; skinframe_t *sf; // a note: decals need to modulate (multiply) the background color to // properly darken it (stain), and they need to be able to alpha fade, // this is a very difficult challenge because it means fading to white // (no change to background) rather than black (darkening everything // behind the whole decal polygon), and to accomplish this the texture is // inverted (dark red blood on white background becomes brilliant cyan // and white on black background) so we can alpha fade it to black, then // we invert it again during the blendfunc to make it work... #ifndef DUMPPARTICLEFONT decalskinframe = R_SkinFrame_LoadExternal("particles/particlefont.tga", TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, false, false); if (decalskinframe) { particlefonttexture = decalskinframe->base; // TODO maybe allow custom grid size? particlefontwidth = image_width; particlefontheight = image_height; particlefontcellwidth = image_width / 8; particlefontcellheight = image_height / 8; particlefontcols = 8; particlefontrows = 8; } else #endif { unsigned char *particletexturedata = (unsigned char *)Mem_Alloc(tempmempool, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4); size_t datasize = PARTICLETEXTURESIZE*PARTICLETEXTURESIZE*4; unsigned char *data = (unsigned char *)Mem_Alloc(tempmempool, datasize); unsigned char *noise1 = (unsigned char *)Mem_Alloc(tempmempool, PARTICLETEXTURESIZE*2*PARTICLETEXTURESIZE*2); unsigned char *noise2 = (unsigned char *)Mem_Alloc(tempmempool, PARTICLETEXTURESIZE*2*PARTICLETEXTURESIZE*2); particlefontwidth = particlefontheight = PARTICLEFONTSIZE; particlefontcellwidth = particlefontcellheight = PARTICLETEXTURESIZE; particlefontcols = 8; particlefontrows = 8; memset(particletexturedata, 255, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4); // smoke for (i = 0;i < 8;i++) { memset(data, 255, datasize); do { fractalnoise(noise1, PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/8); fractalnoise(noise2, PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/4); m = 0; for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); d = (noise2[y*PARTICLETEXTURESIZE*2+x] - 128) * 3 + 192; if (d > 0) d = (int)(d * (1-(dx*dx+dy*dy))); d = (d * noise1[y*PARTICLETEXTURESIZE*2+x]) >> 7; d = bound(0, d, 255); data[(y*PARTICLETEXTURESIZE+x)*4+3] = (unsigned char) d; if (m < d) m = d; } } } while (m < 224); setuptex(tex_smoke[i], data, particletexturedata); } // rain splash memset(data, 255, datasize); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); f = 255.0f * (1.0 - 4.0f * fabs(10.0f - sqrt(dx*dx+dy*dy))); data[(y*PARTICLETEXTURESIZE+x)*4+3] = (int) (bound(0.0f, f, 255.0f)); } } setuptex(tex_rainsplash, data, particletexturedata); // normal particle memset(data, 255, datasize); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); d = (int)(256 * (1 - (dx*dx+dy*dy))); d = bound(0, d, 255); data[(y*PARTICLETEXTURESIZE+x)*4+3] = (unsigned char) d; } } setuptex(tex_particle, data, particletexturedata); // rain memset(data, 255, datasize); light[0] = 1;light[1] = 1;light[2] = 1; VectorNormalize(light); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); // stretch upper half of bubble by +50% and shrink lower half by -50% // (this gives an elongated teardrop shape) if (dy > 0.5f) dy = (dy - 