]> git.xonotic.org Git - xonotic/darkplaces.git/blob - gl_rmain.c
Unify the command and cvar flags, under the CF_ prefix.
[xonotic/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "r_shadow.h"
24 #include "polygon.h"
25 #include "image.h"
26 #include "ft2.h"
27 #include "csprogs.h"
28 #include "cl_video.h"
29 #include "cl_collision.h"
30
31 #ifdef WIN32
32 // Enable NVIDIA High Performance Graphics while using Integrated Graphics.
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 __declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001;
37 #ifdef __cplusplus
38 }
39 #endif
40 #endif
41
42 mempool_t *r_main_mempool;
43 rtexturepool_t *r_main_texturepool;
44
45 int r_textureframe = 0; ///< used only by R_GetCurrentTexture, incremented per view and per UI render
46
47 static qbool r_loadnormalmap;
48 static qbool r_loadgloss;
49 qbool r_loadfog;
50 static qbool r_loaddds;
51 static qbool r_savedds;
52 static qbool r_gpuskeletal;
53
54 //
55 // screen size info
56 //
57 r_refdef_t r_refdef;
58
59 cvar_t r_motionblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur", "0", "screen motionblur - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
60 cvar_t r_damageblur = {CF_CLIENT | CF_ARCHIVE, "r_damageblur", "0", "screen motionblur based on damage - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
61 cvar_t r_motionblur_averaging = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_averaging", "0.1", "sliding average reaction time for velocity (higher = slower adaption to change)"};
62 cvar_t r_motionblur_randomize = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_randomize", "0.1", "randomizing coefficient to workaround ghosting"};
63 cvar_t r_motionblur_minblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_minblur", "0.5", "factor of blur to apply at all times (always have this amount of blur no matter what the other factors are)"};
64 cvar_t r_motionblur_maxblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_maxblur", "0.9", "maxmimum amount of blur"};
65 cvar_t r_motionblur_velocityfactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor", "1", "factoring in of player velocity to the blur equation - the faster the player moves around the map, the more blur they get"};
66 cvar_t r_motionblur_velocityfactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_minspeed", "400", "lower value of velocity when it starts to factor into blur equation"};
67 cvar_t r_motionblur_velocityfactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_maxspeed", "800", "upper value of velocity when it reaches the peak factor into blur equation"};
68 cvar_t r_motionblur_mousefactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor", "2", "factoring in of mouse acceleration to the blur equation - the faster the player turns their mouse, the more blur they get"};
69 cvar_t r_motionblur_mousefactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_minspeed", "0", "lower value of mouse acceleration when it starts to factor into blur equation"};
70 cvar_t r_motionblur_mousefactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_maxspeed", "50", "upper value of mouse acceleration when it reaches the peak factor into blur equation"};
71
72 cvar_t r_depthfirst = {CF_CLIENT | CF_ARCHIVE, "r_depthfirst", "0", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
73 cvar_t r_useinfinitefarclip = {CF_CLIENT | CF_ARCHIVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"};
74 cvar_t r_farclip_base = {CF_CLIENT, "r_farclip_base", "65536", "farclip (furthest visible distance) for rendering when r_useinfinitefarclip is 0"};
75 cvar_t r_farclip_world = {CF_CLIENT, "r_farclip_world", "2", "adds map size to farclip multiplied by this value"};
76 cvar_t r_nearclip = {CF_CLIENT, "r_nearclip", "1", "distance from camera of nearclip plane" };
77 cvar_t r_deformvertexes = {CF_CLIENT, "r_deformvertexes", "1", "allows use of deformvertexes in shader files (can be turned off to check performance impact)"};
78 cvar_t r_transparent = {CF_CLIENT, "r_transparent", "1", "allows use of transparent surfaces (can be turned off to check performance impact)"};
79 cvar_t r_transparent_alphatocoverage = {CF_CLIENT, "r_transparent_alphatocoverage", "1", "enables GL_ALPHA_TO_COVERAGE antialiasing technique on alphablend and alphatest surfaces when using vid_samples 2 or higher"};
80 cvar_t r_transparent_sortsurfacesbynearest = {CF_CLIENT, "r_transparent_sortsurfacesbynearest", "1", "sort entity and world surfaces by nearest point on bounding box instead of using the center of the bounding box, usually reduces sorting artifacts"};
81 cvar_t r_transparent_useplanardistance = {CF_CLIENT, "r_transparent_useplanardistance", "0", "sort transparent meshes by distance from view plane rather than spherical distance to the chosen point"};
82 cvar_t r_showoverdraw = {CF_CLIENT, "r_showoverdraw", "0", "shows overlapping geometry"};
83 cvar_t r_showbboxes = {CF_CLIENT, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
84 cvar_t r_showbboxes_client = {CF_CLIENT, "r_showbboxes_client", "0", "shows bounding boxes of clientside qc entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
85 cvar_t r_showsurfaces = {CF_CLIENT, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
86 cvar_t r_showtris = {CF_CLIENT, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
87 cvar_t r_shownormals = {CF_CLIENT, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
88 cvar_t r_showlighting = {CF_CLIENT, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
89 cvar_t r_showcollisionbrushes = {CF_CLIENT, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
90 cvar_t r_showcollisionbrushes_polygonfactor = {CF_CLIENT, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
91 cvar_t r_showcollisionbrushes_polygonoffset = {CF_CLIENT, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
92 cvar_t r_showdisabledepthtest = {CF_CLIENT, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
93 cvar_t r_showspriteedges = {CF_CLIENT, "r_showspriteedges", "0", "renders a debug outline to show the polygon shape of each sprite frame rendered (may be 2 or more in case of interpolated animations), for debugging rendering bugs with specific view types"};
94 cvar_t r_showparticleedges = {CF_CLIENT, "r_showparticleedges", "0", "renders a debug outline to show the polygon shape of each particle, for debugging rendering bugs with specific view types"};
95 cvar_t r_drawportals = {CF_CLIENT, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
96 cvar_t r_drawentities = {CF_CLIENT, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
97 cvar_t r_draw2d = {CF_CLIENT, "r_draw2d","1", "draw 2D stuff (dangerous to turn off)"};
98 cvar_t r_drawworld = {CF_CLIENT, "r_drawworld","1", "draw world (most static stuff)"};
99 cvar_t r_drawviewmodel = {CF_CLIENT, "r_drawviewmodel","1", "draw your weapon model"};
100 cvar_t r_drawexteriormodel = {CF_CLIENT, "r_drawexteriormodel","1", "draw your player model (e.g. in chase cam, reflections)"};
101 cvar_t r_cullentities_trace = {CF_CLIENT, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
102 cvar_t r_cullentities_trace_entityocclusion = {CF_CLIENT, "r_cullentities_trace_entityocclusion", "1", "check for occluding entities such as doors, not just world hull"};
103 cvar_t r_cullentities_trace_samples = {CF_CLIENT, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling (in addition to center sample)"};
104 cvar_t r_cullentities_trace_tempentitysamples = {CF_CLIENT, "r_cullentities_trace_tempentitysamples", "-1", "number of samples to test for entity culling of temp entities (including all CSQC entities), -1 disables trace culling on these entities to prevent flicker (pvs still applies)"};
105 cvar_t r_cullentities_trace_enlarge = {CF_CLIENT, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
106 cvar_t r_cullentities_trace_expand = {CF_CLIENT, "r_cullentities_trace_expand", "0", "box expanded by this many units for entity culling"};
107 cvar_t r_cullentities_trace_pad = {CF_CLIENT, "r_cullentities_trace_pad", "8", "accept traces that hit within this many units of the box"};
108 cvar_t r_cullentities_trace_delay = {CF_CLIENT, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
109 cvar_t r_cullentities_trace_eyejitter = {CF_CLIENT, "r_cullentities_trace_eyejitter", "16", "randomly offset rays from the eye by this much to reduce the odds of flickering"};
110 cvar_t r_sortentities = {CF_CLIENT, "r_sortentities", "0", "sort entities before drawing (might be faster)"};
111 cvar_t r_speeds = {CF_CLIENT, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
112 cvar_t r_fullbright = {CF_CLIENT, "r_fullbright","0", "makes map very bright and renders faster"};
113
114 cvar_t r_fullbright_directed = {CF_CLIENT, "r_fullbright_directed", "0", "render fullbright things (unlit worldmodel and EF_FULLBRIGHT entities, but not fullbright shaders) using a constant light direction instead to add more depth while keeping uniform brightness"};
115 cvar_t r_fullbright_directed_ambient = {CF_CLIENT, "r_fullbright_directed_ambient", "0.5", "ambient light multiplier for directed fullbright"};
116 cvar_t r_fullbright_directed_diffuse = {CF_CLIENT, "r_fullbright_directed_diffuse", "0.75", "diffuse light multiplier for directed fullbright"};
117 cvar_t r_fullbright_directed_pitch = {CF_CLIENT, "r_fullbright_directed_pitch", "20", "constant pitch direction ('height') of the fake light source to use for fullbright"};
118 cvar_t r_fullbright_directed_pitch_relative = {CF_CLIENT, "r_fullbright_directed_pitch_relative", "0", "whether r_fullbright_directed_pitch is interpreted as absolute (0) or relative (1) pitch"};
119
120 cvar_t r_wateralpha = {CF_CLIENT | CF_ARCHIVE, "r_wateralpha","1", "opacity of water polygons"};
121 cvar_t r_dynamic = {CF_CLIENT | CF_ARCHIVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
122 cvar_t r_fullbrights = {CF_CLIENT | CF_ARCHIVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
123 cvar_t r_shadows = {CF_CLIENT | CF_ARCHIVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this); when set to 2, always cast the shadows in the direction set by r_shadows_throwdirection, otherwise use the model lighting."};
124 cvar_t r_shadows_darken = {CF_CLIENT | CF_ARCHIVE, "r_shadows_darken", "0.5", "how much shadowed areas will be darkened"};
125 cvar_t r_shadows_throwdistance = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
126 cvar_t r_shadows_throwdirection = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdirection", "0 0 -1", "override throwing direction for r_shadows 2"};
127 cvar_t r_shadows_drawafterrtlighting = {CF_CLIENT | CF_ARCHIVE, "r_shadows_drawafterrtlighting", "0", "draw fake shadows AFTER realtime lightning is drawn. May be useful for simulating fast sunlight on large outdoor maps with only one noshadow rtlight. The price is less realistic appearance of dynamic light shadows."};
128 cvar_t r_shadows_castfrombmodels = {CF_CLIENT | CF_ARCHIVE, "r_shadows_castfrombmodels", "0", "do cast shadows from bmodels"};
129 cvar_t r_shadows_focus = {CF_CLIENT | CF_ARCHIVE, "r_shadows_focus", "0 0 0", "offset the shadowed area focus"};
130 cvar_t r_shadows_shadowmapscale = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapscale", "0.25", "higher values increase shadowmap quality at a cost of area covered (multiply global shadowmap precision) for fake shadows. Needs shadowmapping ON."};
131 cvar_t r_shadows_shadowmapbias = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapbias", "-1", "sets shadowmap bias for fake shadows. -1 sets the value of r_shadow_shadowmapping_bias. Needs shadowmapping ON."};
132 cvar_t r_q1bsp_skymasking = {CF_CLIENT, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
133 cvar_t r_polygonoffset_submodel_factor = {CF_CLIENT, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
134 cvar_t r_polygonoffset_submodel_offset = {CF_CLIENT, "r_polygonoffset_submodel_offset", "14", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
135 cvar_t r_polygonoffset_decals_factor = {CF_CLIENT, "r_polygonoffset_decals_factor", "0", "biases depth values of decals to prevent z-fighting artifacts"};
136 cvar_t r_polygonoffset_decals_offset = {CF_CLIENT, "r_polygonoffset_decals_offset", "-14", "biases depth values of decals to prevent z-fighting artifacts"};
137 cvar_t r_fog_exp2 = {CF_CLIENT, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
138 cvar_t r_fog_clear = {CF_CLIENT, "r_fog_clear", "1", "clears renderbuffer with fog color before render starts"};
139 cvar_t r_drawfog = {CF_CLIENT | CF_ARCHIVE, "r_drawfog", "1", "allows one to disable fog rendering"};
140 cvar_t r_transparentdepthmasking = {CF_CLIENT | CF_ARCHIVE, "r_transparentdepthmasking", "0", "enables depth writes on transparent meshes whose materially is normally opaque, this prevents seeing the inside of a transparent mesh"};
141 cvar_t r_transparent_sortmindist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmindist", "0", "lower distance limit for transparent sorting"};
142 cvar_t r_transparent_sortmaxdist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmaxdist", "32768", "upper distance limit for transparent sorting"};
143 cvar_t r_transparent_sortarraysize = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortarraysize", "4096", "number of distance-sorting layers"};
144 cvar_t r_celshading = {CF_CLIENT | CF_ARCHIVE, "r_celshading", "0", "cartoon-style light shading (OpenGL 2.x only)"}; // FIXME remove OpenGL 2.x only once implemented for DX9
145 cvar_t r_celoutlines = {CF_CLIENT | CF_ARCHIVE, "r_celoutlines", "0", "cartoon-style outlines (requires r_shadow_deferred)"};
146
147 cvar_t gl_fogenable = {CF_CLIENT, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
148 cvar_t gl_fogdensity = {CF_CLIENT, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
149 cvar_t gl_fogred = {CF_CLIENT, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
150 cvar_t gl_foggreen = {CF_CLIENT, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
151 cvar_t gl_fogblue = {CF_CLIENT, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
152 cvar_t gl_fogstart = {CF_CLIENT, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
153 cvar_t gl_fogend = {CF_CLIENT, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
154 cvar_t gl_skyclip = {CF_CLIENT, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
155
156 cvar_t r_texture_dds_load = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_load", "0", "load compressed dds/filename.dds texture instead of filename.tga, if the file exists (requires driver support)"};
157 cvar_t r_texture_dds_save = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_save", "0", "save compressed dds/filename.dds texture when filename.tga is loaded, so that it can be loaded instead next time"};
158
159 cvar_t r_textureunits = {CF_CLIENT, "r_textureunits", "32", "number of texture units to use in GL 1.1 and GL 1.3 rendering paths"};
160 static cvar_t gl_combine = {CF_CLIENT | CF_READONLY, "gl_combine", "1", "indicates whether the OpenGL 1.3 rendering path is active"};
161 static cvar_t r_glsl = {CF_CLIENT | CF_READONLY, "r_glsl", "1", "indicates whether the OpenGL 2.0 rendering path is active"};
162
163 cvar_t r_usedepthtextures = {CF_CLIENT | CF_ARCHIVE, "r_usedepthtextures", "1", "use depth texture instead of depth renderbuffer where possible, uses less video memory but may render slower (or faster) depending on hardware"};
164 cvar_t r_viewfbo = {CF_CLIENT | CF_ARCHIVE, "r_viewfbo", "0", "enables use of an 8bit (1) or 16bit (2) or 32bit (3) per component float framebuffer render, which may be at a different resolution than the video mode"};
165 cvar_t r_rendertarget_debug = {CF_CLIENT, "r_rendertarget_debug", "-1", "replaces the view with the contents of the specified render target (by number - note that these can fluctuate depending on scene)"};
166 cvar_t r_viewscale = {CF_CLIENT | CF_ARCHIVE, "r_viewscale", "1", "scaling factor for resolution of the fbo rendering method, must be > 0, can be above 1 for a costly antialiasing behavior, typical values are 0.5 for 1/4th as many pixels rendered, or 1 for normal rendering"};
167 cvar_t r_viewscale_fpsscaling = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling", "0", "change resolution based on framerate"};
168 cvar_t r_viewscale_fpsscaling_min = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_min", "0.0625", "worst acceptable quality"};
169 cvar_t r_viewscale_fpsscaling_multiply = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_multiply", "5", "adjust quality up or down by the frametime difference from 1.0/target, multiplied by this factor"};
170 cvar_t r_viewscale_fpsscaling_stepsize = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepsize", "0.01", "smallest adjustment to hit the target framerate (this value prevents minute oscillations)"};
171 cvar_t r_viewscale_fpsscaling_stepmax = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepmax", "1.00", "largest adjustment to hit the target framerate (this value prevents wild overshooting of the estimate)"};
172 cvar_t r_viewscale_fpsscaling_target = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_target", "70", "desired framerate"};
173
174 cvar_t r_glsl_skeletal = {CF_CLIENT | CF_ARCHIVE, "r_glsl_skeletal", "1", "render skeletal models faster using a gpu-skinning technique"};
175 cvar_t r_glsl_deluxemapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
176 cvar_t r_glsl_offsetmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
177 cvar_t r_glsl_offsetmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_steps", "2", "offset mapping steps (note: too high values may be not supported by your GPU)"};
178 cvar_t r_glsl_offsetmapping_reliefmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
179 cvar_t r_glsl_offsetmapping_reliefmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_steps", "10", "relief mapping steps (note: too high values may be not supported by your GPU)"};
180 cvar_t r_glsl_offsetmapping_reliefmapping_refinesteps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_refinesteps", "5", "relief mapping refine steps (these are a binary search executed as the last step as given by r_glsl_offsetmapping_reliefmapping_steps)"};
181 cvar_t r_glsl_offsetmapping_scale = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
182 cvar_t r_glsl_offsetmapping_lod = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod", "0", "apply distance-based level-of-detail correction to number of offsetmappig steps, effectively making it render faster on large open-area maps"};
183 cvar_t r_glsl_offsetmapping_lod_distance = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod_distance", "32", "first LOD level distance, second level (-50% steps) is 2x of this, third (33%) - 3x etc."};
184 cvar_t r_glsl_postprocess = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
185 cvar_t r_glsl_postprocess_uservec1 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
186 cvar_t r_glsl_postprocess_uservec2 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
187 cvar_t r_glsl_postprocess_uservec3 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
188 cvar_t r_glsl_postprocess_uservec4 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
189 cvar_t r_glsl_postprocess_uservec1_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1_enable", "1", "enables postprocessing uservec1 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
190 cvar_t r_glsl_postprocess_uservec2_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2_enable", "1", "enables postprocessing uservec2 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