0.5f) * 2.0f; else dy = (dy - 0.5f) / 1.5f; for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); // shrink bubble width to half dx *= 2.0f; data[(y*PARTICLETEXTURESIZE+x)*4+3] = shadebubble(dx, dy, light); } } setuptex(tex_raindrop, data, particletexturedata); // bubble memset(data, 255, datasize); light[0] = 1;light[1] = 1;light[2] = 1; VectorNormalize(light); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); data[(y*PARTICLETEXTURESIZE+x)*4+3] = shadebubble(dx, dy, light); } } setuptex(tex_bubble, data, particletexturedata); // Blood particles and blood decals R_InitBloodTextures (particletexturedata); // bullet decals for (i = 0;i < 8;i++) { memset(data, 255, datasize); for (k = 0;k < 12;k++) particletextureblotch(data, PARTICLETEXTURESIZE/16, 0, 0, 0, 128); for (k = 0;k < 3;k++) particletextureblotch(data, PARTICLETEXTURESIZE/2, 0, 0, 0, 160); //particletextureclamp(data, 64, 64, 64, 255, 255, 255); particletextureinvert(data); setuptex(tex_bulletdecal[i], data, particletexturedata); } #ifdef DUMPPARTICLEFONT Image_WriteTGABGRA ("particles/particlefont.tga", PARTICLEFONTSIZE, PARTICLEFONTSIZE, particletexturedata); #endif decalskinframe = R_SkinFrame_LoadInternalBGRA("particlefont", TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, particletexturedata, PARTICLEFONTSIZE, PARTICLEFONTSIZE, 0, 0, 0, false); particlefonttexture = decalskinframe->base; Mem_Free(particletexturedata); Mem_Free(data); Mem_Free(noise1); Mem_Free(noise2); } for (i = 0;i < MAX_PARTICLETEXTURES;i++) { CL_Particle_PixelCoordsForTexnum(i, &basex, &basey, &w, &h); particletexture[i].texture = particlefonttexture; particletexture[i].s1 = (basex + 1) / (float)particlefontwidth; particletexture[i].t1 = (basey + 1) / (float)particlefontheight; particletexture[i].s2 = (basex + w - 1) / (float)particlefontwidth; particletexture[i].t2 = (basey + h - 1) / (float)particlefontheight; } #ifndef DUMPPARTICLEFONT particletexture[tex_beam].texture = loadtextureimage(particletexturepool, "particles/nexbeam.tga", false, TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, true, vid.sRGB3D); if (!particletexture[tex_beam].texture) #endif { unsigned char noise3[64][64], data2[64][16][4]; // nexbeam fractalnoise(&noise3[0][0], 64, 4); m = 0; for (y = 0;y < 64;y++) { dy = (y - 0.5f*64) / (64*0.5f-1); for (x = 0;x < 16;x++) { dx = (x - 0.5f*16) / (16*0.5f-2); d = (int)((1 - sqrt(fabs(dx))) * noise3[y][x]); data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (unsigned char) bound(0, d, 255); data2[y][x][3] = 255; } } #ifdef DUMPPARTICLEFONT Image_WriteTGABGRA ("particles/nexbeam.tga", 64, 64, &data2[0][0][0]); #endif particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "nexbeam", 16, 64, &data2[0][0][0], TEXTYPE_BGRA, TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, -1, NULL); } particletexture[tex_beam].s1 = 0; particletexture[tex_beam].t1 = 0; particletexture[tex_beam].s2 = 1; particletexture[tex_beam].t2 = 1; // now load an texcoord/texture override file buf = (char *) FS_LoadFile("particles/particlefont.txt", tempmempool, false, &filesize); if(buf) { const char *bufptr; bufptr = buf; for(;;) { if(!COM_ParseToken_Simple(&bufptr, true, false, true)) break; if(!strcmp(com_token, "\n")) continue; // empty line i = atoi(com_token); texturename[0] = 