191 cvar_t r_glsl_postprocess_uservec3_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3_enable", "1", "enables postprocessing uservec3 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
192 cvar_t r_glsl_postprocess_uservec4_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4_enable", "1", "enables postprocessing uservec4 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
193 cvar_t r_colorfringe = {CF_CLIENT | CF_ARCHIVE, "r_colorfringe", "0", "Chromatic aberration. Values higher than 0.025 will noticeably distort the image"};
194
195 cvar_t r_water = {CF_CLIENT | CF_ARCHIVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
196 cvar_t r_water_cameraentitiesonly = {CF_CLIENT | CF_ARCHIVE, "r_water_cameraentitiesonly", "0", "whether to only show QC-defined reflections/refractions (typically used for camera- or portal-like effects)"};
197 cvar_t r_water_clippingplanebias = {CF_CLIENT | CF_ARCHIVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
198 cvar_t r_water_resolutionmultiplier = {CF_CLIENT | CF_ARCHIVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
199 cvar_t r_water_refractdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
200 cvar_t r_water_reflectdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
201 cvar_t r_water_scissormode = {CF_CLIENT, "r_water_scissormode", "3", "scissor (1) or cull (2) or both (3) water renders"};
202 cvar_t r_water_lowquality = {CF_CLIENT, "r_water_lowquality", "0", "special option to accelerate water rendering: 1 disables all dynamic lights, 2 disables particles too"};
203 cvar_t r_water_hideplayer = {CF_CLIENT | CF_ARCHIVE, "r_water_hideplayer", "0", "if set to 1 then player will be hidden in refraction views, if set to 2 then player will also be hidden in reflection views, player is always visible in camera views"};
204
205 cvar_t r_lerpsprites = {CF_CLIENT | CF_ARCHIVE, "r_lerpsprites", "0", "enables animation smoothing on sprites"};
206 cvar_t r_lerpmodels = {CF_CLIENT | CF_ARCHIVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
207 cvar_t r_nolerp_list = {CF_CLIENT | CF_ARCHIVE, "r_nolerp_list", "progs/v_nail.mdl,progs/v_nail2.mdl,progs/flame.mdl,progs/flame2.mdl,progs/braztall.mdl,progs/brazshrt.mdl,progs/longtrch.mdl,progs/flame_pyre.mdl,progs/v_saw.mdl,progs/v_xfist.mdl,progs/h2stuff/newfire.mdl", "comma separated list of models that will not have their animations smoothed"};
208 cvar_t r_lerplightstyles = {CF_CLIENT | CF_ARCHIVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
209 cvar_t r_waterscroll = {CF_CLIENT | CF_ARCHIVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
210
211 cvar_t r_bloom = {CF_CLIENT | CF_ARCHIVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
212 cvar_t r_bloom_colorscale = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorscale", "1", "how bright the glow is"};
213
214 cvar_t r_bloom_brighten = {CF_CLIENT | CF_ARCHIVE, "r_bloom_brighten", "1", "how bright the glow is, after subtract/power"};
215 cvar_t r_bloom_blur = {CF_CLIENT | CF_ARCHIVE, "r_bloom_blur", "4", "how large the glow is"};
216 cvar_t r_bloom_resolution = {CF_CLIENT | CF_ARCHIVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
217 cvar_t r_bloom_colorexponent = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorexponent", "1", "how exaggerated the glow is"};
218 cvar_t r_bloom_colorsubtract = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorsubtract", "0.1", "reduces bloom colors by a certain amount"};
219 cvar_t r_bloom_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_bloom_scenebrightness", "1", "global rendering brightness when bloom is enabled"};
220
221 cvar_t r_hdr_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
222 cvar_t r_hdr_glowintensity = {CF_CLIENT | CF_ARCHIVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
223 cvar_t r_hdr_irisadaptation = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation", "0", "adjust scene brightness according to light intensity at player location"};
224 cvar_t r_hdr_irisadaptation_multiplier = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_multiplier", "2", "brightness at which value will be 1.0"};
225 cvar_t r_hdr_irisadaptation_minvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_minvalue", "0.5", "minimum value that can result from multiplier / brightness"};
226 cvar_t r_hdr_irisadaptation_maxvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_maxvalue", "4", "maximum value that can result from multiplier / brightness"};
227 cvar_t r_hdr_irisadaptation_value = {CF_CLIENT, "r_hdr_irisadaptation_value", "1", "current value as scenebrightness multiplier, changes continuously when irisadaptation is active"};
228 cvar_t r_hdr_irisadaptation_fade_up = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_up", "0.1", "fade rate at which value adjusts to darkness"};
229 cvar_t r_hdr_irisadaptation_fade_down = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_down", "0.5", "fade rate at which value adjusts to brightness"};
230 cvar_t r_hdr_irisadaptation_radius = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_radius", "15", "lighting within this many units of the eye is averaged"};
231
232 cvar_t r_smoothnormals_areaweighting = {CF_CLIENT, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
233
234 cvar_t developer_texturelogging = {CF_CLIENT, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
235
236 cvar_t gl_lightmaps = {CF_CLIENT, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers), a value of 2 keeps normalmap shading"};
237
238 cvar_t r_test = {CF_CLIENT, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
239
240 cvar_t r_batch_multidraw = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw", "1", "issue multiple glDrawElements calls when rendering a batch of surfaces with the same texture (otherwise the index data is copied to make it one draw)"};
241 cvar_t r_batch_multidraw_mintriangles = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw_mintriangles", "0", "minimum number of triangles to activate multidraw path (copying small groups of triangles may be faster)"};
242 cvar_t r_batch_debugdynamicvertexpath = {CF_CLIENT | CF_ARCHIVE, "r_batch_debugdynamicvertexpath", "0", "force the dynamic batching code path for debugging purposes"};
243 cvar_t r_batch_dynamicbuffer = {CF_CLIENT | CF_ARCHIVE, "r_batch_dynamicbuffer", "0", "use vertex/index buffers for drawing dynamic and copytriangles batches"};
244
245 cvar_t r_glsl_saturation = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation", "1", "saturation multiplier (only working in glsl!)"};
246 cvar_t r_glsl_saturation_redcompensate = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation_redcompensate", "0", "a 'vampire sight' addition to desaturation effect, does compensation for red color, r_glsl_restart is required"};
247
248 cvar_t r_glsl_vertextextureblend_usebothalphas = {CF_CLIENT | CF_ARCHIVE, "r_glsl_vertextextureblend_usebothalphas", "0", "use both alpha layers on vertex blended surfaces, each alpha layer sets amount of 'blend leak' on another layer, requires mod_q3shader_force_terrain_alphaflag on."};
249
250 cvar_t r_framedatasize = {CF_CLIENT | CF_ARCHIVE, "r_framedatasize", "0.5", "size of renderer data cache used during one frame (for skeletal animation caching, light processing, etc)"};
251 cvar_t r_buffermegs[R_BUFFERDATA_COUNT] =
252 {
253         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_vertex", "4", "vertex buffer size for one frame"},
254         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index16", "1", "index buffer size for one frame (16bit indices)"},
255         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index32", "1", "index buffer size for one frame (32bit indices)"},
256         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_uniform", "0.25", "uniform buffer size for one frame"},
257 };
258
259 extern cvar_t v_glslgamma_2d;
260
261 extern qbool v_flipped_state;
262
263 r_framebufferstate_t r_fb;
264
265 /// shadow volume bsp struct with automatically growing nodes buffer
266 svbsp_t r_svbsp;
267
268 int r_uniformbufferalignment = 32; // dynamically updated to match GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
269
270 rtexture_t *r_texture_blanknormalmap;
271 rtexture_t *r_texture_white;
272 rtexture_t *r_texture_grey128;
273 rtexture_t *r_texture_black;
274 rtexture_t *r_texture_notexture;
275 rtexture_t *r_texture_whitecube;
276 rtexture_t *r_texture_normalizationcube;
277 rtexture_t *r_texture_fogattenuation;
278 rtexture_t *r_texture_fogheighttexture;
279 rtexture_t *r_texture_gammaramps;
280 unsigned int r_texture_gammaramps_serial;
281 //rtexture_t *r_texture_fogintensity;
282 rtexture_t *r_texture_reflectcube;
283
284 // TODO: hash lookups?
285 typedef struct cubemapinfo_s
286 {
287         char basename[64];
288         rtexture_t *texture;
289 }
290 cubemapinfo_t;
291
292 int r_texture_numcubemaps;
293 cubemapinfo_t *r_texture_cubemaps[MAX_CUBEMAPS];
294
295 unsigned int r_queries[MAX_OCCLUSION_QUERIES];
296 unsigned int r_numqueries;
297 unsigned int r_maxqueries;
298
299 typedef struct r_qwskincache_s
300 {
301         char name[MAX_QPATH];
302         skinframe_t *skinframe;
303 }
304 r_qwskincache_t;
305
306 static r_qwskincache_t *r_qwskincache;
307 static int r_qwskincache_size;
308
309 /// vertex coordinates for a quad that covers the screen exactly
310 extern const float r_screenvertex3f[12];
311 const float r_screenvertex3f[12] =
312 {
313         0, 0, 0,
314         1, 0, 0,
315         1, 1, 0,
316         0, 1, 0
317 };
318
319 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
320 {
321         int i;
322         for (i = 0;i < verts;i++)
323         {
324                 out[0] = in[0] * r;
325                 out[1] = in[1] * g;
326                 out[2] = in[2] * b;
327                 out[3] = in[3];
328                 in += 4;
329                 out += 4;
330         }
331 }
332
333 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
334 {
335         int i;
336         for (i = 0;i < verts;i++)
337         {
338                 out[0] = r;
339                 out[1] = g;
340                 out[2] = b;
341                 out[3] = a;
342                 out += 4;
343         }
344 }
345
346 // FIXME: move this to client?
347 void FOG_clear(void)
348 {
349         if (gamemode == GAME_NEHAHRA)
350         {
351                 Cvar_Set(&cvars_all, "gl_fogenable", "0");
352                 Cvar_Set(&cvars_all, "gl_fogdensity", "0.2");
353                 Cvar_Set(&cvars_all, "gl_fogred", "0.3");
354                 Cvar_Set(&cvars_all, "gl_foggreen", "0.3");
355                 Cvar_Set(&cvars_all, "gl_fogblue", "0.3");
356         }
357         r_refdef.fog_density = 0;
358         r_refdef.fog_red = 0;
359         r_refdef.fog_green = 0;
360         r_refdef.fog_blue = 0;
361         r_refdef.fog_alpha = 1;
362         r_refdef.fog_start = 0;
363         r_refdef.fog_end = 16384;
364         r_refdef.fog_height = 1<<30;
365         r_refdef.fog_fadedepth = 128;
366         memset(r_refdef.fog_height_texturename, 0, sizeof(r_refdef.fog_height_texturename));
367 }
368
369 static void R_BuildBlankTextures(void)
370 {
371         unsigned char data[4];
372         data[2] = 128; // normal X
373         data[1] = 128; // normal Y
374         data[0] = 255; // normal Z
375         data[3] = 255; // height
376         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
377         data[0] = 255;
378         data[1] = 255;
379         data[2] = 255;
380         data[3] = 255;
381         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
382         data[0] = 128;
383         data[1] = 128;
384         data[2] = 128;
385         data[3] = 255;
386         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
387         data[0] = 0;
388         data[1] = 0;
389         data[2] = 0;
390         data[3] = 255;
391         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
392 }
393
394 static void R_BuildNoTexture(void)
395 {
396         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, Image_GenerateNoTexture(), TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, -1, NULL);
397 }
398
399 static void R_BuildWhiteCube(void)
400 {
401         unsigned char data[6*1*1*4];
402         memset(data, 255, sizeof(data));
403         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
404 }
405
406 static void R_BuildNormalizationCube(void)
407 {
408         int x, y, side;
409         vec3_t v;
410         vec_t s, t, intensity;
411 #define NORMSIZE 64
412         unsigned char *data;
413         data = (unsigned char *)Mem_Alloc(tempmempool, 6*NORMSIZE*NORMSIZE*4);
414         for (side = 0;side < 6;side++)
415         {
416                 for (y = 0;y < NORMSIZE;y++)
417                 {
418                         for (x = 0;x < NORMSIZE;x++)
419                         {
420                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
421                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
422                                 switch(side)
423                                 {
424                                 default:
425                                 case 0:
426                                         v[0] = 1;
427                                         v[1] = -t;
428                                         v[2] = -s;
429                                         break;
430                                 case 1:
431                                         v[0] = -1;
432                                         v[1] = -t;
433                                         v[2] = s;
434                                         break;
435                                 case 2:
436                                         v[0] = s;
437                                         v[1] = 1;
438                                         v[2] = t;
439                                         break;
440                                 case 3:
441                                         v[0] = s;
442                                         v[1] = -1;
443                                         v[2] = -t;
444                                         break;
445                                 case 4:
446                                         v[0] = s;
447                                         v[1] = -t;
448                                         v[2] = 1;
449                                         break;
450                                 case 5:
451                                         v[0] = -s;
452                                         v[1] = -t;
453                                         v[2] = -1;
454                                         break;
455                                 }
456                                 intensity = 127.0f / sqrt(DotProduct(v, v));
457                                 data[((side*64+y)*64+x)*4+2] = (unsigned char)(128.0f + intensity * v[0]);
458                                 data[((side*64+y)*64+x)*4+1] = (unsigned char)(128.0f + intensity * v[1]);
459                                 data[((side*64+y)*64+x)*4+0] = (unsigned char)(128.0f + intensity * v[2]);
460                                 data[((side*64+y)*64+x)*4+3] = 255;
461                         }
462                 }
463         }
464         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
465         Mem_Free(data);
466 }
467
468 static void R_BuildFogTexture(void)
469 {
470         int x, b;
471 #define FOGWIDTH 256
472         unsigned char data1[FOGWIDTH][4];
473         //unsigned char data2[FOGWIDTH][4];
474         double d, r, alpha;
475
476         r_refdef.fogmasktable_start = r_refdef.fog_start;
477         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
478         r_refdef.fogmasktable_range = r_refdef.fogrange;
479         r_refdef.fogmasktable_density = r_refdef.fog_density;
480
481         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
482         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
483         {
484                 d = (x * r - r_refdef.fogmasktable_start);
485                 if(developer_extra.integer)
486                         Con_DPrintf("%f ", d);
487                 d = max(0, d);
488                 if (r_fog_exp2.integer)
489                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
490                 else
491                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
492                 if(developer_extra.integer)
493                         Con_DPrintf(" : %f ", alpha);
494                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
495                 if(developer_extra.integer)
496                         Con_DPrintf(" = %f\n", alpha);
497                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
498         }
499
500         for (x = 0;x < FOGWIDTH;x++)
501         {
502                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
503                 data1[x][0] = b;
504                 data1[x][1] = b;
505                 data1[x][2] = b;
506                 data1[x][3] = 255;
507                 //data2[x][0] = 255 - b;
508                 //data2[x][1] = 255 - b;
509                 //data2[x][2] = 255 - b;
510                 //data2[x][3] = 255;
511         }
512         if (r_texture_fogattenuation)
513         {
514                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, 0, FOGWIDTH, 1, 1);
515                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, 0, FOGWIDTH, 1, 1);
516         }
517         else
518         {
519                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
520                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
521         }
522 }
523
524 static void R_BuildFogHeightTexture(void)
525 {
526         unsigned char *inpixels;
527         int size;
528         int x;
529         int y;
530         int j;
531         float c[4];
532         float f;
533         inpixels = NULL;
534         strlcpy(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename, sizeof(r_refdef.fogheighttexturename));
535         if (r_refdef.fogheighttexturename[0])
536                 inpixels = loadimagepixelsbgra(r_refdef.fogheighttexturename, true, false, false, NULL);
537         if (!inpixels)
538         {
539                 r_refdef.fog_height_tablesize = 0;
540                 if (r_texture_fogheighttexture)
541                         R_FreeTexture(r_texture_fogheighttexture);
542                 r_texture_fogheighttexture = NULL;
543                 if (r_refdef.fog_height_table2d)
544                         Mem_Free(r_refdef.fog_height_table2d);
545                 r_refdef.fog_height_table2d = NULL;
546                 if (r_refdef.fog_height_table1d)
547                         Mem_Free(r_refdef.fog_height_table1d);
548                 r_refdef.fog_height_table1d = NULL;
549                 return;
550         }
551         size = image_width;
552         r_refdef.fog_height_tablesize = size;
553         r_refdef.fog_height_table1d = (unsigned char *)Mem_Alloc(r_main_mempool, size * 4);
554         r_refdef.fog_height_table2d = (unsigned char *)Mem_Alloc(r_main_mempool, size * size * 4);
555         memcpy(r_refdef.fog_height_table1d, inpixels, size * 4);
556         Mem_Free(inpixels);
557         // LadyHavoc: now the magic - what is that table2d for?  it is a cooked
558         // average fog color table accounting for every fog layer between a point
559         // and the camera.  (Note: attenuation is handled separately!)