0; s1 = 0; t1 = 0; s2 = 1; t2 = 1; if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n")) { strlcpy(texturename, com_token, sizeof(texturename)); s1 = atof(com_token); if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n")) { texturename[0] = 0; t1 = atof(com_token); if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n")) { s2 = atof(com_token); if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n")) { t2 = atof(com_token); strlcpy(texturename, "particles/particlefont.tga", sizeof(texturename)); if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n")) strlcpy(texturename, com_token, sizeof(texturename)); } } } else s1 = 0; } if (!texturename[0]) { Con_Printf("particles/particlefont.txt: syntax should be texnum x1 y1 x2 y2 texturename or texnum x1 y1 x2 y2 or texnum texturename\n"); continue; } if (i < 0 || i >= MAX_PARTICLETEXTURES) { Con_Printf("particles/particlefont.txt: texnum %i outside valid range (0 to %i)\n", i, MAX_PARTICLETEXTURES); continue; } sf = R_SkinFrame_LoadExternal(texturename, TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, true, true); // note: this loads as sRGB if sRGB is active! particletexture[i].texture = sf->base; particletexture[i].s1 = s1; particletexture[i].t1 = t1; particletexture[i].s2 = s2; particletexture[i].t2 = t2; } Mem_Free(buf); } } static void r_part_start(void) { int i; // generate particlepalette for convenience from the main one for (i = 0;i < 256;i++) particlepalette[i] = palette_rgb[i][0] * 65536 + palette_rgb[i][1] * 256 + palette_rgb[i][2]; particletexturepool = R_AllocTexturePool(); R_InitParticleTexture (); CL_Particles_LoadEffectInfo(NULL); } static void r_part_shutdown(void) { R_FreeTexturePool(&particletexturepool); } static void r_part_newmap(void) { if (decalskinframe) R_SkinFrame_MarkUsed(decalskinframe); CL_Particles_LoadEffectInfo(NULL); } unsigned short particle_elements[MESHQUEUE_TRANSPARENT_BATCHSIZE*6]; float particle_vertex3f[MESHQUEUE_TRANSPARENT_BATCHSIZE*12], particle_texcoord2f[MESHQUEUE_TRANSPARENT_BATCHSIZE*8], particle_color4f[MESHQUEUE_TRANSPARENT_BATCHSIZE*16]; void R_Particles_Init (void) { int i; for (i = 0;i < MESHQUEUE_TRANSPARENT_BATCHSIZE;i++) { particle_elements[i*6+0] = i*4+0; particle_elements[i*6+1] = i*4+1; particle_elements[i*6+2] = i*4+2; particle_elements[i*6+3] = i*4+0; particle_elements[i*6+4] = i*4+2; particle_elements[i*6+5] = i*4+3; } Cvar_RegisterVariable(&r_drawparticles); Cvar_RegisterVariable(&r_drawparticles_drawdistance); Cvar_RegisterVariable(&r_drawparticles_nearclip_min); Cvar_RegisterVariable(&r_drawparticles_nearclip_max); Cvar_RegisterVariable(&r_drawdecals); Cvar_RegisterVariable(&r_drawdecals_drawdistance); R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap, NULL, NULL); } static void R_DrawParticle_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { vec3_t vecorg, vecvel, baseright, baseup; int surfacelistindex; int batchstart, batchcount; const particle_t *p; pblend_t blendmode; rtexture_t *texture; float *v3f, *t2f, *c4f; particletexture_t *tex; float up2[3], v[3], right[3], up[3], fog, ifog, size, len, lenfactor, alpha; // float ambient[3], diffuse[3], diffusenormal[3]; float palpha, spintime, spinrad, spincos, spinsin, spinm1, spinm2, spinm3, spinm4; vec4_t colormultiplier; float