560         for (y = 0;y < size;y++)
561         {
562                 for (x = 0;x < size;x++)
563                 {
564                         Vector4Clear(c);
565                         f = 0;
566                         if (x < y)
567                         {
568                                 for (j = x;j <= y;j++)
569                                 {
570                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
571                                         f++;
572                                 }
573                         }
574                         else
575                         {
576                                 for (j = x;j >= y;j--)
577                                 {
578                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
579                                         f++;
580                                 }
581                         }
582                         f = 1.0f / f;
583                         r_refdef.fog_height_table2d[(y*size+x)*4+0] = (unsigned char)(c[0] * f);
584                         r_refdef.fog_height_table2d[(y*size+x)*4+1] = (unsigned char)(c[1] * f);
585                         r_refdef.fog_height_table2d[(y*size+x)*4+2] = (unsigned char)(c[2] * f);
586                         r_refdef.fog_height_table2d[(y*size+x)*4+3] = (unsigned char)(c[3] * f);
587                 }
588         }
589         r_texture_fogheighttexture = R_LoadTexture2D(r_main_texturepool, "fogheighttable", size, size, r_refdef.fog_height_table2d, TEXTYPE_BGRA, TEXF_ALPHA | TEXF_CLAMP, -1, NULL);
590 }
591
592 //=======================================================================================================================================================
593
594 static const char *builtinshaderstrings[] =
595 {
596 #include "shader_glsl.h"
597 0
598 };
599
600 //=======================================================================================================================================================
601
602 typedef struct shaderpermutationinfo_s
603 {
604         const char *pretext;
605         const char *name;
606 }
607 shaderpermutationinfo_t;
608
609 typedef struct shadermodeinfo_s
610 {
611         const char *sourcebasename;
612         const char *extension;
613         const char **builtinshaderstrings;
614         const char *pretext;
615         const char *name;
616         char *filename;
617         char *builtinstring;
618         int builtincrc;
619 }
620 shadermodeinfo_t;
621
622 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
623 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
624 {
625         {"#define USEDIFFUSE\n", " diffuse"},
626         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
627         {"#define USEVIEWTINT\n", " viewtint"},
628         {"#define USECOLORMAPPING\n", " colormapping"},
629         {"#define USESATURATION\n", " saturation"},
630         {"#define USEFOGINSIDE\n", " foginside"},
631         {"#define USEFOGOUTSIDE\n", " fogoutside"},
632         {"#define USEFOGHEIGHTTEXTURE\n", " fogheighttexture"},
633         {"#define USEFOGALPHAHACK\n", " fogalphahack"},
634         {"#define USEGAMMARAMPS\n", " gammaramps"},
635         {"#define USECUBEFILTER\n", " cubefilter"},
636         {"#define USEGLOW\n", " glow"},
637         {"#define USEBLOOM\n", " bloom"},
638         {"#define USESPECULAR\n", " specular"},
639         {"#define USEPOSTPROCESSING\n", " postprocessing"},
640         {"#define USEREFLECTION\n", " reflection"},
641         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
642         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
643         {"#define USESHADOWMAP2D\n", " shadowmap2d"},
644         {"#define USESHADOWMAPVSDCT\n", " shadowmapvsdct"}, // TODO make this a static parm
645         {"#define USESHADOWMAPORTHO\n", " shadowmaportho"},
646         {"#define USEDEFERREDLIGHTMAP\n", " deferredlightmap"},
647         {"#define USEALPHAKILL\n", " alphakill"},
648         {"#define USEREFLECTCUBE\n", " reflectcube"},
649         {"#define USENORMALMAPSCROLLBLEND\n", " normalmapscrollblend"},
650         {"#define USEBOUNCEGRID\n", " bouncegrid"},
651         {"#define USEBOUNCEGRIDDIRECTIONAL\n", " bouncegriddirectional"}, // TODO make this a static parm
652         {"#define USETRIPPY\n", " trippy"},
653         {"#define USEDEPTHRGB\n", " depthrgb"},
654         {"#define USEALPHAGENVERTEX\n", " alphagenvertex"},
655         {"#define USESKELETAL\n", " skeletal"},
656         {"#define USEOCCLUDE\n", " occlude"}
657 };
658
659 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
660 shadermodeinfo_t shadermodeinfo[SHADERLANGUAGE_COUNT][SHADERMODE_COUNT] =
661 {
662         // SHADERLANGUAGE_GLSL
663         {
664                 {"combined", "glsl", builtinshaderstrings, "#define MODE_GENERIC\n", " generic"},
665                 {"combined", "glsl", builtinshaderstrings, "#define MODE_POSTPROCESS\n", " postprocess"},
666                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
667                 {"combined", "glsl", builtinshaderstrings, "#define MODE_FLATCOLOR\n", " flatcolor"},
668                 {"combined", "glsl", builtinshaderstrings, "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
669                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTMAP\n", " lightmap"},
670                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
671                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
672                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP\n", " lightdirectionmap_forced_lightmap"},
673                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR\n", " lightdirectionmap_forced_vertexcolor"},
674                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTGRID\n", " lightgrid"},
675                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
676                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTSOURCE\n", " lightsource"},
677                 {"combined", "glsl", builtinshaderstrings, "#define MODE_REFRACTION\n", " refraction"},
678                 {"combined", "glsl", builtinshaderstrings, "#define MODE_WATER\n", " water"},
679                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"},
680                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"},
681         },
682 };
683
684 struct r_glsl_permutation_s;
685 typedef struct r_glsl_permutation_s
686 {
687         /// hash lookup data
688         struct r_glsl_permutation_s *hashnext;
689         unsigned int mode;
690         uint64_t permutation;
691
692         /// indicates if we have tried compiling this permutation already
693         qbool compiled;
694         /// 0 if compilation failed
695         int program;
696         // texture units assigned to each detected uniform
697         int tex_Texture_First;
698         int tex_Texture_Second;
699         int tex_Texture_GammaRamps;
700         int tex_Texture_Normal;
701         int tex_Texture_Color;
702         int tex_Texture_Gloss;
703         int tex_Texture_Glow;
704         int tex_Texture_SecondaryNormal;
705         int tex_Texture_SecondaryColor;
706         int tex_Texture_SecondaryGloss;
707         int tex_Texture_SecondaryGlow;
708         int tex_Texture_Pants;
709         int tex_Texture_Shirt;
710         int tex_Texture_FogHeightTexture;
711         int tex_Texture_FogMask;
712         int tex_Texture_LightGrid;
713         int tex_Texture_Lightmap;
714         int tex_Texture_Deluxemap;
715         int tex_Texture_Attenuation;
716         int tex_Texture_Cube;
717         int tex_Texture_Refraction;
718         int tex_Texture_Reflection;
719         int tex_Texture_ShadowMap2D;
720         int tex_Texture_CubeProjection;
721         int tex_Texture_ScreenNormalMap;
722         int tex_Texture_ScreenDiffuse;
723         int tex_Texture_ScreenSpecular;
724         int tex_Texture_ReflectMask;
725         int tex_Texture_ReflectCube;
726         int tex_Texture_BounceGrid;
727         /// locations of detected uniforms in program object, or -1 if not found
728         int loc_Texture_First;
729         int loc_Texture_Second;
730         int loc_Texture_GammaRamps;
731         int loc_Texture_Normal;
732         int loc_Texture_Color;
733         int loc_Texture_Gloss;
734         int loc_Texture_Glow;
735         int loc_Texture_SecondaryNormal;
736         int loc_Texture_SecondaryColor;
737         int loc_Texture_SecondaryGloss;
738         int loc_Texture_SecondaryGlow;
739         int loc_Texture_Pants;
740         int loc_Texture_Shirt;
741         int loc_Texture_FogHeightTexture;
742         int loc_Texture_FogMask;
743         int loc_Texture_LightGrid;
744         int loc_Texture_Lightmap;
745         int loc_Texture_Deluxemap;
746         int loc_Texture_Attenuation;
747         int loc_Texture_Cube;
748         int loc_Texture_Refraction;
749         int loc_Texture_Reflection;
750         int loc_Texture_ShadowMap2D;
751         int loc_Texture_CubeProjection;
752         int loc_Texture_ScreenNormalMap;
753         int loc_Texture_ScreenDiffuse;
754         int loc_Texture_ScreenSpecular;
755         int loc_Texture_ReflectMask;
756         int loc_Texture_ReflectCube;
757         int loc_Texture_BounceGrid;
758         int loc_Alpha;
759         int loc_BloomBlur_Parameters;
760         int loc_ClientTime;
761         int loc_Color_Ambient;
762         int loc_Color_Diffuse;
763         int loc_Color_Specular;
764         int loc_Color_Glow;
765         int loc_Color_Pants;
766         int loc_Color_Shirt;
767         int loc_DeferredColor_Ambient;
768         int loc_DeferredColor_Diffuse;
769         int loc_DeferredColor_Specular;
770         int loc_DeferredMod_Diffuse;
771         int loc_DeferredMod_Specular;
772         int loc_DistortScaleRefractReflect;
773         int loc_EyePosition;
774         int loc_FogColor;
775         int loc_FogHeightFade;
776         int loc_FogPlane;
777         int loc_FogPlaneViewDist;
778         int loc_FogRangeRecip;
779         int loc_LightColor;
780         int loc_LightDir;
781         int loc_LightGridMatrix;
782         int loc_LightGridNormalMatrix;
783         int loc_LightPosition;
784         int loc_OffsetMapping_ScaleSteps;
785         int loc_OffsetMapping_LodDistance;
786         int loc_OffsetMapping_Bias;
787         int loc_PixelSize;
788         int loc_ReflectColor;
789         int loc_ReflectFactor;
790         int loc_ReflectOffset;
791         int loc_RefractColor;
792         int loc_Saturation;
793         int loc_ScreenCenterRefractReflect;
794         int loc_ScreenScaleRefractReflect;
795         int loc_ScreenToDepth;
796         int loc_ShadowMap_Parameters;
797         int loc_ShadowMap_TextureScale;
798         int loc_SpecularPower;
799         int loc_Skeletal_Transform12;
800         int loc_UserVec1;
801         int loc_UserVec2;
802         int loc_UserVec3;
803         int loc_UserVec4;
804         int loc_ColorFringe;
805         int loc_ViewTintColor;
806         int loc_ViewToLight;
807         int loc_ModelToLight;
808         int loc_TexMatrix;
809         int loc_BackgroundTexMatrix;
810         int loc_ModelViewProjectionMatrix;
811         int loc_ModelViewMatrix;
812         int loc_PixelToScreenTexCoord;
813         int loc_ModelToReflectCube;
814         int loc_ShadowMapMatrix;
815         int loc_BloomColorSubtract;
816         int loc_NormalmapScrollBlend;
817         int loc_BounceGridMatrix;
818         int loc_BounceGridIntensity;
819         /// uniform block bindings
820         int ubibind_Skeletal_Transform12_UniformBlock;
821         /// uniform block indices
822         int ubiloc_Skeletal_Transform12_UniformBlock;
823 }
824 r_glsl_permutation_t;
825
826 #define SHADERPERMUTATION_HASHSIZE 256
827
828
829 // non-degradable "lightweight" shader parameters to keep the permutations simpler
830 // these can NOT degrade! only use for simple stuff
831 enum
832 {
833         SHADERSTATICPARM_SATURATION_REDCOMPENSATE = 0, ///< red compensation filter for saturation
834         SHADERSTATICPARM_EXACTSPECULARMATH = 1, ///< (lightsource or deluxemapping) use exact reflection map for specular effects, as opposed to the usual OpenGL approximation
835         SHADERSTATICPARM_POSTPROCESS_USERVEC1 = 2, ///< postprocess uservec1 is enabled
836         SHADERSTATICPARM_POSTPROCESS_USERVEC2 = 3, ///< postprocess uservec2 is enabled
837         SHADERSTATICPARM_POSTPROCESS_USERVEC3 = 4, ///< postprocess uservec3 is enabled
838         SHADERSTATICPARM_POSTPROCESS_USERVEC4 = 5,  ///< postprocess uservec4 is enabled
839         SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS = 6, // use both alpha layers while blending materials, allows more advanced microblending
840         SHADERSTATICPARM_OFFSETMAPPING_USELOD = 7,  ///< LOD for offsetmapping
841         SHADERSTATICPARM_SHADOWMAPPCF_1 = 8, ///< PCF 1
842         SHADERSTATICPARM_SHADOWMAPPCF_2 = 9, ///< PCF 2
843         SHADERSTATICPARM_SHADOWSAMPLER = 10, ///< sampler
844         SHADERSTATICPARM_CELSHADING = 11, ///< celshading (alternative diffuse and specular math)
845         SHADERSTATICPARM_CELOUTLINES = 12, ///< celoutline (depth buffer analysis to produce outlines)
846         SHADERSTATICPARM_FXAA = 13 ///< fast approximate anti aliasing
847 };
848 #define SHADERSTATICPARMS_COUNT 14
849
850 static const char *shaderstaticparmstrings_list[SHADERSTATICPARMS_COUNT];
851 static int shaderstaticparms_count = 0;
852
853 static unsigned int r_compileshader_staticparms[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5] = {0};
854 #define R_COMPILESHADER_STATICPARM_ENABLE(p) r_compileshader_staticparms[(p) >> 5] |= (1 << ((p) & 0x1F))
855
856 extern qbool r_shadow_shadowmapsampler;
857 extern int r_shadow_shadowmappcf;
858 qbool R_CompileShader_CheckStaticParms(void)
859 {
860         static int r_compileshader_staticparms_save[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5];
861         memcpy(r_compileshader_staticparms_save, r_compileshader_staticparms, sizeof(r_compileshader_staticparms));
862         memset(r_compileshader_staticparms, 0, sizeof(r_compileshader_staticparms));
863
864         // detect all
865         if (r_glsl_saturation_redcompensate.integer)
866                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SATURATION_REDCOMPENSATE);
867         if (r_glsl_vertextextureblend_usebothalphas.integer)
868                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS);
869         if (r_shadow_glossexact.integer)
870                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_EXACTSPECULARMATH);
871         if (r_glsl_postprocess.integer)
872         {
873                 if (r_glsl_postprocess_uservec1_enable.integer)
874                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC1);
875                 if (r_glsl_postprocess_uservec2_enable.integer)
876                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC2);
877                 if (r_glsl_postprocess_uservec3_enable.integer)
878                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC3);
879                 if (r_glsl_postprocess_uservec4_enable.integer)
880                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC4);
881         }
882         if (r_fxaa.integer)
883                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_FXAA);
884         if (r_glsl_offsetmapping_lod.integer && r_glsl_offsetmapping_lod_distance.integer > 0)
885                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_OFFSETMAPPING_USELOD);
886
887         if (r_shadow_shadowmapsampler)
888                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWSAMPLER);
889         if (r_shadow_shadowmappcf > 1)
890                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_2);
891         else if (r_shadow_shadowmappcf)
892                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_1);
893         if (r_celshading.integer)
894                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELSHADING);
895         if (r_celoutlines.integer)
896                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELOUTLINES);
897
898         return memcmp(r_compileshader_staticparms, r_compileshader_staticparms_save, sizeof(r_compileshader_staticparms)) != 0;
899 }
900
901 #define R_COMPILESHADER_STATICPARM_EMIT(p, n) \
902         if(r_compileshader_staticparms[(p) >> 5] & (1 << ((p) & 0x1F))) \
903                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "#define " n "\n"; \
904         else \
905                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "\n"
906 static void R_CompileShader_AddStaticParms(unsigned int mode, uint64_t permutation)
907 {
908         shaderstaticparms_count = 0;
909
910         // emit all
911         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SATURATION_REDCOMPENSATE, "SATURATION_REDCOMPENSATE");
912         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_EXACTSPECULARMATH, "USEEXACTSPECULARMATH");
913         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC1, "USERVEC1");
914         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC2, "USERVEC2");
915         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC3, "USERVEC3");
916         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC4, "USERVEC4");
917         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS, "USEBOTHALPHAS");
918         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_OFFSETMAPPING_USELOD, "USEOFFSETMAPPING_LOD");
919         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_1, "USESHADOWMAPPCF 1");
920         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_2, "USESHADOWMAPPCF 2");
921         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWSAMPLER, "USESHADOWSAMPLER");
922         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELSHADING, "USECELSHADING");
923         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELOUTLINES, "USECELOUTLINES");
924         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_FXAA, "USEFXAA");
925 }
926
927 /// information about each possible shader permutation
928 r_glsl_permutation_t *r_glsl_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE];
929 /// currently selected permutation
930 r_glsl_permutation_t *r_glsl_permutation;
931 /// storage for permutations linked in the hash table
932 memexpandablearray_t r_glsl_permutationarray;
933
934 static r_glsl_permutation_t *R_GLSL_FindPermutation(unsigned int mode, uint64_t permutation)
935 {
936         //unsigned int hashdepth = 0;
937         unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1);
938         r_glsl_permutation_t *p;
939         for (p = r_glsl_permutationhash[mode][hashindex];p;p = p->hashnext)
940         {
941                 if (p->mode == mode && p->permutation == permutation)
942                 {
943                         //if (hashdepth > 10)
944                         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
945                         return p;
946                 }
947                 //hashdepth++;
948         }
949         p = (r_glsl_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_glsl_permutationarray);
950         p->mode = mode;
951         p->permutation = permutation;
952         p->hashnext = r_glsl_permutationhash[mode][hashindex];
953         r_glsl_permutationhash[mode][hashindex] = p;
954         //if (hashdepth > 10)
955         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
956         return p;
957 }
958
959 static char *R_ShaderStrCat(const char **strings)
960 {
961         char *string, *s;
962         const char **p = strings;
963         const char *t;
964         size_t len = 0;
965         for (p = strings;(t = *p);p++)
966                 len += strlen(t);
967         len++;
968         s = string = (char *)Mem_Alloc(r_main_mempool, len);
969         len = 0;
970         for (p = strings;(t = *p);p++)
971         {
972                 len = strlen(t);
973                 memcpy(s, t, len);
974                 s += len;
975         }
976         *s = 0;
977         return string;
978 }
979
980 static char *R_ShaderStrCat(const char **strings);
981 static void R_InitShaderModeInfo(void)
982 {
983         int i, language;
984         shadermodeinfo_t *modeinfo;
985         // we have a bunch of things to compute that weren't calculated at engine compile time - all filenames should have a crc of the builtin strings to prevent accidental overrides (any customization must be updated to match engine)
986         for (language = 0; language < SHADERLANGUAGE_COUNT; language++)
987         {
988                 for (i = 0; i < SHADERMODE_COUNT; i++)
989                 {
990                         char filename[MAX_QPATH];
991                         modeinfo = &shadermodeinfo[language][i];
992                         modeinfo->builtinstring = R_ShaderStrCat(modeinfo->builtinshaderstrings);
993                         modeinfo->builtincrc = CRC_Block((const unsigned char *)modeinfo->builtinstring, strlen(modeinfo->builtinstring));
994                         dpsnprintf(filename, sizeof(filename), "%s/%s_crc%i.%s", modeinfo->extension, modeinfo->sourcebasename, modeinfo->builtincrc, modeinfo->extension);
995                         modeinfo->filename = Mem_strdup(r_main_mempool, filename);
996                 }
997         }
998 }
999
1000 static char *ShaderModeInfo_GetShaderText(shadermodeinfo_t *modeinfo, qbool printfromdisknotice, qbool builtinonly)
1001 {
1002         char *shaderstring;
1003         // if the mode has no filename we have to return the builtin string
1004         if (builtinonly || !modeinfo->filename)
1005                 return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1006         // note that FS_LoadFile appends a 0 byte to make it a valid string
1007         shaderstring = (char *)FS_LoadFile(modeinfo->filename, r_main_mempool, false, NULL);
1008         if (shaderstring)
1009         {
1010                 if (printfromdisknotice)
1011                         Con_DPrintf("Loading shaders from file %s...\n", modeinfo->filename);
1012                 return shaderstring;
1013         }
1014         // fall back to builtinstring
1015         return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1016 }
1017
1018 static void R_GLSL_CompilePermutation(r_glsl_permutation_t *p, unsigned int mode, uint64_t permutation)
1019 {
1020         int i;
1021         int ubibind;
1022         int sampler;
1023         shadermodeinfo_t *modeinfo = &shadermodeinfo[SHADERLANGUAGE_GLSL][mode];
1024         char *sourcestring;
1025         char permutationname[256];
1026         int vertstrings_count = 0;
1027         int geomstrings_count = 0;
1028         int fragstrings_count = 0;
1029         const char *vertstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1030         const char *geomstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1031         const char *fragstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1032
1033         if (p->compiled)
1034                 return;
1035         p->compiled = true;
1036         p->program = 0;
1037
1038         permutationname[0] = 0;
1039         sourcestring = ShaderModeInfo_GetShaderText(modeinfo, true, false);
1040
1041         strlcat(permutationname, modeinfo->filename, sizeof(permutationname));
1042
1043         // we need 140 for r_glsl_skeletal (GL_ARB_uniform_buffer_object)
1044         if(vid.support.glshaderversion >= 140)
1045         {
1046                 vertstrings_list[vertstrings_count++] = "#version 140\n";
1047                 geomstrings_list[geomstrings_count++] = "#version 140\n";
1048                 fragstrings_list[fragstrings_count++] = "#version 140\n";
1049                 vertstrings_list[vertstrings_count++] = "#define GLSL140\n";
1050                 geomstrings_list[geomstrings_count++] = "#define GLSL140\n";
1051                 fragstrings_list[fragstrings_count++] = "#define GLSL140\n";
1052         }
1053         // if we can do #version 130, we should (this improves quality of offset/reliefmapping thanks to textureGrad)
1054         else if(vid.support.glshaderversion >= 130)
1055         {
1056                 vertstrings_list[vertstrings_count++] = "#version 130\n";
1057                 geomstrings_list[geomstrings_count++] = "#version 130\n";
1058                 fragstrings_list[fragstrings_count++] = "#version 130\n";
1059                 vertstrings_list[vertstrings_count++] = "#define GLSL130\n";
1060                 geomstrings_list[geomstrings_count++] = "#define GLSL130\n";
1061                 fragstrings_list[fragstrings_count++] = "#define GLSL130\n";
1062         }
1063         // if we can do #version 120, we should (this adds the invariant keyword)
1064         else if(vid.support.glshaderversion >= 120)
1065         {
1066                 vertstrings_list[vertstrings_count++] = "#version 120\n";
1067                 geomstrings_list[geomstrings_count++] = "#version 120\n";
1068                 fragstrings_list[fragstrings_count++] = "#version 120\n";
1069                 vertstrings_list[vertstrings_count++] = "#define GLSL120\n";
1070                 geomstrings_list[geomstrings_count++] = "#define GLSL120\n";
1071                 fragstrings_list[fragstrings_count++] = "#define GLSL120\n";
1072         }
1073         // GLES also adds several things from GLSL120
1074         switch(vid.renderpath)
1075         {
1076         case RENDERPATH_GLES2:
1077                 vertstrings_list[vertstrings_count++] = "#define GLES\n";
1078                 geomstrings_list[geomstrings_count++] = "#define GLES\n";
1079                 fragstrings_list[fragstrings_count++] = "#define GLES\n";
1080                 break;
1081         default:
1082                 break;
1083         }
1084
1085         // the first pretext is which type of shader to compile as
1086         // (later these will all be bound together as a program object)
1087         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1088         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1089         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1090
1091         // the second pretext is the mode (for example a light source)
1092         vertstrings_list[vertstrings_count++] = modeinfo->pretext;
1093         geomstrings_list[geomstrings_count++] = modeinfo->pretext;
1094         fragstrings_list[fragstrings_count++] = modeinfo->pretext;
1095         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1096
1097         // now add all the permutation pretexts
1098         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1099         {
1100                 if (permutation & (1ll<<i))
1101                 {
1102                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1103                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1104                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1105                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1106                 }
1107                 else
1108                 {
1109                         // keep line numbers correct
1110                         vertstrings_list[vertstrings_count++] = "\n";
1111                         geomstrings_list[geomstrings_count++] = "\n";
1112                         fragstrings_list[fragstrings_count++] = "\n";
1113                 }
1114         }
1115
1116         // add static parms
1117         R_CompileShader_AddStaticParms(mode, permutation);
1118         memcpy((char *)(vertstrings_list + vertstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1119         vertstrings_count += shaderstaticparms_count;
1120         memcpy((char *)(geomstrings_list + geomstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1121         geomstrings_count += shaderstaticparms_count;
1122         memcpy((char *)(fragstrings_list + fragstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1123         fragstrings_count += shaderstaticparms_count;
1124
1125         // now append the shader text itself
1126         vertstrings_list[vertstrings_count++] = sourcestring;
1127         geomstrings_list[geomstrings_count++] = sourcestring;
1128         fragstrings_list[fragstrings_count++] = sourcestring;
1129
1130         // we don't currently use geometry shaders for anything, so just empty the list
1131         geomstrings_count = 0;
1132
1133         // compile the shader program
1134         if (vertstrings_count + geomstrings_count + fragstrings_count)
1135                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1136         if (p->program)
1137         {
1138                 CHECKGLERROR
1139                 qglUseProgram(p->program);CHECKGLERROR
1140                 // look up all the uniform variable names we care about, so we don't
1141                 // have to look them up every time we set them
1142
1143 #if 0
1144                 // debugging aid
1145                 {
1146                         GLint activeuniformindex = 0;
1147                         GLint numactiveuniforms = 0;
1148                         char uniformname[128];
1149                         GLsizei uniformnamelength = 0;
1150                         GLint uniformsize = 0;
1151                         GLenum uniformtype = 0;
1152                         memset(uniformname, 0, sizeof(uniformname));
1153                         qglGetProgramiv(p->program, GL_ACTIVE_UNIFORMS, &numactiveuniforms);
1154                         Con_Printf("Shader has %i uniforms\n", numactiveuniforms);
1155                         for (activeuniformindex = 0;activeuniformindex < numactiveuniforms;activeuniformindex++)
1156                         {
1157                                 qglGetActiveUniform(p->program, activeuniformindex, sizeof(uniformname) - 1, &uniformnamelength, &uniformsize, &uniformtype, uniformname);
1158                                 Con_Printf("Uniform %i name \"%s\" size %i type %i\n", (int)activeuniformindex, uniformname, (int)uniformsize, (int)uniformtype);
1159                         }
1160                 }
1161 #endif
1162
1163                 p->loc_Texture_First              = qglGetUniformLocation(p->program, "Texture_First");
1164                 p->loc_Texture_Second             = qglGetUniformLocation(p->program, "Texture_Second");
1165                 p->loc_Texture_GammaRamps         = qglGetUniformLocation(p->program, "Texture_GammaRamps");
1166                 p->loc_Texture_Normal             = qglGetUniformLocation(p->program, "Texture_Normal");
1167                 p->loc_Texture_Color              = qglGetUniformLocation(p->program, "Texture_Color");
1168                 p->loc_Texture_Gloss              = qglGetUniformLocation(p->program, "Texture_Gloss");
1169                 p->loc_Texture_Glow               = qglGetUniformLocation(p->program, "Texture_Glow");
1170                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocation(p->program, "Texture_SecondaryNormal");
1171                 p->loc_Texture_SecondaryColor     = qglGetUniformLocation(p->program, "Texture_SecondaryColor");
1172                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocation(p->program, "Texture_SecondaryGloss");
1173                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocation(p->program, "Texture_SecondaryGlow");
1174                 p->loc_Texture_Pants              = qglGetUniformLocation(p->program, "Texture_Pants");
1175                 p->loc_Texture_Shirt              = qglGetUniformLocation(p->program, "Texture_Shirt");
1176                 p->loc_Texture_FogHeightTexture   = qglGetUniformLocation(p->program, "Texture_FogHeightTexture");
1177                 p->loc_Texture_FogMask            = qglGetUniformLocation(p->program, "Texture_FogMask");
1178                 p->loc_Texture_LightGrid          = qglGetUniformLocation(p->program, "Texture_LightGrid");
1179                 p->loc_Texture_Lightmap           = qglGetUniformLocation(p->program, "Texture_Lightmap");
1180                 p->loc_Texture_Deluxemap          = qglGetUniformLocation(p->program, "Texture_Deluxemap");
1181                 p->loc_Texture_Attenuation        = qglGetUniformLocation(p->program, "Texture_Attenuation");
1182                 p->loc_Texture_Cube               = qglGetUniformLocation(p->program, "Texture_Cube");
1183                 p->loc_Texture_Refraction         = qglGetUniformLocation(p->program, "Texture_Refraction");
1184                 p->loc_Texture_Reflection         = qglGetUniformLocation(p->program, "Texture_Reflection");
1185                 p->loc_Texture_ShadowMap2D        = qglGetUniformLocation(p->program, "Texture_ShadowMap2D");
1186                 p->loc_Texture_CubeProjection     = qglGetUniformLocation(p->program, "Texture_CubeProjection");
1187                 p->loc_Texture_ScreenNormalMap    = qglGetUniformLocation(p->program, "Texture_ScreenNormalMap");
1188                 p->loc_Texture_ScreenDiffuse      = qglGetUniformLocation(p->program, "Texture_ScreenDiffuse");
1189                 p->loc_Texture_ScreenSpecular     = qglGetUniformLocation(p->program, "Texture_ScreenSpecular");
1190                 p->loc_Texture_ReflectMask        = qglGetUniformLocation(p->program, "Texture_ReflectMask");
1191                 p->loc_Texture_ReflectCube        = qglGetUniformLocation(p->program, "Texture_ReflectCube");
1192                 p->loc_Texture_BounceGrid         = qglGetUniformLocation(p->program, "Texture_BounceGrid");
1193                 p->loc_Alpha                      = qglGetUniformLocation(p->program, "Alpha");
1194                 p->loc_BloomBlur_Parameters       = qglGetUniformLocation(p->program, "BloomBlur_Parameters");
1195                 p->loc_ClientTime                 = qglGetUniformLocation(p->program, "ClientTime");
1196                 p->loc_Color_Ambient              = qglGetUniformLocation(p->program, "Color_Ambient");
1197                 p->loc_Color_Diffuse              = qglGetUniformLocation(p->program, "Color_Diffuse");
1198                 p->loc_Color_Specular             = qglGetUniformLocation(p->program, "Color_Specular");
1199                 p->loc_Color_Glow                 = qglGetUniformLocation(p->program, "Color_Glow");
1200                 p->loc_Color_Pants                = qglGetUniformLocation(p->program, "Color_Pants");
1201                 p->loc_Color_Shirt                = qglGetUniformLocation(p->program, "Color_Shirt");
1202                 p->loc_DeferredColor_Ambient      = qglGetUniformLocation(p->program, "DeferredColor_Ambient");
1203                 p->loc_DeferredColor_Diffuse      = qglGetUniformLocation(p->program, "DeferredColor_Diffuse");
1204                 p->loc_DeferredColor_Specular     = qglGetUniformLocation(p->program, "DeferredColor_Specular");
1205                 p->loc_DeferredMod_Diffuse        = qglGetUniformLocation(p->program, "DeferredMod_Diffuse");
1206                 p->loc_DeferredMod_Specular       = qglGetUniformLocation(p->program, "DeferredMod_Specular");
1207                 p->loc_DistortScaleRefractReflect = qglGetUniformLocation(p->program, "DistortScaleRefractReflect");
1208                 p->loc_EyePosition                = qglGetUniformLocation(p->program, "EyePosition");
1209                 p->loc_FogColor                   = qglGetUniformLocation(p->program, "FogColor");
1210                 p->loc_FogHeightFade              = qglGetUniformLocation(p->program, "FogHeightFade");
1211                 p->loc_FogPlane                   = qglGetUniformLocation(p->program, "FogPlane");
1212                 p->loc_FogPlaneViewDist           = qglGetUniformLocation(p->program, "FogPlaneViewDist");
1213                 p->loc_FogRangeRecip              = qglGetUniformLocation(p->program, "FogRangeRecip");
1214                 p->loc_LightColor                 = qglGetUniformLocation(p->program, "LightColor");
1215                 p->loc_LightGridMatrix            = qglGetUniformLocation(p->program, "LightGridMatrix");
1216                 p->loc_LightGridNormalMatrix      = qglGetUniformLocation(p->program, "LightGridNormalMatrix");
1217                 p->loc_LightDir                   = qglGetUniformLocation(p->program, "LightDir");
1218                 p->loc_LightPosition              = qglGetUniformLocation(p->program, "LightPosition");
1219                 p->loc_OffsetMapping_ScaleSteps   = qglGetUniformLocation(p->program, "OffsetMapping_ScaleSteps");
1220                 p->loc_OffsetMapping_LodDistance  = qglGetUniformLocation(p->program, "OffsetMapping_LodDistance");
1221                 p->loc_OffsetMapping_Bias         = qglGetUniformLocation(p->program, "OffsetMapping_Bias");
1222                 p->loc_PixelSize                  = qglGetUniformLocation(p->program, "PixelSize");
1223                 p->loc_ReflectColor               = qglGetUniformLocation(p->program, "ReflectColor");
1224                 p->loc_ReflectFactor              = qglGetUniformLocation(p->program, "ReflectFactor");
1225                 p->loc_ReflectOffset              = qglGetUniformLocation(p->program, "ReflectOffset");
1226                 p->loc_RefractColor               = qglGetUniformLocation(p->program, "RefractColor");
1227                 p->loc_Saturation                 = qglGetUniformLocation(p->program, "Saturation");
1228                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocation(p->program, "ScreenCenterRefractReflect");
1229                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocation(p->program, "ScreenScaleRefractReflect");
1230                 p->loc_ScreenToDepth              = qglGetUniformLocation(p->program, "ScreenToDepth");
1231                 p->loc_ShadowMap_Parameters       = qglGetUniformLocation(p->program, "ShadowMap_Parameters");
1232                 p->loc_ShadowMap_TextureScale     = qglGetUniformLocation(p->program, "ShadowMap_TextureScale");
1233                 p->loc_SpecularPower              = qglGetUniformLocation(p->program, "SpecularPower");
1234                 p->loc_UserVec1                   = qglGetUniformLocation(p->program, "UserVec1");
1235                 p->loc_UserVec2                   = qglGetUniformLocation(p->program, "UserVec2");
1236                 p->loc_UserVec3                   = qglGetUniformLocation(p->program, "UserVec3");
1237                 p->loc_UserVec4                   = qglGetUniformLocation(p->program, "UserVec4");
1238                 p->loc_ColorFringe                = qglGetUniformLocation(p->program, "ColorFringe");
1239                 p->loc_ViewTintColor              = qglGetUniformLocation(p->program, "ViewTintColor");
1240                 p->loc_ViewToLight                = qglGetUniformLocation(p->program, "ViewToLight");
1241                 p->loc_ModelToLight               = qglGetUniformLocation(p->program, "ModelToLight");
1242                 p->loc_TexMatrix                  = qglGetUniformLocation(p->program, "TexMatrix");
1243                 p->loc_BackgroundTexMatrix        = qglGetUniformLocation(p->program, "BackgroundTexMatrix");
1244                 p->loc_ModelViewMatrix            = qglGetUniformLocation(p->program, "ModelViewMatrix");
1245                 p->loc_ModelViewProjectionMatrix  = qglGetUniformLocation(p->program, "ModelViewProjectionMatrix");
1246                 p->loc_PixelToScreenTexCoord      = qglGetUniformLocation(p->program, "PixelToScreenTexCoord");
1247                 p->loc_ModelToReflectCube         = qglGetUniformLocation(p->program, "ModelToReflectCube");
1248                 p->loc_ShadowMapMatrix            = qglGetUniformLocation(p->program, "ShadowMapMatrix");
1249                 p->loc_BloomColorSubtract         = qglGetUniformLocation(p->program, "BloomColorSubtract");
1250                 p->loc_NormalmapScrollBlend       = qglGetUniformLocation(p->program, "NormalmapScrollBlend");
1251                 p->loc_BounceGridMatrix           = qglGetUniformLocation(p->program, "BounceGridMatrix");
1252                 p->loc_BounceGridIntensity        = qglGetUniformLocation(p->program, "BounceGridIntensity");
1253                 // initialize the samplers to refer to the texture units we use
1254                 p->tex_Texture_First = -1;
1255                 p->tex_Texture_Second = -1;
1256                 p->tex_Texture_GammaRamps = -1;
1257                 p->tex_Texture_Normal = -1;
1258                 p->tex_Texture_Color = -1;
1259                 p->tex_Texture_Gloss = -1;
1260                 p->tex_Texture_Glow = -1;
1261                 p->tex_Texture_SecondaryNormal = -1;
1262                 p->tex_Texture_SecondaryColor = -1;
1263                 p->tex_Texture_SecondaryGloss = -1;
1264                 p->tex_Texture_SecondaryGlow = -1;
1265                 p->tex_Texture_Pants = -1;
1266                 p->tex_Texture_Shirt = -1;
1267                 p->tex_Texture_FogHeightTexture = -1;
1268                 p->tex_Texture_FogMask = -1;
1269                 p->tex_Texture_LightGrid = -1;
1270                 p->tex_Texture_Lightmap = -1;
1271                 p->tex_Texture_Deluxemap = -1;
1272                 p->tex_Texture_Attenuation = -1;
1273                 p->tex_Texture_Cube = -1;
1274                 p->tex_Texture_Refraction = -1;
1275                 p->tex_Texture_Reflection = -1;
1276                 p->tex_Texture_ShadowMap2D = -1;
1277                 p->tex_Texture_CubeProjection = -1;
1278                 p->tex_Texture_ScreenNormalMap = -1;
1279                 p->tex_Texture_ScreenDiffuse = -1;
1280                 p->tex_Texture_ScreenSpecular = -1;
1281                 p->tex_Texture_ReflectMask = -1;
1282                 p->tex_Texture_ReflectCube = -1;
1283                 p->tex_Texture_BounceGrid = -1;
1284                 // bind the texture samplers in use
1285                 sampler = 0;
1286                 if (p->loc_Texture_First           >= 0) {p->tex_Texture_First            = sampler;qglUniform1i(p->loc_Texture_First           , sampler);sampler++;}
1287                 if (p->loc_Texture_Second          >= 0) {p->tex_Texture_Second           = sampler;qglUniform1i(p->loc_Texture_Second          , sampler);sampler++;}
1288                 if (p->loc_Texture_GammaRamps      >= 0) {p->tex_Texture_GammaRamps       = sampler;qglUniform1i(p->loc_Texture_GammaRamps      , sampler);sampler++;}
1289                 if (p->loc_Texture_Normal          >= 0) {p->tex_Texture_Normal           = sampler;qglUniform1i(p->loc_Texture_Normal          , sampler);sampler++;}
1290                 if (p->loc_Texture_Color           >= 0) {p->tex_Texture_Color            = sampler;qglUniform1i(p->loc_Texture_Color           , sampler);sampler++;}
1291                 if (p->loc_Texture_Gloss           >= 0) {p->tex_Texture_Gloss            = sampler;qglUniform1i(p->loc_Texture_Gloss           , sampler);sampler++;}
1292                 if (p->loc_Texture_Glow            >= 0) {p->tex_Texture_Glow             = sampler;qglUniform1i(p->loc_Texture_Glow            , sampler);sampler++;}
1293                 if (p->loc_Texture_SecondaryNormal >= 0) {p->tex_Texture_SecondaryNormal  = sampler;qglUniform1i(p->loc_Texture_SecondaryNormal , sampler);sampler++;}
1294                 if (p->loc_Texture_SecondaryColor  >= 0) {p->tex_Texture_SecondaryColor   = sampler;qglUniform1i(p->loc_Texture_SecondaryColor  , sampler);sampler++;}
1295                 if (p->loc_Texture_SecondaryGloss  >= 0) {p->tex_Texture_SecondaryGloss   = sampler;qglUniform1i(p->loc_Texture_SecondaryGloss  , sampler);sampler++;}
1296                 if (p->loc_Texture_SecondaryGlow   >= 0) {p->tex_Texture_SecondaryGlow    = sampler;qglUniform1i(p->loc_Texture_SecondaryGlow   , sampler);sampler++;}
1297                 if (p->loc_Texture_Pants           >= 0) {p->tex_Texture_Pants            = sampler;qglUniform1i(p->loc_Texture_Pants           , sampler);sampler++;}
1298                 if (p->loc_Texture_Shirt           >= 0) {p->tex_Texture_Shirt            = sampler;qglUniform1i(p->loc_Texture_Shirt           , sampler);sampler++;}
1299                 if (p->loc_Texture_FogHeightTexture>= 0) {p->tex_Texture_FogHeightTexture = sampler;qglUniform1i(p->loc_Texture_FogHeightTexture, sampler);sampler++;}
1300                 if (p->loc_Texture_FogMask         >= 0) {p->tex_Texture_FogMask          = sampler;qglUniform1i(p->loc_Texture_FogMask         , sampler);sampler++;}
1301                 if (p->loc_Texture_LightGrid       >= 0) {p->tex_Texture_LightGrid        = sampler;qglUniform1i(p->loc_Texture_LightGrid       , sampler);sampler++;}
1302                 if (p->loc_Texture_Lightmap        >= 0) {p->tex_Texture_Lightmap         = sampler;qglUniform1i(p->loc_Texture_Lightmap        , sampler);sampler++;}
1303                 if (p->loc_Texture_Deluxemap       >= 0) {p->tex_Texture_Deluxemap        = sampler;qglUniform1i(p->loc_Texture_Deluxemap       , sampler);sampler++;}
1304                 if (p->loc_Texture_Attenuation     >= 0) {p->tex_Texture_Attenuation      = sampler;qglUniform1i(p->loc_Texture_Attenuation     , sampler);sampler++;}
1305                 if (p->loc_Texture_Cube            >= 0) {p->tex_Texture_Cube             = sampler;qglUniform1i(p->loc_Texture_Cube            , sampler);sampler++;}
1306                 if (p->loc_Texture_Refraction      >= 0) {p->tex_Texture_Refraction       = sampler;qglUniform1i(p->loc_Texture_Refraction      , sampler);sampler++;}
1307                 if (p->loc_Texture_Reflection      >= 0) {p->tex_Texture_Reflection       = sampler;qglUniform1i(p->loc_Texture_Reflection      , sampler);sampler++;}
1308                 if (p->loc_Texture_ShadowMap2D     >= 0) {p->tex_Texture_ShadowMap2D      = sampler;qglUniform1i(p->loc_Texture_ShadowMap2D     , sampler);sampler++;}
1309                 if (p->loc_Texture_CubeProjection  >= 0) {p->tex_Texture_CubeProjection   = sampler;qglUniform1i(p->loc_Texture_CubeProjection  , sampler);sampler++;}
1310                 if (p->loc_Texture_ScreenNormalMap >= 0) {p->tex_Texture_ScreenNormalMap  = sampler;qglUniform1i(p->loc_Texture_ScreenNormalMap , sampler);sampler++;}
1311                 if (p->loc_Texture_ScreenDiffuse   >= 0) {p->tex_Texture_ScreenDiffuse    = sampler;qglUniform1i(p->loc_Texture_ScreenDiffuse   , sampler);sampler++;}
1312                 if (p->loc_Texture_ScreenSpecular  >= 0) {p->tex_Texture_ScreenSpecular   = sampler;qglUniform1i(p->loc_Texture_ScreenSpecular  , sampler);sampler++;}
1313                 if (p->loc_Texture_ReflectMask     >= 0) {p->tex_Texture_ReflectMask      = sampler;qglUniform1i(p->loc_Texture_ReflectMask     , sampler);sampler++;}
1314                 if (p->loc_Texture_ReflectCube     >= 0) {p->tex_Texture_ReflectCube      = sampler;qglUniform1i(p->loc_Texture_ReflectCube     , sampler);sampler++;}
1315                 if (p->loc_Texture_BounceGrid      >= 0) {p->tex_Texture_BounceGrid       = sampler;qglUniform1i(p->loc_Texture_BounceGrid      , sampler);sampler++;}
1316                 // get the uniform block indices so we can bind them
1317                 p->ubiloc_Skeletal_Transform12_UniformBlock = -1;
1318 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1319                 p->ubiloc_Skeletal_Transform12_UniformBlock = qglGetUniformBlockIndex(p->program, "Skeletal_Transform12_UniformBlock");
1320 #endif
1321                 // clear the uniform block bindings
1322                 p->ubibind_Skeletal_Transform12_UniformBlock = -1;
1323                 // bind the uniform blocks in use
1324                 ubibind = 0;
1325 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1326                 if (p->ubiloc_Skeletal_Transform12_UniformBlock >= 0) {p->ubibind_Skeletal_Transform12_UniformBlock = ubibind;qglUniformBlockBinding(p->program, p->ubiloc_Skeletal_Transform12_UniformBlock, ubibind);ubibind++;}
1327 #endif
1328                 // we're done compiling and setting up the shader, at least until it is used
1329                 CHECKGLERROR
1330                 Con_DPrintf("^5GLSL shader %s compiled (%i textures).\n", permutationname, sampler);
1331         }
1332         else
1333                 Con_Printf("^1GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1334
1335         // free the strings
1336         if (sourcestring)
1337                 Mem_Free(sourcestring);
1338 }
1339
1340 static void R_SetupShader_SetPermutationGLSL(unsigned int mode, uint64_t permutation)
1341 {
1342         r_glsl_permutation_t *perm = R_GLSL_FindPermutation(mode, permutation);
1343         if (r_glsl_permutation != perm)
1344         {
1345                 r_glsl_permutation = perm;
1346                 if (!r_glsl_permutation->program)
1347                 {
1348                         if (!r_glsl_permutation->compiled)
1349                         {
1350                                 Con_DPrintf("Compiling shader mode %u permutation %" PRIx64 "\n", mode, permutation);
1351                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1352                         }
1353                         if (!r_glsl_permutation->program)
1354                         {
1355                                 // remove features until we find a valid permutation
1356                                 int i;
1357                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1358                                 {
1359                                         // reduce i more quickly whenever it would not remove any bits
1360                                         uint64_t j = 1ll<<(SHADERPERMUTATION_COUNT-1-i);