minparticledist_start, minparticledist_end; qbool dofade; RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false); Vector4Set(colormultiplier, r_refdef.view.colorscale * (1.0 / 256.0f), r_refdef.view.colorscale * (1.0 / 256.0f), r_refdef.view.colorscale * (1.0 / 256.0f), cl_particles_alpha.value * (1.0 / 256.0f)); r_refdef.stats[r_stat_particles] += numsurfaces; // R_Mesh_ResetTextureState(); GL_DepthMask(false); GL_DepthRange(0, 1); GL_PolygonOffset(0, 0); GL_DepthTest(true); GL_CullFace(GL_NONE); spintime = r_refdef.scene.time; minparticledist_start = DotProduct(r_refdef.view.origin, r_refdef.view.forward) + r_drawparticles_nearclip_min.value; minparticledist_end = DotProduct(r_refdef.view.origin, r_refdef.view.forward) + r_drawparticles_nearclip_max.value; dofade = (minparticledist_start < minparticledist_end); // first generate all the vertices at once for (surfacelistindex = 0, v3f = particle_vertex3f, t2f = particle_texcoord2f, c4f = particle_color4f;surfacelistindex < numsurfaces;surfacelistindex++, v3f += 3*4, t2f += 2*4, c4f += 4*4) { p = cl.particles + surfacelist[surfacelistindex]; blendmode = (pblend_t)p->blendmode; palpha = p->alpha; if(dofade && p->orientation != PARTICLE_VBEAM && p->orientation != PARTICLE_HBEAM) palpha *= min(1, (DotProduct(p->org, r_refdef.view.forward) - minparticledist_start) / (minparticledist_end - minparticledist_start)); alpha = palpha * colormultiplier[3]; // ensure alpha multiplier saturates properly if (alpha > 1.0f) alpha = 1.0f; switch (blendmode) { case PBLEND_INVALID: case PBLEND_INVMOD: // additive and modulate can just fade out in fog (this is correct) if (r_refdef.fogenabled) alpha *= RSurf_FogVertex(p->org); // collapse alpha into color for these blends (so that the particlefont does not need alpha on most textures) alpha *= 1.0f / 256.0f; c4f[0] = p->color[0] * alpha; c4f[1] = p->color[1] * alpha; c4f[2] = p->color[2] * alpha; c4f[3] = 0; break; case PBLEND_ADD: // additive and modulate can just fade out in fog (this is correct) if (r_refdef.fogenabled) alpha *= RSurf_FogVertex(p->org); // collapse alpha into color for these blends (so that the particlefont does not need alpha on most textures) c4f[0] = p->color[0] * colormultiplier[0] * alpha; c4f[1] = p->color[1] * colormultiplier[1] * alpha; c4f[2] = p->color[2] * colormultiplier[2] * alpha; c4f[3] = 0; break; case PBLEND_ALPHA: c4f[0] = p->color[0] * colormultiplier[0]; c4f[1] = p->color[1] * colormultiplier[1]; c4f[2] = p->color[2] * colormultiplier[2]; c4f[3] = alpha; // note: lighting is not cheap! if (particletype[p->typeindex].lighting) { float a[3], c[3], dir[3]; vecorg[0] = p->org[0]; vecorg[1] = p->org[1]; vecorg[2] = p->org[2]; R_CompleteLightPoint(a, c, dir, vecorg, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT, r_refdef.scene.lightmapintensity, r_refdef.scene.ambientintensity); c4f[0] = p->color[0] * colormultiplier[0] * (a[0] + 0.25f * c[0]); c4f[1] = p->color[1] * colormultiplier[1] * (a[1] + 0.25f * c[1]); c4f[2] = p->color[2] * colormultiplier[2] * (a[2] + 0.25f * c[2]); } // mix in the fog color if (r_refdef.fogenabled) { fog = RSurf_FogVertex(p->org); ifog = 1 - fog; c4f[0] = c4f[0] * fog + r_refdef.fogcolor[0] * ifog; c4f[1] = c4f[1] * fog + r_refdef.fogcolor[1] * ifog; c4f[2] = c4f[2] * fog + r_refdef.fogcolor[2] * ifog; } // for premultiplied alpha we have to apply the alpha to the color (after fog of course) VectorScale(c4f, alpha, c4f); break; } // copy the color into the other three vertices Vector4Copy(c4f, c4f + 4); Vector4Copy(c4f, c4f + 8); Vector4Copy(c4f, c4f + 12); size = p->size * cl_particles_size.value; tex = &particletexture[p->texnum]; switch(p->orientation) { // case PARTICLE_INVALID: case PARTICLE_BILLBOARD: if (p->angle + p->spin) { spinrad = (p->angle + p->spin * (spintime - p->delayedspawn)) * (float)(M_PI / 180.0f); spinsin = sin(spinrad) * size; spincos = cos(spinrad) * size; spinm1 = -p->stretch * spincos; spinm2 = -spinsin; spinm3 = spinsin; spinm4 = -p->stretch * spincos; VectorMAM(spinm1, r_refdef.view.left, spinm2, r_refdef.view.up, right); VectorMAM(spinm3, r_refdef.view.left, spinm4, r_refdef.view.up, up); } else { VectorScale(r_refdef.view.left, -size * p->stretch, right); VectorScale(r_refdef.view.up, size, up); } v3f[ 0] = p->org[0] - right[0] - up[0]; v3f[ 1] = p->org[1] - right[1] - up[1]; v3f[ 2] = p->org[2] - right[2] - up[2]; v3f[ 3] = p->org[0] - right[0] + up[0]; v3f[ 4] = p->org[1] - right[1] + up[1]; v3f[ 5] = p->org[2] - right[2] + up[2]; v3f[ 6] = p->org[0] + right[0] + up[0]; v3f[ 7] = p->org[1] + right[1] + up[1]; v3f[ 8] = p->org[2] + right[2] + up[2]; v3f[ 9] = p->org[0] + right[0] - up[0]; v3f[10] = p->org[1] + right[1] - up[1]; v3f[11] = p->org[2] + right[2] - up[2]; t2f[0] = tex->s1;t2f[1] = tex->t2; t2f[2] = tex->s1;t2f[3] = tex->t1; t2f[4] = tex->s2;t2f[5] = tex->t1; t2f[6] = tex->s2;t2f[7] = tex->t2; break; case PARTICLE_ORIENTED_DOUBLESIDED: vecvel[0] = p->vel[0]; vecvel[1] = p->vel[1]; vecvel[2] = p->vel[2]; VectorVectors(vecvel, baseright, baseup); if (p->angle + p->spin) { spinrad = (p->angle + p->spin * (spintime - p->delayedspawn)) * (float)(M_PI / 180.0f); spinsin = sin(spinrad) * size; spincos = cos(spinrad) * size; spinm1 = p->stretch * spincos; spinm2 = -spinsin; spinm3 = spinsin; spinm4 = p->stretch * spincos; VectorMAM(spinm1, baseright, spinm2, baseup, right); VectorMAM(spinm3, baseright, spinm4, baseup, up); } else { VectorScale(baseright, size * p->stretch, right); VectorScale(baseup, size, up); } v3f[ 0] = p->org[0] - right[0] - up[0]; v3f[ 1] = p->org[1] - right[1] - up[1]; v3f[ 2] = p->org[2] - right[2] - up[2]; v3f[ 3] = p->org[0] - right[0] + up[0]; v3f[ 4] = p->org[1] - right[1] + up[1]; v3f[ 5] = p->org[2] - right[2] + up[2]; v3f[ 6] = p->org[0] + right[0] + up[0]; v3f[ 7] = p->org[1] + right[1] + up[1]; v3f[ 8] = p->org[2] + right[2] + up[2]; v3f[ 9] = p->org[0] + right[0] - up[0]; v3f[10] = p->org[1] + right[1] - up[1]; v3f[11] = p->org[2] + right[2] - up[2]; t2f[0] = tex->s1;t2f[1] = tex->t2; t2f[2] = tex->s1;t2f[3] = tex->t1; t2f[4] = tex->s2;t2f[5] = tex->t1; t2f[6] = tex->s2;t2f[7] = tex->t2; break; case PARTICLE_SPARK: len = VectorLength(p->vel); VectorNormalize2(p->vel, up); lenfactor = p->stretch * 0.04 * len; if(lenfactor < size * 0.5) lenfactor = size * 0.5; VectorMA(p->org, -lenfactor, up, v); VectorMA(p->org, lenfactor, up, up2); R_CalcBeam_Vertex3f(v3f, v, up2, size); t2f[0] = tex->s1;t2f[1] = tex->t2; t2f[2] = tex->s1;t2f[3] = tex->t1; t2f[4] = tex->s2;t2f[5] = tex->t1; t2f[6] = tex->s2;t2f[7] = tex->t2; break; case PARTICLE_VBEAM: R_CalcBeam_Vertex3f(v3f, p->org, p->vel, size); VectorSubtract(p->vel, p->org, up); VectorNormalize(up); v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) * p->stretch; v[1] = DotProduct(p->vel, up) * (1.0f / 64.0f) * p->stretch; t2f[0] = tex->s2;t2f[1] = v[0]; t2f[2] = tex->s1;t2f[3] = v[0]; t2f[4] = tex->s1;t2f[5] = v[1]; t2f[6] = tex->s2;t2f[7] = v[1]; break; case PARTICLE_HBEAM: R_CalcBeam_Vertex3f(v3f, p->org, p->vel, size); VectorSubtract(p->vel, p->org, up); VectorNormalize(up); v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) * p->stretch; v[1] = DotProduct(p->vel, up) * (1.0f / 64.0f) * p->stretch; t2f[0] = v[0];t2f[1] = tex->t1; t2f[2] = v[0];t2f[3] = tex->t2; t2f[4] = v[1];t2f[5] = tex->t2; t2f[6] = v[1];t2f[7] = tex->t1; break; } if (r_showparticleedges.integer) { R_DebugLine(v3f, v3f + 3); R_DebugLine(v3f + 3, v3f + 6); R_DebugLine(v3f + 6, v3f + 9); R_DebugLine(v3f + 9, v3f); } } // now render batches of particles based on blendmode and texture blendmode = PBLEND_INVALID; texture = NULL; batchstart = 0; batchcount = 0; R_Mesh_PrepareVertices_Generic_Arrays(numsurfaces * 4, particle_vertex3f, particle_color4f, particle_texcoord2f); for (surfacelistindex = 0;surfacelistindex < numsurfaces;) { p = cl.particles + surfacelist[surfacelistindex]; if (texture != particletexture[p->texnum].texture) { texture = particletexture[p->texnum].texture; R_SetupShader_Generic(texture, false, false, false); } if (p->blendmode == PBLEND_INVMOD) { // inverse modulate blend - group these GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR); // iterate until we find a change in settings batchstart = surfacelistindex++; for (;surfacelistindex < numsurfaces;surfacelistindex++) { p = cl.particles + surfacelist[surfacelistindex]; if (p->blendmode != PBLEND_INVMOD || texture != particletexture[p->texnum].texture) break; } } else { // additive or alpha blend - group these // (we can group these because we premultiplied the texture alpha) GL_BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); // iterate until we find a change in settings batchstart = surfacelistindex++; for (;surfacelistindex < numsurfaces;surfacelistindex++) { p = cl.particles + surfacelist[surfacelistindex]; if (p->blendmode == PBLEND_INVMOD || texture != particletexture[p->texnum].texture) break; } } batchcount = surfacelistindex - batchstart; R_Mesh_Draw(batchstart * 4, batchcount * 4, batchstart * 2, batchcount * 2, NULL, NULL, 0, particle_elements, NULL, 0); } } void R_DrawParticles (void) { int i, a; int drawparticles = r_drawparticles.integer; float minparticledist_start; particle_t *p; float gravity, frametime, f, dist, oldorg[3], decaldir[3]; float drawdist2; int hitent; trace_t trace; qbool update; frametime = bound(0, cl.time - cl.particles_updatetime, 1); cl.particles_updatetime = bound(cl.time - 1, cl.particles_updatetime + frametime, cl.time + 1); // LadyHavoc: early out conditions if (!cl.num_particles) return; minparticledist_start = DotProduct(r_refdef.view.origin, r_refdef.view.forward) + r_drawparticles_nearclip_min.value; gravity = frametime * cl.movevars_gravity; update = frametime > 0; drawdist2 = r_drawparticles_drawdistance.value * r_refdef.view.quality; drawdist2 = drawdist2*drawdist2; for (i = 0, p = cl.particles;i < cl.num_particles;i++, p++) { if (!p->typeindex) { if (cl.free_particle > i) cl.free_particle = i; continue; } if (update) { if (p->delayedspawn > cl.time) continue; p->size += p->sizeincrease * frametime; p->alpha -= p->alphafade * frametime; if (p->alpha <= 0 || p->die <= cl.time) goto killparticle; if (p->orientation != PARTICLE_VBEAM && p->orientation != PARTICLE_HBEAM && frametime > 0) { if (p->liquidfriction && cl_particles_collisions.integer && (CL_PointSuperContents(p->org) & SUPERCONTENTS_LIQUIDSMASK)) { if (p->typeindex == pt_blood) p->size += frametime * 8; else p->vel[2] -= p->gravity * gravity; f = 1.0f - min(p->liquidfriction * frametime, 1); VectorScale(p->vel, f, p->vel); } else { p->vel[2] -= p->gravity * gravity; if (p->airfriction) { f = 1.0f - min(p->airfriction * frametime, 1); VectorScale(p->vel, f, p->vel); } } VectorCopy(p->org, oldorg); VectorMA(p->org, frametime, p->vel, p->org); // if (p->bounce && cl.time >= p->delayedcollisions) if (p->bounce && cl_particles_collisions.integer && VectorLength(p->vel)) { trace = CL_TraceLine(oldorg, p->org, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID | ((p->typeindex == pt_rain || p->typeindex == pt_snow) ? SUPERCONTENTS_LIQUIDSMASK : 0), 0, 0, collision_extendmovelength.value, true, false, &hitent, false, false); // if the trace started in or hit something of SUPERCONTENTS_NODROP // or if the trace hit something flagged as NOIMPACT // then remove the particle if (trace.hitq3surfaceflags & Q3SURFACEFLAG_NOIMPACT || ((trace.startsupercontents | trace.hitsupercontents) & SUPERCONTENTS_NODROP) || (trace.startsupercontents & SUPERCONTENTS_SOLID)) goto killparticle; VectorCopy(trace.endpos, p->org); // react if the particle hit something if (trace.fraction < 1) { VectorCopy(trace.endpos, p->org); if (p->staintexnum >= 0) { // blood - splash on solid if (!(trace.hitq3surfaceflags & Q3SURFACEFLAG_NOMARKS)) { R_Stain(p->org, 16, p->staincolor[0], p->staincolor[1], p->staincolor[2], (int)(p->stainalpha * p->stainsize * (1.0f / 160.0f)), p->staincolor[0], p->staincolor[1], p->staincolor[2], (int)(p->stainalpha * p->stainsize * (1.0f / 160.0f))); if (cl_decals.integer) { // create a decal for the blood splat a = 0xFFFFFF ^ (p->staincolor[0]*65536+p->staincolor[1]*256+p->staincolor[2]); if (cl_decals_newsystem_bloodsmears.integer) { VectorCopy(p->vel, decaldir); VectorNormalize(decaldir); } else VectorCopy(trace.plane.normal, decaldir); CL_SpawnDecalParticleForSurface(hitent, p->org, decaldir, a, a, p->staintexnum, p->stainsize, p->stainalpha); // staincolor needs to be inverted for decals! } } } if (p->typeindex == pt_blood) { // blood - splash on solid if (trace.hitq3surfaceflags & Q3SURFACEFLAG_NOMARKS) goto killparticle; if(p->staintexnum == -1) // staintex < -1 means no stains at all { R_Stain(p->org, 16, 64, 16, 16, (int)(p->alpha * p->size * (1.0f / 80.0f)), 64, 32, 32, (int)(p->alpha * p->size * (1.0f / 80.0f))); if (cl_decals.integer) { // create a decal for the blood splat if (cl_decals_newsystem_bloodsmears.integer) { VectorCopy(p->vel, decaldir); VectorNormalize(decaldir); } else VectorCopy(trace.plane.normal, decaldir); CL_SpawnDecalParticleForSurface(hitent, p->org, decaldir, p->color[0] * 65536 + p->color[1] * 256 + p->color[2], p->color[0] * 65536 + p->color[1] * 256 + p->color[2], tex_blooddecal[rand()&7], p->size * lhrandom(cl_particles_blood_decal_scalemin.value, cl_particles_blood_decal_scalemax.value), cl_particles_blood_decal_alpha.value * 768); } } goto killparticle; } else if (p->bounce < 0) { // bounce -1 means remove on impact goto killparticle; } else { // anything else - bounce off solid dist = DotProduct(p->vel, trace.plane.normal) * -p->bounce; VectorMA(p->vel, dist, trace.plane.normal, p->vel); } } } if (VectorLength2(p->vel) < 0.03) { if(p->orientation == PARTICLE_SPARK) // sparks are virtually invisible if very slow, so rather let them go off goto killparticle; VectorClear(p->vel); } } if (p->typeindex != pt_static) { switch (p->typeindex) { case pt_entityparticle: // particle that removes itself after one rendered frame if (p->time2) goto killparticle; else p->time2 = 1; break; case pt_blood: a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP)) goto killparticle; break; case pt_bubble: a = CL_PointSuperContents(p->org); if (!(a & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME))) goto killparticle; break; case pt_rain: a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK)) goto killparticle; break; case pt_snow: if (cl.time > p->time2) { // snow flutter p->time2 = cl.time + (rand() & 3) * 0.1; p->vel[0] = p->vel[0] * 0.9f + lhrandom(-32, 32); p->vel[1] = p->vel[0] * 0.9f + lhrandom(-32, 32); } a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK)) goto killparticle; break; default: break; } } } else if (p->delayedspawn > cl.time) continue; if (!drawparticles) continue; // don't render particles too close to the view (they chew fillrate) // also don't render particles behind the view (useless) // further checks to cull to the frustum would be too slow here switch(p->typeindex) { case pt_beam: // beams have no culling R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, p->sortorigin, R_DrawParticle_TransparentCallback, NULL, i, NULL); break; default: if(cl_particles_visculling.integer) if (!r_refdef.viewcache.world_novis) if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.PointInLeaf) { mleaf_t *leaf = r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, p->org); if(leaf) if(!CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, leaf->clusterindex)) continue; } // anything else just has to be in front of the viewer and visible at this distance if (!r_refdef.view.useperspective || (DotProduct(p->org, r_refdef.view.forward) >= minparticledist_start && VectorDistance2(p->org, r_refdef.view.origin) < drawdist2 * (p->size * p->size))) R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, p->sortorigin, R_DrawParticle_TransparentCallback, NULL, i, NULL); break; } continue; killparticle: p->typeindex = 0; if (cl.free_particle > i) cl.free_particle = i; } // reduce cl.num_particles if possible while (cl.num_particles > 0 && cl.particles[cl.num_particles - 1].typeindex == 0) cl.num_particles--; if (cl.num_particles == cl.max_particles && cl.max_particles < MAX_PARTICLES) { particle_t *oldparticles = cl.particles; cl.max_particles = min(cl.max_particles * 2, MAX_PARTICLES); cl.particles = (particle_t *) Mem_Alloc(cls.levelmempool, cl.max_particles * sizeof(particle_t)); memcpy(cl.particles, oldparticles, cl.num_particles * sizeof(particle_t)); Mem_Free(oldparticles); } }