1361                                         if (!(permutation & j))
1362                                                 continue;
1363                                         permutation -= j;
1364                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1365                                         if (!r_glsl_permutation->compiled)
1366                                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1367                                         if (r_glsl_permutation->program)
1368                                                 break;
1369                                 }
1370                                 if (i >= SHADERPERMUTATION_COUNT)
1371                                 {
1372                                         //Con_Printf("Could not find a working OpenGL 2.0 shader for permutation %s %s\n", shadermodeinfo[mode].filename, shadermodeinfo[mode].pretext);
1373                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1374                                         qglUseProgram(0);CHECKGLERROR
1375                                         return; // no bit left to clear, entire mode is broken
1376                                 }
1377                         }
1378                 }
1379                 CHECKGLERROR
1380                 qglUseProgram(r_glsl_permutation->program);CHECKGLERROR
1381         }
1382         if (r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
1383         if (r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
1384         if (r_glsl_permutation->loc_ClientTime >= 0) qglUniform1f(r_glsl_permutation->loc_ClientTime, cl.time);
1385         CHECKGLERROR
1386 }
1387
1388 void R_GLSL_Restart_f(cmd_state_t *cmd)
1389 {
1390         unsigned int i, limit;
1391         switch(vid.renderpath)
1392         {
1393         case RENDERPATH_GL32:
1394         case RENDERPATH_GLES2:
1395                 {
1396                         r_glsl_permutation_t *p;
1397                         r_glsl_permutation = NULL;
1398                         limit = (unsigned int)Mem_ExpandableArray_IndexRange(&r_glsl_permutationarray);
1399                         for (i = 0;i < limit;i++)
1400                         {
1401                                 if ((p = (r_glsl_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_glsl_permutationarray, i)))
1402                                 {
1403                                         GL_Backend_FreeProgram(p->program);
1404                                         Mem_ExpandableArray_FreeRecord(&r_glsl_permutationarray, (void*)p);
1405                                 }
1406                         }
1407                         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
1408                 }
1409                 break;
1410         }
1411 }
1412
1413 static void R_GLSL_DumpShader_f(cmd_state_t *cmd)
1414 {
1415         int i, language, mode, dupe;
1416         char *text;
1417         shadermodeinfo_t *modeinfo;
1418         qfile_t *file;
1419
1420         for (language = 0;language < SHADERLANGUAGE_COUNT;language++)
1421         {
1422                 modeinfo = shadermodeinfo[language];
1423                 for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1424                 {
1425                         // don't dump the same file multiple times (most or all shaders come from the same file)
1426                         for (dupe = mode - 1;dupe >= 0;dupe--)
1427                                 if (!strcmp(modeinfo[mode].filename, modeinfo[dupe].filename))
1428                                         break;
1429                         if (dupe >= 0)
1430                                 continue;
1431                         text = modeinfo[mode].builtinstring;
1432                         if (!text)
1433                                 continue;
1434                         file = FS_OpenRealFile(modeinfo[mode].filename, "w", false);
1435                         if (file)
1436                         {
1437                                 FS_Print(file, "/* The engine may define the following macros:\n");
1438                                 FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n");
1439                                 for (i = 0;i < SHADERMODE_COUNT;i++)
1440                                         FS_Print(file, modeinfo[i].pretext);
1441                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1442                                         FS_Print(file, shaderpermutationinfo[i].pretext);
1443                                 FS_Print(file, "*/\n");
1444                                 FS_Print(file, text);
1445                                 FS_Close(file);
1446                                 Con_Printf("%s written\n", modeinfo[mode].filename);
1447                         }
1448                         else
1449                                 Con_Printf(CON_ERROR "failed to write to %s\n", modeinfo[mode].filename);
1450                 }
1451         }
1452 }
1453
1454 void R_SetupShader_Generic(rtexture_t *t, qbool usegamma, qbool notrippy, qbool suppresstexalpha)
1455 {
1456         uint64_t permutation = 0;
1457         if (r_trippy.integer && !notrippy)
1458                 permutation |= SHADERPERMUTATION_TRIPPY;
1459         permutation |= SHADERPERMUTATION_VIEWTINT;
1460         if (t)
1461                 permutation |= SHADERPERMUTATION_DIFFUSE;
1462         if (usegamma && v_glslgamma_2d.integer && !vid.sRGB2D && r_texture_gammaramps && !vid_gammatables_trivial)
1463                 permutation |= SHADERPERMUTATION_GAMMARAMPS;
1464         if (suppresstexalpha)
1465                 permutation |= SHADERPERMUTATION_REFLECTCUBE;
1466         if (vid.allowalphatocoverage)
1467                 GL_AlphaToCoverage(false);
1468         switch (vid.renderpath)
1469         {
1470         case RENDERPATH_GL32:
1471         case RENDERPATH_GLES2:
1472                 R_SetupShader_SetPermutationGLSL(SHADERMODE_GENERIC, permutation);
1473                 if (r_glsl_permutation->tex_Texture_First >= 0)
1474                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First, t);
1475                 if (r_glsl_permutation->tex_Texture_GammaRamps >= 0)
1476                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps);
1477                 break;
1478         }
1479 }
1480
1481 void R_SetupShader_Generic_NoTexture(qbool usegamma, qbool notrippy)
1482 {
1483         R_SetupShader_Generic(NULL, usegamma, notrippy, false);
1484 }
1485
1486 void R_SetupShader_DepthOrShadow(qbool notrippy, qbool depthrgb, qbool skeletal)
1487 {
1488         uint64_t permutation = 0;
1489         if (r_trippy.integer && !notrippy)
1490                 permutation |= SHADERPERMUTATION_TRIPPY;
1491         if (depthrgb)
1492                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1493         if (skeletal)
1494                 permutation |= SHADERPERMUTATION_SKELETAL;
1495
1496         if (vid.allowalphatocoverage)
1497                 GL_AlphaToCoverage(false);
1498         switch (vid.renderpath)
1499         {
1500         case RENDERPATH_GL32:
1501         case RENDERPATH_GLES2:
1502                 R_SetupShader_SetPermutationGLSL(SHADERMODE_DEPTH_OR_SHADOW, permutation);
1503 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1504                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1505 #endif
1506                 break;
1507         }
1508 }
1509
1510 #define BLENDFUNC_ALLOWS_COLORMOD      1
1511 #define BLENDFUNC_ALLOWS_FOG           2
1512 #define BLENDFUNC_ALLOWS_FOG_HACK0     4
1513 #define BLENDFUNC_ALLOWS_FOG_HACKALPHA 8
1514 #define BLENDFUNC_ALLOWS_ANYFOG        (BLENDFUNC_ALLOWS_FOG | BLENDFUNC_ALLOWS_FOG_HACK0 | BLENDFUNC_ALLOWS_FOG_HACKALPHA)
1515 static int R_BlendFuncFlags(int src, int dst)
1516 {
1517         int r = 0;
1518
1519         // a blendfunc allows colormod if:
1520         // a) it can never keep the destination pixel invariant, or
1521         // b) it can keep the destination pixel invariant, and still can do so if colormodded
1522         // this is to prevent unintended side effects from colormod
1523
1524         // a blendfunc allows fog if:
1525         // blend(fog(src), fog(dst)) == fog(blend(src, dst))
1526         // this is to prevent unintended side effects from fog
1527
1528         // these checks are the output of fogeval.pl
1529
1530         r |= BLENDFUNC_ALLOWS_COLORMOD;
1531         if(src == GL_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1532         if(src == GL_DST_ALPHA && dst == GL_ONE_MINUS_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1533         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1534         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1535         if(src == GL_DST_COLOR && dst == GL_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1536         if(src == GL_DST_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1537         if(src == GL_DST_COLOR && dst == GL_ZERO) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1538         if(src == GL_ONE && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1539         if(src == GL_ONE && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG_HACKALPHA;
1540         if(src == GL_ONE && dst == GL_ZERO) r |= BLENDFUNC_ALLOWS_FOG;
1541         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1542         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1543         if(src == GL_ONE_MINUS_DST_COLOR && dst == GL_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1544         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1545         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1546         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1547         if(src == GL_ONE_MINUS_SRC_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1548         if(src == GL_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1549         if(src == GL_SRC_ALPHA && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1550         if(src == GL_ZERO && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG;
1551         if(src == GL_ZERO && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1552
1553         return r;
1554 }
1555
1556 void R_SetupShader_Surface(const float rtlightambient[3], const float rtlightdiffuse[3], const float rtlightspecular[3], rsurfacepass_t rsurfacepass, int texturenumsurfaces, const msurface_t **texturesurfacelist, void *surfacewaterplane, qbool notrippy)
1557 {
1558         // select a permutation of the lighting shader appropriate to this
1559         // combination of texture, entity, light source, and fogging, only use the
1560         // minimum features necessary to avoid wasting rendering time in the
1561         // fragment shader on features that are not being used
1562         uint64_t permutation = 0;
1563         unsigned int mode = 0;
1564         int blendfuncflags;
1565         texture_t *t = rsurface.texture;
1566         float m16f[16];
1567         matrix4x4_t tempmatrix;
1568         r_waterstate_waterplane_t *waterplane = (r_waterstate_waterplane_t *)surfacewaterplane;
1569         if (r_trippy.integer && !notrippy)
1570                 permutation |= SHADERPERMUTATION_TRIPPY;
1571         if (t->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1572                 permutation |= SHADERPERMUTATION_ALPHAKILL;
1573         if (t->currentmaterialflags & MATERIALFLAG_OCCLUDE)
1574                 permutation |= SHADERPERMUTATION_OCCLUDE;
1575         if (t->r_water_waterscroll[0] && t->r_water_waterscroll[1])
1576                 permutation |= SHADERPERMUTATION_NORMALMAPSCROLLBLEND; // todo: make generic
1577         if (rsurfacepass == RSURFPASS_BACKGROUND)
1578         {
1579                 // distorted background
1580                 if (t->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1581                 {
1582                         mode = SHADERMODE_WATER;
1583                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1584                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1585                         if((r_wateralpha.value < 1) && (t->currentmaterialflags & MATERIALFLAG_WATERALPHA))
1586                         {
1587                                 // this is the right thing to do for wateralpha
1588                                 GL_BlendFunc(GL_ONE, GL_ZERO);
1589                                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1590                         }
1591                         else
1592                         {
1593                                 // this is the right thing to do for entity alpha
1594                                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1595                                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1596                         }
1597                 }
1598                 else if (t->currentmaterialflags & MATERIALFLAG_REFRACTION)
1599                 {
1600                         mode = SHADERMODE_REFRACTION;
1601                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1602                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1603                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1604                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1605                 }
1606                 else
1607                 {
1608                         mode = SHADERMODE_GENERIC;
1609                         permutation |= SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_ALPHAKILL;
1610                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1611                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1612                 }
1613                 if (vid.allowalphatocoverage)
1614                         GL_AlphaToCoverage(false);
1615         }
1616         else if (rsurfacepass == RSURFPASS_DEFERREDGEOMETRY)
1617         {
1618                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1619                 {
1620                         switch(t->offsetmapping)
1621                         {
1622                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1623                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1624                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1625                         case OFFSETMAPPING_OFF: break;
1626                         }
1627                 }
1628                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1629                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1630                 // normalmap (deferred prepass), may use alpha test on diffuse
1631                 mode = SHADERMODE_DEFERREDGEOMETRY;
1632                 GL_BlendFunc(GL_ONE, GL_ZERO);
1633                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1634                 if (vid.allowalphatocoverage)
1635                         GL_AlphaToCoverage(false);
1636         }
1637         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1638         {
1639                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1640                 {
1641                         switch(t->offsetmapping)
1642                         {
1643                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1644                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1645                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1646                         case OFFSETMAPPING_OFF: break;
1647                         }
1648                 }
1649                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1650                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1651                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1652                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1653                 // light source
1654                 mode = SHADERMODE_LIGHTSOURCE;
1655                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1656                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1657                 if (VectorLength2(rtlightdiffuse) > 0)
1658                         permutation |= SHADERPERMUTATION_DIFFUSE;
1659                 if (VectorLength2(rtlightspecular) > 0)
1660                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1661                 if (r_refdef.fogenabled)
1662                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1663                 if (t->colormapping)
1664                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1665                 if (r_shadow_usingshadowmap2d)
1666                 {
1667                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1668                         if(r_shadow_shadowmapvsdct)
1669                                 permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
1670
1671                         if (r_shadow_shadowmap2ddepthbuffer)
1672                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1673                 }
1674                 if (t->reflectmasktexture)
1675                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1676                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1677                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE);
1678                 if (vid.allowalphatocoverage)
1679                         GL_AlphaToCoverage(false);
1680         }
1681         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
1682         {
1683                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1684                 {
1685                         switch(t->offsetmapping)
1686                         {
1687                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1688                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1689                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1690                         case OFFSETMAPPING_OFF: break;
1691                         }
1692                 }
1693                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1694                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1695                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1696                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1697                 // directional model lighting
1698                 mode = SHADERMODE_LIGHTGRID;
1699                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1700                         permutation |= SHADERPERMUTATION_GLOW;
1701                 permutation |= SHADERPERMUTATION_DIFFUSE;
1702                 if (t->glosstexture || t->backgroundglosstexture)
1703                         permutation |= SHADERPERMUTATION_SPECULAR;
1704                 if (r_refdef.fogenabled)
1705                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1706                 if (t->colormapping)
1707                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1708                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1709                 {
1710                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1711                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1712
1713                         if (r_shadow_shadowmap2ddepthbuffer)
1714                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1715                 }
1716                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1717                         permutation |= SHADERPERMUTATION_REFLECTION;
1718                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1719                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1720                 if (t->reflectmasktexture)
1721                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1722                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1723                 {
1724                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1725                         if (r_shadow_bouncegrid_state.directional)
1726                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1727                 }
1728                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1729                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1730                 // when using alphatocoverage, we don't need alphakill
1731                 if (vid.allowalphatocoverage)
1732                 {
1733                         if (r_transparent_alphatocoverage.integer)
1734                         {
1735                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1736                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1737                         }
1738                         else
1739                                 GL_AlphaToCoverage(false);
1740                 }
1741         }
1742         else if (t->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1743         {
1744                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1745                 {
1746                         switch(t->offsetmapping)
1747                         {
1748                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1749                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1750                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1751                         case OFFSETMAPPING_OFF: break;
1752                         }
1753                 }
1754                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1755                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1756                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1757                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1758                 // directional model lighting
1759                 mode = SHADERMODE_LIGHTDIRECTION;
1760                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1761                         permutation |= SHADERPERMUTATION_GLOW;
1762                 if (VectorLength2(t->render_modellight_diffuse))
1763                         permutation |= SHADERPERMUTATION_DIFFUSE;
1764                 if (VectorLength2(t->render_modellight_specular) > 0)
1765                         permutation |= SHADERPERMUTATION_SPECULAR;
1766                 if (r_refdef.fogenabled)
1767                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1768                 if (t->colormapping)
1769                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1770                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1771                 {
1772                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1773                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1774
1775                         if (r_shadow_shadowmap2ddepthbuffer)
1776                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1777                 }
1778                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1779                         permutation |= SHADERPERMUTATION_REFLECTION;
1780                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1781                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1782                 if (t->reflectmasktexture)
1783                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1784                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1785                 {
1786                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1787                         if (r_shadow_bouncegrid_state.directional)
1788                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1789                 }
1790                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1791                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1792                 // when using alphatocoverage, we don't need alphakill
1793                 if (vid.allowalphatocoverage)
1794                 {
1795                         if (r_transparent_alphatocoverage.integer)
1796                         {
1797                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1798                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1799                         }
1800                         else
1801                                 GL_AlphaToCoverage(false);
1802                 }
1803         }
1804         else
1805         {
1806                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1807                 {
1808                         switch(t->offsetmapping)
1809                         {
1810                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1811                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1812                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1813                         case OFFSETMAPPING_OFF: break;
1814                         }
1815                 }
1816                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1817                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1818                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1819                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1820                 // lightmapped wall
1821                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1822                         permutation |= SHADERPERMUTATION_GLOW;
1823                 if (r_refdef.fogenabled && !notrippy)
1824                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1825                 if (t->colormapping)
1826                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1827                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1828                 {
1829                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1830                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1831
1832                         if (r_shadow_shadowmap2ddepthbuffer)
1833                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1834                 }
1835                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1836                         permutation |= SHADERPERMUTATION_REFLECTION;
1837                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1838                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1839                 if (t->reflectmasktexture)
1840                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1841                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1842                 {
1843                         // deluxemapping (light direction texture)
1844                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1845                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1846                         else
1847                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1848                         permutation |= SHADERPERMUTATION_DIFFUSE;
1849                         if (VectorLength2(t->render_lightmap_specular) > 0)
1850                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1851                 }
1852                 else if (r_glsl_deluxemapping.integer >= 2)
1853                 {
1854                         // fake deluxemapping (uniform light direction in tangentspace)
1855                         if (rsurface.uselightmaptexture)
1856                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP;
1857                         else
1858                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR;
1859                         permutation |= SHADERPERMUTATION_DIFFUSE;
1860                         if (VectorLength2(t->render_lightmap_specular) > 0)
1861                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1862                 }
1863                 else if (rsurface.uselightmaptexture)
1864                 {
1865                         // ordinary lightmapping (q1bsp, q3bsp)
1866                         mode = SHADERMODE_LIGHTMAP;
1867                 }
1868                 else
1869                 {
1870                         // ordinary vertex coloring (q3bsp)
1871                         mode = SHADERMODE_VERTEXCOLOR;
1872                 }
1873                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1874                 {
1875                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1876                         if (r_shadow_bouncegrid_state.directional)
1877                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1878                 }
1879                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1880                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1881                 // when using alphatocoverage, we don't need alphakill
1882                 if (vid.allowalphatocoverage)
1883                 {
1884                         if (r_transparent_alphatocoverage.integer)
1885                         {
1886                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1887                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1888                         }
1889                         else
1890                                 GL_AlphaToCoverage(false);
1891                 }
1892         }
1893         if(!(blendfuncflags & BLENDFUNC_ALLOWS_ANYFOG))
1894                 permutation &= ~(SHADERPERMUTATION_FOGHEIGHTTEXTURE | SHADERPERMUTATION_FOGOUTSIDE | SHADERPERMUTATION_FOGINSIDE);
1895         if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACKALPHA && !notrippy)
1896                 permutation |= SHADERPERMUTATION_FOGALPHAHACK;
1897         switch(vid.renderpath)
1898         {
1899         case RENDERPATH_GL32:
1900         case RENDERPATH_GLES2:
1901                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_ARRAY_LIGHTMAP : 0) | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
1902                 RSurf_UploadBuffersForBatch();
1903                 // this has to be after RSurf_PrepareVerticesForBatch
1904                 if (rsurface.batchskeletaltransform3x4buffer)
1905                         permutation |= SHADERPERMUTATION_SKELETAL;
1906                 R_SetupShader_SetPermutationGLSL(mode, permutation);
1907 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1908                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1909 #endif
1910                 if (r_glsl_permutation->loc_ModelToReflectCube >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToReflectCube, 1, false, m16f);}
1911                 if (mode == SHADERMODE_LIGHTSOURCE)
1912                 {
1913                         if (r_glsl_permutation->loc_ModelToLight >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToLight, 1, false, m16f);}
1914                         if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3f(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1915                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1916                         if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, rtlightambient[0], rtlightambient[1], rtlightambient[2]);
1917                         if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, rtlightdiffuse[0], rtlightdiffuse[1], rtlightdiffuse[2]);
1918                         if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, rtlightspecular[0], rtlightspecular[1], rtlightspecular[2]);
1919         
1920                         // additive passes are only darkened by fog, not tinted
1921                         if (r_glsl_permutation->loc_FogColor >= 0)
1922                                 qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1923                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1924                 }
1925                 else
1926                 {
1927                         if (mode == SHADERMODE_FLATCOLOR)
1928                         {
1929                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1930                         }
1931                         else if (mode == SHADERMODE_LIGHTGRID)
1932                         {
1933                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1934                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1935                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1936                                 // other LightGrid uniforms handled below
1937                         }
1938                         else if (mode == SHADERMODE_LIGHTDIRECTION)
1939                         {
1940                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1941                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_modellight_diffuse[0], t->render_modellight_diffuse[1], t->render_modellight_diffuse[2]);
1942                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_modellight_specular[0], t->render_modellight_specular[1], t->render_modellight_specular[2]);
1943                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1944                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1945                                 if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1946                                 if (r_glsl_permutation->loc_LightDir >= 0) qglUniform3f(r_glsl_permutation->loc_LightDir, t->render_modellight_lightdir_local[0], t->render_modellight_lightdir_local[1], t->render_modellight_lightdir_local[2]);
1947                         }
1948                         else
1949                         {
1950                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1951                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1952                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1953                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1954                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1955                         }
1956                         // additive passes are only darkened by fog, not tinted
1957                         if (r_glsl_permutation->loc_FogColor >= 0 && !notrippy)
1958                         {
1959                                 if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACK0)
1960                                         qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1961                                 else
1962                                         qglUniform3f(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1963                         }
1964                         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * t->refractfactor, r_water_refractdistort.value * t->refractfactor, r_water_reflectdistort.value * t->reflectfactor, r_water_reflectdistort.value * t->reflectfactor);
1965                         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_fb.water.screenscale[0], r_fb.water.screenscale[1], r_fb.water.screenscale[0], r_fb.water.screenscale[1]);
1966                         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_fb.water.screencenter[0], r_fb.water.screencenter[1], r_fb.water.screencenter[0], r_fb.water.screencenter[1]);
1967                         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4f(r_glsl_permutation->loc_RefractColor, t->refractcolor4f[0], t->refractcolor4f[1], t->refractcolor4f[2], t->refractcolor4f[3] * t->currentalpha);
1968                         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4f(r_glsl_permutation->loc_ReflectColor, t->reflectcolor4f[0], t->reflectcolor4f[1], t->reflectcolor4f[2], t->reflectcolor4f[3] * t->currentalpha);
1969                         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectFactor, t->reflectmax - t->reflectmin);
1970                         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectOffset, t->reflectmin);
1971                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1972                         if (r_glsl_permutation->loc_NormalmapScrollBlend >= 0) qglUniform2f(r_glsl_permutation->loc_NormalmapScrollBlend, t->r_water_waterscroll[0], t->r_water_waterscroll[1]);
1973                 }
1974                 if (r_glsl_permutation->loc_TexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currenttexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_TexMatrix, 1, false, m16f);}
1975                 if (r_glsl_permutation->loc_BackgroundTexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currentbackgroundtexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BackgroundTexMatrix, 1, false, m16f);}
1976                 if (r_glsl_permutation->loc_ShadowMapMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ShadowMapMatrix, 1, false, m16f);}
1977                 if (permutation & SHADERPERMUTATION_SHADOWMAPORTHO)
1978                 {
1979                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_modelshadowmap_texturescale[0], r_shadow_modelshadowmap_texturescale[1], r_shadow_modelshadowmap_texturescale[2], r_shadow_modelshadowmap_texturescale[3]);
1980                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_modelshadowmap_parameters[0], r_shadow_modelshadowmap_parameters[1], r_shadow_modelshadowmap_parameters[2], r_shadow_modelshadowmap_parameters[3]);
1981                 }
1982                 else
1983                 {
1984                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
1985                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
1986                 }
1987
1988                 if (r_glsl_permutation->loc_Color_Glow >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Glow, t->render_glowmod[0], t->render_glowmod[1], t->render_glowmod[2]);
1989                 if (r_glsl_permutation->loc_Alpha >= 0) qglUniform1f(r_glsl_permutation->loc_Alpha, t->currentalpha * ((t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay) ? t->r_water_wateralpha : 1));
1990                 if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3f(r_glsl_permutation->loc_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]);
1991                 if (r_glsl_permutation->loc_Color_Pants >= 0)
1992                 {
1993                         if (t->pantstexture)
1994                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, t->render_colormap_pants[0], t->render_colormap_pants[1], t->render_colormap_pants[2]);
1995                         else
1996                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1997                 }
1998                 if (r_glsl_permutation->loc_Color_Shirt >= 0)
1999                 {
2000                         if (t->shirttexture)
2001                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, t->render_colormap_shirt[0], t->render_colormap_shirt[1], t->render_colormap_shirt[2]);
2002                         else
2003                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
2004                 }
2005                 if (r_glsl_permutation->loc_FogPlane >= 0) qglUniform4f(r_glsl_permutation->loc_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]);
2006                 if (r_glsl_permutation->loc_FogPlaneViewDist >= 0) qglUniform1f(r_glsl_permutation->loc_FogPlaneViewDist, rsurface.fogplaneviewdist);
2007                 if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1f(r_glsl_permutation->loc_FogRangeRecip, rsurface.fograngerecip);
2008                 if (r_glsl_permutation->loc_FogHeightFade >= 0) qglUniform1f(r_glsl_permutation->loc_FogHeightFade, rsurface.fogheightfade);
2009                 if (r_glsl_permutation->loc_OffsetMapping_ScaleSteps >= 0) qglUniform4f(r_glsl_permutation->loc_OffsetMapping_ScaleSteps,
2010                                 r_glsl_offsetmapping_scale.value*t->offsetscale,
2011                                 max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2012                                 1.0 / max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2013                                 max(1, r_glsl_offsetmapping_reliefmapping_refinesteps.integer)
2014                         );
2015                 if (r_glsl_permutation->loc_OffsetMapping_LodDistance >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_LodDistance, r_glsl_offsetmapping_lod_distance.integer * r_refdef.view.quality);
2016                 if (r_glsl_permutation->loc_OffsetMapping_Bias >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_Bias, t->offsetbias);
2017                 if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2f(r_glsl_permutation->loc_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2018                 if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2019                 if (r_glsl_permutation->loc_BounceGridMatrix >= 0) {Matrix4x4_Concat(&tempmatrix, &r_shadow_bouncegrid_state.matrix, &rsurface.matrix);Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BounceGridMatrix, 1, false, m16f);}
2020                 if (r_glsl_permutation->loc_BounceGridIntensity >= 0) qglUniform1f(r_glsl_permutation->loc_BounceGridIntensity, r_shadow_bouncegrid_state.intensity*r_refdef.view.colorscale);
2021                 if (r_glsl_permutation->loc_LightGridMatrix >= 0 && r_refdef.scene.worldmodel)
2022                 {
2023                         float m9f[9];
2024                         Matrix4x4_Concat(&tempmatrix, &r_refdef.scene.worldmodel->brushq3.lightgridworldtotexturematrix, &rsurface.matrix);
2025                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2026                         qglUniformMatrix4fv(r_glsl_permutation->loc_LightGridMatrix, 1, false, m16f);
2027                         Matrix4x4_Normalize3(&tempmatrix, &rsurface.matrix);
2028                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2029                         m9f[0] = m16f[0];m9f[1] = m16f[1];m9f[2] = m16f[2];
2030                         m9f[3] = m16f[4];m9f[4] = m16f[5];m9f[5] = m16f[6];
2031                         m9f[6] = m16f[8];m9f[7] = m16f[9];m9f[8] = m16f[10];
2032                         qglUniformMatrix3fv(r_glsl_permutation->loc_LightGridNormalMatrix, 1, false, m9f);
2033                 }
2034
2035                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First            , r_texture_white                                     );
2036                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second           , r_texture_white                                     );
2037                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps       , r_texture_gammaramps                                );
2038                 if (r_glsl_permutation->tex_Texture_Normal          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Normal           , t->nmaptexture                       );
2039                 if (r_glsl_permutation->tex_Texture_Color           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Color            , t->basetexture                       );
2040                 if (r_glsl_permutation->tex_Texture_Gloss           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Gloss            , t->glosstexture                      );
2041                 if (r_glsl_permutation->tex_Texture_Glow            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Glow             , t->glowtexture                       );
2042                 if (r_glsl_permutation->tex_Texture_SecondaryNormal >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryNormal  , t->backgroundnmaptexture             );
2043                 if (r_glsl_permutation->tex_Texture_SecondaryColor  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryColor   , t->backgroundbasetexture             );
2044                 if (r_glsl_permutation->tex_Texture_SecondaryGloss  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGloss   , t->backgroundglosstexture            );
2045                 if (r_glsl_permutation->tex_Texture_SecondaryGlow   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGlow    , t->backgroundglowtexture             );
2046                 if (r_glsl_permutation->tex_Texture_Pants           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Pants            , t->pantstexture                      );
2047                 if (r_glsl_permutation->tex_Texture_Shirt           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Shirt            , t->shirttexture                      );
2048                 if (r_glsl_permutation->tex_Texture_ReflectMask     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectMask      , t->reflectmasktexture                );
2049                 if (r_glsl_permutation->tex_Texture_ReflectCube     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectCube      , t->reflectcubetexture ? t->reflectcubetexture : r_texture_whitecube);
2050                 if (r_glsl_permutation->tex_Texture_FogHeightTexture>= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogHeightTexture , r_texture_fogheighttexture                          );
2051                 if (r_glsl_permutation->tex_Texture_FogMask         >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogMask          , r_texture_fogattenuation                            );
2052                 if (r_glsl_permutation->tex_Texture_Lightmap        >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Lightmap         , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white);
2053                 if (r_glsl_permutation->tex_Texture_Deluxemap       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Deluxemap        , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap);
2054                 if (r_glsl_permutation->tex_Texture_Attenuation     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation      , r_shadow_attenuationgradienttexture                 );
2055                 if (rsurfacepass == RSURFPASS_BACKGROUND)
2056                 {
2057                         if (r_glsl_permutation->tex_Texture_Refraction  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Refraction        , waterplane->rt_refraction ? waterplane->rt_refraction->colortexture[0] : r_texture_black);
2058                         if (r_glsl_permutation->tex_Texture_First       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First             , waterplane->rt_camera ? waterplane->rt_camera->colortexture[0] : r_texture_black);
2059                         if (r_glsl_permutation->tex_Texture_Reflection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2060                 }
2061                 else
2062                 {
2063                         if (r_glsl_permutation->tex_Texture_Reflection >= 0 && waterplane) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2064                 }
2065                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap   , r_shadow_prepassgeometrynormalmaptexture            );
2066                 if (r_glsl_permutation->tex_Texture_ScreenDiffuse   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenDiffuse     , r_shadow_prepasslightingdiffusetexture              );
2067                 if (r_glsl_permutation->tex_Texture_ScreenSpecular  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenSpecular    , r_shadow_prepasslightingspeculartexture             );
2068                 if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)))
2069                 {
2070                         if (r_glsl_permutation->tex_Texture_ShadowMap2D     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D, r_shadow_shadowmap2ddepthtexture                           );
2071                         if (rsurface.rtlight)
2072                         {
2073                                 if (r_glsl_permutation->tex_Texture_Cube            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube              , rsurface.rtlight->currentcubemap                    );
2074                                 if (r_glsl_permutation->tex_Texture_CubeProjection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection    , r_shadow_shadowmapvsdcttexture                      );
2075                         }
2076                 }
2077                 if (r_glsl_permutation->tex_Texture_BounceGrid  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_BounceGrid, r_shadow_bouncegrid_state.texture);
2078                 if (r_glsl_permutation->tex_Texture_LightGrid   >= 0 && r_refdef.scene.worldmodel) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_LightGrid, r_refdef.scene.worldmodel->brushq3.lightgridtexture);
2079                 CHECKGLERROR
2080                 break;
2081         }
2082 }
2083
2084 void R_SetupShader_DeferredLight(const rtlight_t *rtlight)
2085 {
2086         // select a permutation of the lighting shader appropriate to this
2087         // combination of texture, entity, light source, and fogging, only use the
2088         // minimum features necessary to avoid wasting rendering time in the
2089         // fragment shader on features that are not being used
2090         uint64_t permutation = 0;
2091         unsigned int mode = 0;
2092         const float *lightcolorbase = rtlight->currentcolor;
2093         float ambientscale = rtlight->ambientscale;
2094         float diffusescale = rtlight->diffusescale;
2095         float specularscale = rtlight->specularscale;
2096         // this is the location of the light in view space
2097         vec3_t viewlightorigin;
2098         // this transforms from view space (camera) to light space (cubemap)
2099         matrix4x4_t viewtolight;
2100         matrix4x4_t lighttoview;
2101         float viewtolight16f[16];
2102         // light source
2103         mode = SHADERMODE_DEFERREDLIGHTSOURCE;
2104         if (rtlight->currentcubemap != r_texture_whitecube)
2105                 permutation |= SHADERPERMUTATION_CUBEFILTER;
2106         if (diffusescale > 0)
2107                 permutation |= SHADERPERMUTATION_DIFFUSE;
2108         if (specularscale > 0 && r_shadow_gloss.integer > 0)
2109                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
2110         if (r_shadow_usingshadowmap2d)
2111         {
2112                 permutation |= SHADERPERMUTATION_SHADOWMAP2D;
2113                 if (r_shadow_shadowmapvsdct)
2114                         permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
2115
2116                 if (r_shadow_shadowmap2ddepthbuffer)
2117                         permutation |= SHADERPERMUTATION_DEPTHRGB;
2118         }
2119         if (vid.allowalphatocoverage)
2120                 GL_AlphaToCoverage(false);
2121         Matrix4x4_Transform(&r_refdef.view.viewport.viewmatrix, rtlight->shadoworigin, viewlightorigin);
2122         Matrix4x4_Concat(&lighttoview, &r_refdef.view.viewport.viewmatrix, &rtlight->matrix_lighttoworld);
2123         Matrix4x4_Invert_Full(&viewtolight, &lighttoview);
2124         Matrix4x4_ToArrayFloatGL(&viewtolight, viewtolight16f);
2125         switch(vid.renderpath)
2126         {
2127         case RENDERPATH_GL32:
2128         case RENDERPATH_GLES2:
2129                 R_SetupShader_SetPermutationGLSL(mode, permutation);
2130                 if (r_glsl_permutation->loc_LightPosition             >= 0) qglUniform3f(       r_glsl_permutation->loc_LightPosition            , viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]);
2131                 if (r_glsl_permutation->loc_ViewToLight               >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ViewToLight              , 1, false, viewtolight16f);
2132                 if (r_glsl_permutation->loc_DeferredColor_Ambient     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Ambient    , lightcolorbase[0] * ambientscale , lightcolorbase[1] * ambientscale , lightcolorbase[2] * ambientscale );
2133                 if (r_glsl_permutation->loc_DeferredColor_Diffuse     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Diffuse    , lightcolorbase[0] * diffusescale , lightcolorbase[1] * diffusescale , lightcolorbase[2] * diffusescale );
2134                 if (r_glsl_permutation->loc_DeferredColor_Specular    >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Specular   , lightcolorbase[0] * specularscale, lightcolorbase[1] * specularscale, lightcolorbase[2] * specularscale);
2135                 if (r_glsl_permutation->loc_ShadowMap_TextureScale    >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_TextureScale   , r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
2136                 if (r_glsl_permutation->loc_ShadowMap_Parameters      >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_Parameters     , r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
2137                 if (r_glsl_permutation->loc_SpecularPower             >= 0) qglUniform1f(       r_glsl_permutation->loc_SpecularPower            , (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
2138                 if (r_glsl_permutation->loc_ScreenToDepth             >= 0) qglUniform2f(       r_glsl_permutation->loc_ScreenToDepth            , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2139                 if (r_glsl_permutation->loc_PixelToScreenTexCoord     >= 0) qglUniform2f(       r_glsl_permutation->loc_PixelToScreenTexCoord    , 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2140
2141                 if (r_glsl_permutation->tex_Texture_Attenuation       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation        , r_shadow_attenuationgradienttexture                 );
2142                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap    , r_shadow_prepassgeometrynormalmaptexture            );
2143                 if (r_glsl_permutation->tex_Texture_Cube              >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube               , rsurface.rtlight->currentcubemap                    );
2144                 if (r_glsl_permutation->tex_Texture_ShadowMap2D       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D        , r_shadow_shadowmap2ddepthtexture                    );
2145                 if (r_glsl_permutation->tex_Texture_CubeProjection    >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection     , r_shadow_shadowmapvsdcttexture                      );
2146                 break;
2147         }
2148 }
2149
2150 #define SKINFRAME_HASH 1024
2151
2152 typedef struct
2153 {
2154         unsigned int loadsequence; // incremented each level change
2155         memexpandablearray_t array;
2156         skinframe_t *hash[SKINFRAME_HASH];
2157 }
2158 r_skinframe_t;
2159 r_skinframe_t r_skinframe;
2160
2161 void R_SkinFrame_PrepareForPurge(void)
2162 {
2163         r_skinframe.loadsequence++;
2164         // wrap it without hitting zero
2165         if (r_skinframe.loadsequence >= 200)
2166                 r_skinframe.loadsequence = 1;
2167 }
2168
2169 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
2170 {
2171         if (!skinframe)
2172                 return;
2173         // mark the skinframe as used for the purging code
2174         skinframe->loadsequence = r_skinframe.loadsequence;
2175 }
2176
2177 void R_SkinFrame_PurgeSkinFrame(skinframe_t *s)
2178 {
2179         if (s == NULL)
2180                 return;
2181         if (s->merged == s->base)
2182                 s->merged = NULL;
2183         R_PurgeTexture(s->stain); s->stain = NULL;
2184         R_PurgeTexture(s->merged); s->merged = NULL;
2185         R_PurgeTexture(s->base); s->base = NULL;
2186         R_PurgeTexture(s->pants); s->pants = NULL;
2187         R_PurgeTexture(s->shirt); s->shirt = NULL;
2188         R_PurgeTexture(s->nmap); s->nmap = NULL;
2189         R_PurgeTexture(s->gloss); s->gloss = NULL;
2190         R_PurgeTexture(s->glow); s->glow = NULL;
2191         R_PurgeTexture(s->fog); s->fog = NULL;
2192         R_PurgeTexture(s->reflect); s->reflect = NULL;
2193         s->loadsequence = 0;
2194 }
2195
2196 void R_SkinFrame_Purge(void)
2197 {
2198         int i;
2199         skinframe_t *s;
2200         for (i = 0;i < SKINFRAME_HASH;i++)
2201         {
2202                 for (s = r_skinframe.hash[i];s;s = s->next)
2203                 {
2204                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
2205                                 R_SkinFrame_PurgeSkinFrame(s);
2206                 }
2207         }
2208 }
2209
2210 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
2211         skinframe_t *item;
2212         char basename[MAX_QPATH];
2213
2214         Image_StripImageExtension(name, basename, sizeof(basename));
2215
2216         if( last == NULL ) {
2217                 int hashindex;
2218                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2219                 item = r_skinframe.hash[hashindex];
2220         } else {
2221                 item = last->next;
2222         }
2223
2224         // linearly search through the hash bucket
2225         for( ; item ; item = item->next ) {
2226                 if( !strcmp( item->basename, basename ) ) {
2227                         return item;
2228                 }
2229         }
2230         return NULL;
2231 }
2232
2233 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qbool add)
2234 {
2235         skinframe_t *item;
2236         int compareflags = textureflags & TEXF_IMPORTANTBITS;
2237         int hashindex;
2238         char basename[MAX_QPATH];
2239
2240         Image_StripImageExtension(name, basename, sizeof(basename));
2241
2242         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2243         for (item = r_skinframe.hash[hashindex];item;item = item->next)
2244                 if (!strcmp(item->basename, basename) &&
2245                         item->textureflags == compareflags &&
2246                         item->comparewidth == comparewidth &&
2247                         item->compareheight == compareheight &&
2248                         item->comparecrc == comparecrc)
2249                         break;
2250
2251         if (!item)
2252         {
2253                 if (!add)
2254                         return NULL;
2255                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
2256                 memset(item, 0, sizeof(*item));
2257                 strlcpy(item->basename, basename, sizeof(item->basename));
2258                 item->textureflags = compareflags;
2259                 item->comparewidth = comparewidth;
2260                 item->compareheight = compareheight;
2261                 item->comparecrc = comparecrc;
2262                 item->next = r_skinframe.hash[hashindex];
2263                 r_skinframe.hash[hashindex] = item;
2264         }
2265         else if (textureflags & TEXF_FORCE_RELOAD)
2266                 R_SkinFrame_PurgeSkinFrame(item);
2267
2268         R_SkinFrame_MarkUsed(item);
2269         return item;
2270 }
2271
2272 #define R_SKINFRAME_LOAD_AVERAGE_COLORS(cnt, getpixel) \
2273         { \
2274                 unsigned long long avgcolor[5], wsum; \
2275                 int pix, comp, w; \
2276                 avgcolor[0] = 0; \
2277                 avgcolor[1] = 0; \
2278                 avgcolor[2] = 0; \
2279                 avgcolor[3] = 0; \
2280                 avgcolor[4] = 0; \
2281                 wsum = 0; \
2282                 for(pix = 0; pix < cnt; ++pix) \
2283                 { \
2284                         w = 0; \
2285                         for(comp = 0; comp < 3; ++comp) \
2286                                 w += getpixel; \
2287                         if(w) /* ignore perfectly black pixels because that is better for model skins */ \
2288                         { \
2289                                 ++wsum; \
2290                                 /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2291                                 w = getpixel; \
2292                                 for(comp = 0; comp < 3; ++comp) \
2293                                         avgcolor[comp] += getpixel * w; \
2294                                 avgcolor[3] += w; \
2295                         } \
2296                         /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2297                         avgcolor[4] += getpixel; \
2298                 } \
2299                 if(avgcolor[3] == 0) /* no pixels seen? even worse */ \
2300                         avgcolor[3] = 1; \
2301                 skinframe->avgcolor[0] = avgcolor[2] / (255.0 * avgcolor[3]); \
2302                 skinframe->avgcolor[1] = avgcolor[1] / (255.0 * avgcolor[3]); \
2303                 skinframe->avgcolor[2] = avgcolor[0] / (255.0 * avgcolor[3]); \
2304                 skinframe->avgcolor[3] = avgcolor[4] / (255.0 * cnt); \
2305         }
2306
2307 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2308 {
2309         skinframe_t *skinframe;
2310
2311         if (cls.state == ca_dedicated)
2312                 return NULL;
2313
2314         // return an existing skinframe if already loaded
2315         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
2316         if (skinframe && skinframe->base)
2317                 return skinframe;
2318
2319         // if the skinframe doesn't exist this will create it
2320         return R_SkinFrame_LoadExternal_SkinFrame(skinframe, name, textureflags, complain, fallbacknotexture);
2321 }
2322
2323 extern cvar_t gl_picmip;
2324 skinframe_t *R_SkinFrame_LoadExternal_SkinFrame(skinframe_t *skinframe, const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2325 {
2326         int j;
2327         unsigned char *pixels;
2328         unsigned char *bumppixels;
2329         unsigned char *basepixels = NULL;
2330         int basepixels_width = 0;
2331         int basepixels_height = 0;
2332         rtexture_t *ddsbase = NULL;
2333         qbool ddshasalpha = false;
2334         float ddsavgcolor[4];
2335         char basename[MAX_QPATH];
2336         int miplevel = R_PicmipForFlags(textureflags);
2337         int savemiplevel = miplevel;
2338         int mymiplevel;
2339         char vabuf[1024];
2340
2341         if (cls.state == ca_dedicated)
2342                 return NULL;
2343
2344         Image_StripImageExtension(name, basename, sizeof(basename));
2345
2346         // check for DDS texture file first
2347         if (!r_loaddds || !(ddsbase = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s.dds", basename), vid.sRGB3D, textureflags, &ddshasalpha, ddsavgcolor, miplevel, false)))
2348         {
2349                 basepixels = loadimagepixelsbgra(name, complain, true, false, &miplevel);
2350                 if (basepixels == NULL && fallbacknotexture)
2351                         basepixels = Image_GenerateNoTexture();
2352                 if (basepixels == NULL)
2353                         return NULL;
2354         }
2355
2356         // FIXME handle miplevel
2357
2358         if (developer_loading.integer)
2359                 Con_Printf("loading skin \"%s\"\n", name);
2360
2361         // we've got some pixels to store, so really allocate this new texture now
2362         if (!skinframe)
2363                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
2364         textureflags &= ~TEXF_FORCE_RELOAD;
2365         skinframe->stain = NULL;
2366         skinframe->merged = NULL;
2367         skinframe->base = NULL;
2368         skinframe->pants = NULL;
2369         skinframe->shirt = NULL;
2370         skinframe->nmap = NULL;
2371         skinframe->gloss = NULL;
2372         skinframe->glow = NULL;
2373         skinframe->fog = NULL;
2374         skinframe->reflect = NULL;
2375         skinframe->hasalpha = false;
2376         // we could store the q2animname here too
2377
2378         if (ddsbase)
2379         {
2380                 skinframe->base = ddsbase;
2381                 skinframe->hasalpha = ddshasalpha;
2382                 VectorCopy(ddsavgcolor, skinframe->avgcolor);
2383                 if (r_loadfog && skinframe->hasalpha)
2384                         skinframe->fog = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), false, textureflags | TEXF_ALPHA, NULL, NULL, miplevel, true);
2385                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2386         }
2387         else
2388         {
2389                 basepixels_width = image_width;
2390                 basepixels_height = image_height;
2391                 skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2392                 if (textureflags & TEXF_ALPHA)
2393                 {
2394                         for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
2395                         {
2396                                 if (basepixels[j] < 255)
2397                                 {
2398                                         skinframe->hasalpha = true;
2399                                         break;
2400                                 }
2401                         }
2402                         if (r_loadfog && skinframe->hasalpha)
2403                         {
2404                                 // has transparent pixels
2405                                 pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2406                                 for (j = 0;j < image_width * image_height * 4;j += 4)
2407                                 {
2408                                         pixels[j+0] = 255;
2409                                         pixels[j+1] = 255;
2410                                         pixels[j+2] = 255;
2411                                         pixels[j+3] = basepixels[j+3];
2412                                 }
2413                                 skinframe->fog = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2414                                 Mem_Free(pixels);
2415                         }
2416                 }
2417                 R_SKINFRAME_LOAD_AVERAGE_COLORS(basepixels_width * basepixels_height, basepixels[4 * pix + comp]);
2418 #ifndef USE_GLES2
2419                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2420                 if (r_savedds && skinframe->base)
2421                         R_SaveTextureDDSFile(skinframe->base, va(vabuf, sizeof(vabuf), "dds/%s.dds", skinframe->basename), r_texture_dds_save.integer < 2, skinframe->hasalpha);
2422                 if (r_savedds && skinframe->fog)
2423                         R_SaveTextureDDSFile(skinframe->fog, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2424 #endif
2425         }
2426
2427         if (r_loaddds)
2428         {
2429                 mymiplevel = savemiplevel;
2430                 if (r_loadnormalmap)
2431                         skinframe->nmap = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), false, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), NULL, NULL, mymiplevel, true);
2432                 skinframe->glow = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2433                 if (r_loadgloss)
2434                         skinframe->gloss = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2435                 skinframe->pants = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2436                 skinframe->shirt = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2437                 skinframe->reflect = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2438         }
2439
2440         // _norm is the name used by tenebrae and has been adopted as standard
2441         if (r_loadnormalmap && skinframe->nmap == NULL)
2442         {
2443                 mymiplevel = savemiplevel;
2444                 if ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_norm", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2445                 {
2446                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2447                         Mem_Free(pixels);
2448                         pixels = NULL;
2449                 }
2450                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_bump", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2451                 {
2452                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2453                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
2454                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2455                         Mem_Free(pixels);
2456                         Mem_Free(bumppixels);
2457                 }
2458                 else if (r_shadow_bumpscale_basetexture.value > 0)
2459                 {
2460                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
2461                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
2462                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2463                         Mem_Free(pixels);
2464                 }
2465 #ifndef USE_GLES2
2466                 if (r_savedds && skinframe->nmap)
2467                         R_SaveTextureDDSFile(skinframe->nmap, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2468 #endif
2469         }
2470
2471         // _luma is supported only for tenebrae compatibility
2472         // _blend and .blend are supported only for Q3 & QL compatibility, this hack can be removed if better Q3 shader support is implemented
2473         // _glow is the preferred name
2474         mymiplevel = savemiplevel;
2475         if (skinframe->glow == NULL && ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s.blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_luma", skinframe->basename), false, false, false, &mymiplevel))))
2476         {
2477                 skinframe->glow = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_glow.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2478 #ifndef USE_GLES2
2479                 if (r_savedds && skinframe->glow)
2480                         R_SaveTextureDDSFile(skinframe->glow, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2481 #endif
2482                 Mem_Free(pixels);pixels = NULL;
2483         }
2484
2485         mymiplevel = savemiplevel;
2486         if (skinframe->gloss == NULL && r_loadgloss && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), false, false, false, &mymiplevel)))
2487         {
2488                 skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (gl_texturecompression_gloss.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2489 #ifndef USE_GLES2
2490                 if (r_savedds && skinframe->gloss)
2491                         R_SaveTextureDDSFile(skinframe->gloss, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2492 #endif
2493                 Mem_Free(pixels);
2494                 pixels = NULL;
2495         }
2496
2497         mymiplevel = savemiplevel;
2498         if (skinframe->pants == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), false, false, false, &mymiplevel)))
2499         {
2500                 skinframe->pants = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2501 #ifndef USE_GLES2
2502                 if (r_savedds && skinframe->pants)
2503                         R_SaveTextureDDSFile(skinframe->pants, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2504 #endif
2505                 Mem_Free(pixels);
2506                 pixels = NULL;
2507         }
2508
2509         mymiplevel = savemiplevel;
2510         if (skinframe->shirt == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), false, false, false, &mymiplevel)))
2511         {
2512                 skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2513 #ifndef USE_GLES2
2514                 if (r_savedds && skinframe->shirt)
2515                         R_SaveTextureDDSFile(skinframe->shirt, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2516 #endif
2517                 Mem_Free(pixels);
2518                 pixels = NULL;
2519         }
2520
2521         mymiplevel = savemiplevel;
2522         if (skinframe->reflect == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), false, false, false, &mymiplevel)))
2523         {
2524                 skinframe->reflect = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_reflectmask.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2525 #ifndef USE_GLES2
2526                 if (r_savedds && skinframe->reflect)
2527                         R_SaveTextureDDSFile(skinframe->reflect, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2528 #endif
2529                 Mem_Free(pixels);
2530                 pixels = NULL;
2531         }
2532
2533         if (basepixels)
2534                 Mem_Free(basepixels);
2535
2536         return skinframe;
2537 }
2538
2539 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height, int comparewidth, int compareheight, int comparecrc, qbool sRGB)
2540 {
2541         int i;
2542         skinframe_t *skinframe;
2543         char vabuf[1024];
2544
2545         if (cls.state == ca_dedicated)
2546                 return NULL;
2547
2548         // if already loaded just return it, otherwise make a new skinframe
2549         skinframe = R_SkinFrame_Find(name, textureflags, comparewidth, compareheight, comparecrc, true);
2550         if (skinframe->base)
2551                 return skinframe;
2552         textureflags &= ~TEXF_FORCE_RELOAD;
2553
2554         skinframe->stain = NULL;
2555         skinframe->merged = NULL;
2556         skinframe->base = NULL;
2557         skinframe->pants = NULL;
2558         skinframe->shirt = NULL;
2559         skinframe->nmap = NULL;
2560         skinframe->gloss = NULL;
2561         skinframe->glow = NULL;
2562         skinframe->fog = NULL;
2563         skinframe->reflect = NULL;
2564         skinframe->hasalpha = false;
2565
2566         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2567         if (!skindata)
2568                 return NULL;
2569
2570         if (developer_loading.integer)
2571                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2572
2573         if (r_loadnormalmap && r_shadow_bumpscale_basetexture.value > 0)
2574         {
2575                 unsigned char *a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2576                 unsigned char *b = a + width * height * 4;
2577                 Image_HeightmapToNormalmap_BGRA(skindata, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2578                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2579                 Mem_Free(a);
2580         }
2581         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, sRGB ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags, -1, NULL);
2582         if (textureflags & TEXF_ALPHA)
2583         {
2584                 for (i = 3;i < width * height * 4;i += 4)
2585                 {
2586                         if (skindata[i] < 255)
2587                         {
2588                                 skinframe->hasalpha = true;
2589                                 break;
2590                         }
2591                 }
2592                 if (r_loadfog && skinframe->hasalpha)
2593                 {
2594                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2595                         memcpy(fogpixels, skindata, width * height * 4);
2596                         for (i = 0;i < width * height * 4;i += 4)
2597                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2598                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, textureflags, -1, NULL);
2599                         Mem_Free(fogpixels);
2600                 }
2601         }
2602
2603         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, skindata[4 * pix + comp]);
2604         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2605
2606         return skinframe;
2607 }
2608
2609 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2610 {
2611         int i;
2612         int featuresmask;
2613         skinframe_t *skinframe;
2614
2615         if (cls.state == ca_dedicated)
2616                 return NULL;
2617
2618         // if already loaded just return it, otherwise make a new skinframe
2619         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2620         if (skinframe->base)
2621                 return skinframe;
2622         //textureflags &= ~TEXF_FORCE_RELOAD;
2623
2624         skinframe->stain = NULL;
2625         skinframe->merged = NULL;
2626         skinframe->base = NULL;
2627         skinframe->pants = NULL;
2628         skinframe->shirt = NULL;
2629         skinframe->nmap = NULL;
2630         skinframe->gloss = NULL;
2631         skinframe->glow = NULL;
2632         skinframe->fog = NULL;
2633         skinframe->reflect = NULL;
2634         skinframe->hasalpha = false;
2635
2636         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2637         if (!skindata)
2638                 return NULL;
2639
2640         if (developer_loading.integer)
2641                 Con_Printf("loading quake skin \"%s\"\n", name);
2642
2643         // we actually don't upload anything until the first use, because mdl skins frequently go unused, and are almost never used in both modes (colormapped and non-colormapped)
2644         skinframe->qpixels = (unsigned char *)Mem_Alloc(r_main_mempool, width*height); // FIXME LEAK
2645         memcpy(skinframe->qpixels, skindata, width*height);
2646         skinframe->qwidth = width;
2647         skinframe->qheight = height;
2648
2649         featuresmask = 0;
2650         for (i = 0;i < width * height;i++)
2651                 featuresmask |= palette_featureflags[skindata[i]];
2652
2653         skinframe->hasalpha = false;
2654         // fence textures
2655         if (name[0] == '{')
2656                 skinframe->hasalpha = true;
2657         skinframe->qhascolormapping = loadpantsandshirt && (featuresmask & (PALETTEFEATURE_PANTS | PALETTEFEATURE_SHIRT));
2658         skinframe->qgeneratenmap = r_shadow_bumpscale_basetexture.value > 0;
2659         skinframe->qgeneratemerged = true;
2660         skinframe->qgeneratebase = skinframe->qhascolormapping;
2661         skinframe->qgenerateglow = loadglowtexture && (featuresmask & PALETTEFEATURE_GLOW);
2662
2663         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette_bgra_complete)[skindata[pix]*4 + comp]);
2664         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2665
2666         return skinframe;
2667 }
2668
2669 static void R_SkinFrame_GenerateTexturesFromQPixels(skinframe_t *skinframe, qbool colormapped)
2670 {
2671         int width;
2672         int height;
2673         unsigned char *skindata;
2674         char vabuf[1024];
2675
2676         if (!skinframe->qpixels)
2677                 return;
2678
2679         if (!skinframe->qhascolormapping)
2680                 colormapped = false;
2681
2682         if (colormapped)
2683         {
2684                 if (!skinframe->qgeneratebase)
2685                         return;
2686         }
2687         else
2688         {
2689                 if (!skinframe->qgeneratemerged)
2690                         return;
2691         }
2692
2693         width = skinframe->qwidth;
2694         height = skinframe->qheight;
2695         skindata = skinframe->qpixels;
2696
2697         if (skinframe->qgeneratenmap)
2698         {
2699                 unsigned char *a, *b;
2700                 skinframe->qgeneratenmap = false;
2701                 a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2702                 b = a + width * height * 4;
2703                 // use either a custom palette or the quake palette
2704                 Image_Copy8bitBGRA(skindata, a, width * height, palette_bgra_complete);
2705                 Image_HeightmapToNormalmap_BGRA(a, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2706                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (skinframe->textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2707                 Mem_Free(a);
2708         }
2709
2710         if (skinframe->qgenerateglow)
2711         {
2712                 skinframe->qgenerateglow = false;
2713                 if (skinframe->hasalpha) // fence textures
2714                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, palette_bgra_onlyfullbrights_transparent); // glow
2715                 else
2716                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_onlyfullbrights); // glow
2717         }
2718
2719         if (colormapped)
2720         {
2721                 skinframe->qgeneratebase = false;
2722                 skinframe->base  = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nospecial", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap);
2723                 skinframe->pants = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_pantsaswhite);
2724                 skinframe->shirt = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_shirtaswhite);
2725         }
2726         else
2727         {
2728                 skinframe->qgeneratemerged = false;
2729                 if (skinframe->hasalpha) // fence textures
2730                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, skinframe->glow ? palette_bgra_nofullbrights_transparent : palette_bgra_transparent);
2731                 else
2732                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nofullbrights : palette_bgra_complete);
2733         }
2734
2735         if (!skinframe->qgeneratemerged && !skinframe->qgeneratebase)
2736         {
2737                 Mem_Free(skinframe->qpixels);
2738                 skinframe->qpixels = NULL;
2739         }
2740 }
2741
2742 skinframe_t *R_SkinFrame_LoadInternal8bit(const char *name, int textureflags, const unsigned char *skindata, int width, int height, const unsigned int *palette, const unsigned int *alphapalette)
2743 {
2744         int i;
2745         skinframe_t *skinframe;
2746         char vabuf[1024];
2747
2748         if (cls.state == ca_dedicated)
2749                 return NULL;
2750
2751         // if already loaded just return it, otherwise make a new skinframe
2752         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2753         if (skinframe->base)
2754                 return skinframe;
2755         textureflags &= ~TEXF_FORCE_RELOAD;
2756
2757         skinframe->stain = NULL;
2758         skinframe->merged = NULL;
2759         skinframe->base = NULL;
2760         skinframe->pants = NULL;
2761         skinframe->shirt = NULL;
2762         skinframe->nmap = NULL;
2763         skinframe->gloss = NULL;
2764         skinframe->glow = NULL;
2765         skinframe->fog = NULL;
2766         skinframe->reflect = NULL;
2767         skinframe->hasalpha = false;
2768
2769         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2770         if (!skindata)
2771                 return NULL;
2772
2773         if (developer_loading.integer)
2774                 Con_Printf("loading embedded 8bit image \"%s\"\n", name);
2775
2776         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, palette);
2777         if ((textureflags & TEXF_ALPHA) && alphapalette)
2778         {
2779                 for (i = 0;i < width * height;i++)
2780                 {
2781                         if (((unsigned char *)palette)[skindata[i]*4+3] < 255)
2782                         {
2783                                 skinframe->hasalpha = true;
2784                                 break;
2785                         }
2786                 }
2787                 if (r_loadfog && skinframe->hasalpha)
2788                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, alphapalette);
2789         }
2790
2791         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette)[skindata[pix]*4 + comp]);
2792         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2793
2794         return skinframe;
2795 }
2796
2797 skinframe_t *R_SkinFrame_LoadMissing(void)
2798 {
2799         skinframe_t *skinframe;
2800
2801         if (cls.state == ca_dedicated)
2802                 return NULL;
2803
2804         skinframe = R_SkinFrame_Find("missing", TEXF_FORCENEAREST, 0, 0, 0, true);
2805         skinframe->stain = NULL;
2806         skinframe->merged = NULL;
2807         skinframe->base = NULL;
2808         skinframe->pants = NULL;
2809         skinframe->shirt = NULL;
2810         skinframe->nmap = NULL;
2811         skinframe->gloss = NULL;
2812         skinframe->glow = NULL;
2813         skinframe->fog = NULL;
2814         skinframe->reflect = NULL;
2815         skinframe->hasalpha = false;
2816
2817         skinframe->avgcolor[0] = rand() / RAND_MAX;
2818         skinframe->avgcolor[1] = rand() / RAND_MAX;
2819         skinframe->avgcolor[2] = rand() / RAND_MAX;
2820         skinframe->avgcolor[3] = 1;
2821
2822         return skinframe;
2823 }
2824
2825 skinframe_t *R_SkinFrame_LoadNoTexture(void)
2826 {
2827         if (cls.state == ca_dedicated)
2828                 return NULL;
2829
2830         return R_SkinFrame_LoadInternalBGRA("notexture", TEXF_FORCENEAREST, Image_GenerateNoTexture(), 16, 16, 0, 0, 0, false);
2831 }
2832
2833 skinframe_t *R_SkinFrame_LoadInternalUsingTexture(const char *name, int textureflags, rtexture_t *tex, int width, int height, qbool sRGB)
2834 {
2835         skinframe_t *skinframe;
2836         if (cls.state == ca_dedicated)
2837                 return NULL;
2838         // if already loaded just return it, otherwise make a new skinframe
2839         skinframe = R_SkinFrame_Find(name, textureflags, width, height, 0, true);
2840         if (skinframe->base)
2841                 return skinframe;
2842         textureflags &= ~TEXF_FORCE_RELOAD;
2843         skinframe->stain = NULL;
2844         skinframe->merged = NULL;
2845         skinframe->base = NULL;
2846         skinframe->pants = NULL;
2847         skinframe->shirt = NULL;
2848         skinframe->nmap = NULL;
2849         skinframe->gloss = NULL;
2850         skinframe->glow = NULL;
2851         skinframe->fog = NULL;
2852         skinframe->reflect = NULL;
2853         skinframe->hasalpha = (textureflags & TEXF_ALPHA) != 0;
2854         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2855         if (!tex)
2856                 return NULL;
2857         if (developer_loading.integer)
2858                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2859         skinframe->base = skinframe->merged = tex;
2860         Vector4Set(skinframe->avgcolor, 1, 1, 1, 1); // bogus placeholder
2861         return skinframe;
2862 }
2863
2864 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
2865 typedef struct suffixinfo_s
2866 {
2867         const char *suffix;
2868         qbool flipx, flipy, flipdiagonal;
2869 }
2870 suffixinfo_t;
2871 static suffixinfo_t suffix[3][6] =
2872 {
2873         {
2874                 {"px",   false, false, false},
2875                 {"nx",   false, false, false},
2876                 {"py",   false, false, false},
2877                 {"ny",   false, false, false},
2878                 {"pz",   false, false, false},
2879                 {"nz",   false, false, false}
2880         },
2881         {
2882                 {"posx", false, false, false},
2883                 {"negx", false, false, false},
2884                 {"posy", false, false, false},
2885                 {"negy", false, false, false},
2886                 {"posz", false, false, false},
2887                 {"negz", false, false, false}
2888         },
2889         {
2890                 {"rt",    true, false,  true},
2891                 {"lf",   false,  true,  true},
2892                 {"ft",    true,  true, false},
2893                 {"bk",   false, false, false},
2894                 {"up",    true, false,  true},
2895                 {"dn",    true, false,  true}
2896         }
2897 };
2898
2899 static int componentorder[4] = {0, 1, 2, 3};
2900
2901 static rtexture_t *R_LoadCubemap(const char *basename)
2902 {
2903         int i, j, cubemapsize, forcefilter;
2904         unsigned char *cubemappixels, *image_buffer;
2905         rtexture_t *cubemaptexture;
2906         char name[256];
2907
2908         // HACK: if the cubemap name starts with a !, the cubemap is nearest-filtered
2909         forcefilter = TEXF_FORCELINEAR;
2910         if (basename && basename[0] == '!')
2911         {
2912                 basename++;
2913                 forcefilter = TEXF_FORCENEAREST;
2914         }
2915         // must start 0 so the first loadimagepixels has no requested width/height
2916         cubemapsize = 0;
2917         cubemappixels = NULL;
2918         cubemaptexture = NULL;
2919         // keep trying different suffix groups (posx, px, rt) until one loads
2920         for (j = 0;j < 3 && !cubemappixels;j++)
2921         {
2922                 // load the 6 images in the suffix group
2923                 for (i = 0;i < 6;i++)
2924                 {
2925                         // generate an image name based on the base and and suffix
2926                         dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix);
2927                         // load it
2928                         if ((image_buffer = loadimagepixelsbgra(name, false, false, false, NULL)))
2929                         {
2930                                 // an image loaded, make sure width and height are equal
2931                                 if (image_width == image_height && (!cubemappixels || image_width == cubemapsize))
2932                                 {
2933                                         // if this is the first image to load successfully, allocate the cubemap memory
2934                                         if (!cubemappixels && image_width >= 1)
2935                                         {
2936                                                 cubemapsize = image_width;
2937                                                 // note this clears to black, so unavailable sides are black
2938                                                 cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4);
2939                                         }
2940                                         // copy the image with any flipping needed by the suffix (px and posx types don't need flipping)
2941                                         if (cubemappixels)
2942                                                 Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_buffer, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder);
2943                                 }
2944                                 else
2945                                         Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height);
2946                                 // free the image
2947                                 Mem_Free(image_buffer);
2948                         }
2949                 }
2950         }
2951         // if a cubemap loaded, upload it
2952         if (cubemappixels)
2953         {
2954                 if (developer_loading.integer)
2955                         Con_Printf("loading cubemap \"%s\"\n", basename);
2956
2957                 cubemaptexture = R_LoadTextureCubeMap(r_main_texturepool, basename, cubemapsize, cubemappixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (gl_texturecompression_lightcubemaps.integer && gl_texturecompression.integer ? TEXF_COMPRESS : 0) | forcefilter | TEXF_CLAMP, -1, NULL);
2958                 Mem_Free(cubemappixels);
2959         }
2960         else
2961         {
2962                 Con_DPrintf("failed to load cubemap \"%s\"\n", basename);
2963                 if (developer_loading.integer)
2964                 {
2965                         Con_Printf("(tried tried images ");
2966                         for (j = 0;j < 3;j++)
2967                                 for (i = 0;i < 6;i++)
2968                                         Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix);
2969                         Con_Print(" and was unable to find any of them).\n");
2970                 }
2971         }
2972         return cubemaptexture;
2973 }
2974
2975 rtexture_t *R_GetCubemap(const char *basename)
2976 {
2977         int i;
2978         for (i = 0;i < r_texture_numcubemaps;i++)
2979                 if (r_texture_cubemaps[i] != NULL)
2980                         if (!strcasecmp(r_texture_cubemaps[i]->basename, basename))
2981                                 return r_texture_cubemaps[i]->texture ? r_texture_cubemaps[i]->texture : r_texture_whitecube;
2982         if (i >= MAX_CUBEMAPS || !r_main_mempool)
2983                 return r_texture_whitecube;
2984         r_texture_numcubemaps++;
2985         r_texture_cubemaps[i] = (cubemapinfo_t *)Mem_Alloc(r_main_mempool, sizeof(cubemapinfo_t));
2986         strlcpy(r_texture_cubemaps[i]->basename, basename, sizeof(r_texture_cubemaps[i]->basename));
2987         r_texture_cubemaps[i]->texture = R_LoadCubemap(r_texture_cubemaps[i]->basename);
2988         return r_texture_cubemaps[i]->texture;
2989 }
2990
2991 static void R_Main_FreeViewCache(void)
2992 {
2993         if (r_refdef.viewcache.entityvisible)
2994                 Mem_Free(r_refdef.viewcache.entityvisible);
2995         if (r_refdef.viewcache.world_pvsbits)
2996                 Mem_Free(r_refdef.viewcache.world_pvsbits);
2997         if (r_refdef.viewcache.world_leafvisible)
2998                 Mem_Free(r_refdef.viewcache.world_leafvisible);
2999         if (r_refdef.viewcache.world_surfacevisible)
3000                 Mem_Free(r_refdef.viewcache.world_surfacevisible);
3001         memset(&r_refdef.viewcache, 0, sizeof(r_refdef.viewcache));
3002 }
3003
3004 static void R_Main_ResizeViewCache(void)
3005 {
3006         int numentities = r_refdef.scene.numentities;
3007         int numclusters = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusters : 1;
3008         int numclusterbytes = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusterbytes : 1;
3009         int numleafs = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_leafs : 1;
3010         int numsurfaces = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->num_surfaces : 1;
3011         if (r_refdef.viewcache.maxentities < numentities)
3012         {
3013                 r_refdef.viewcache.maxentities = numentities;
3014                 if (r_refdef.viewcache.entityvisible)
3015                         Mem_Free(r_refdef.viewcache.entityvisible);
3016                 r_refdef.viewcache.entityvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.maxentities);
3017         }
3018         if (r_refdef.viewcache.world_numclusters != numclusters)
3019         {
3020                 r_refdef.viewcache.world_numclusters = numclusters;
3021                 r_refdef.viewcache.world_numclusterbytes = numclusterbytes;
3022                 if (r_refdef.viewcache.world_pvsbits)
3023                         Mem_Free(r_refdef.viewcache.world_pvsbits);
3024                 r_refdef.viewcache.world_pvsbits = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numclusterbytes);
3025         }
3026         if (r_refdef.viewcache.world_numleafs != numleafs)
3027         {
3028                 r_refdef.viewcache.world_numleafs = numleafs;
3029                 if (r_refdef.viewcache.world_leafvisible)
3030                         Mem_Free(r_refdef.viewcache.world_leafvisible);
3031                 r_refdef.viewcache.world_leafvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numleafs);
3032         }
3033         if (r_refdef.viewcache.world_numsurfaces != numsurfaces)
3034         {
3035                 r_refdef.viewcache.world_numsurfaces = numsurfaces;
3036                 if (r_refdef.viewcache.world_surfacevisible)
3037                         Mem_Free(r_refdef.viewcache.world_surfacevisible);
3038                 r_refdef.viewcache.world_surfacevisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numsurfaces);
3039         }
3040 }
3041
3042 extern rtexture_t *loadingscreentexture;
3043 static void gl_main_start(void)
3044 {
3045         loadingscreentexture = NULL;
3046         r_texture_blanknormalmap = NULL;
3047         r_texture_white = NULL;
3048         r_texture_grey128 = NULL;
3049         r_texture_black = NULL;
3050         r_texture_whitecube = NULL;
3051         r_texture_normalizationcube = NULL;
3052         r_texture_fogattenuation = NULL;
3053         r_texture_fogheighttexture = NULL;
3054         r_texture_gammaramps = NULL;
3055         r_texture_numcubemaps = 0;
3056         r_uniformbufferalignment = 32;
3057
3058         r_loaddds = r_texture_dds_load.integer != 0;
3059         r_savedds = vid.support.ext_texture_compression_s3tc && r_texture_dds_save.integer;
3060
3061         switch(vid.renderpath)
3062         {
3063         case RENDERPATH_GL32:
3064         case RENDERPATH_GLES2:
3065                 Cvar_SetValueQuick(&r_textureunits, MAX_TEXTUREUNITS);
3066                 Cvar_SetValueQuick(&gl_combine, 1);
3067                 Cvar_SetValueQuick(&r_glsl, 1);
3068                 r_loadnormalmap = true;
3069                 r_loadgloss = true;
3070                 r_loadfog = false;
3071 #ifdef GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
3072                 qglGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &r_uniformbufferalignment);
3073 #endif
3074                 break;
3075         }
3076
3077         R_AnimCache_Free();
3078         R_FrameData_Reset();
3079         R_BufferData_Reset();
3080
3081         r_numqueries = 0;
3082         r_maxqueries = 0;
3083         memset(r_queries, 0, sizeof(r_queries));
3084
3085         r_qwskincache = NULL;
3086         r_qwskincache_size = 0;
3087
3088         // due to caching of texture_t references, the collision cache must be reset
3089         Collision_Cache_Reset(true);
3090
3091         // set up r_skinframe loading system for textures
3092         memset(&r_skinframe, 0, sizeof(r_skinframe));
3093         r_skinframe.loadsequence = 1;
3094         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
3095
3096         r_main_texturepool = R_AllocTexturePool();
3097         R_BuildBlankTextures();
3098         R_BuildNoTexture();
3099         R_BuildWhiteCube();
3100 #ifndef USE_GLES2
3101         R_BuildNormalizationCube();
3102 #endif //USE_GLES2
3103         r_texture_fogattenuation = NULL;
3104         r_texture_fogheighttexture = NULL;
3105         r_texture_gammaramps = NULL;
3106         //r_texture_fogintensity = NULL;
3107         memset(&r_fb, 0, sizeof(r_fb));
3108         Mem_ExpandableArray_NewArray(&r_fb.rendertargets, r_main_mempool, sizeof(r_rendertarget_t), 128);
3109         r_glsl_permutation = NULL;
3110         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3111         Mem_ExpandableArray_NewArray(&r_glsl_permutationarray, r_main_mempool, sizeof(r_glsl_permutation_t), 256);
3112         memset(&r_svbsp, 0, sizeof (r_svbsp));
3113
3114         memset(r_texture_cubemaps, 0, sizeof(r_texture_cubemaps));
3115         r_texture_numcubemaps = 0;
3116
3117         r_refdef.fogmasktable_density = 0;
3118
3119 #ifdef __ANDROID__
3120         // For Steelstorm Android
3121         // FIXME CACHE the program and reload
3122         // FIXME see possible combinations for SS:BR android
3123         Con_DPrintf("Compiling most used shaders for SS:BR android... START\n");
3124         R_SetupShader_SetPermutationGLSL(0, 12);
3125         R_SetupShader_SetPermutationGLSL(0, 13);
3126         R_SetupShader_SetPermutationGLSL(0, 8388621);
3127         R_SetupShader_SetPermutationGLSL(3, 0);
3128         R_SetupShader_SetPermutationGLSL(3, 2048);
3129         R_SetupShader_SetPermutationGLSL(5, 0);
3130         R_SetupShader_SetPermutationGLSL(5, 2);
3131         R_SetupShader_SetPermutationGLSL(5, 2048);
3132         R_SetupShader_SetPermutationGLSL(5, 8388608);
3133         R_SetupShader_SetPermutationGLSL(11, 1);
3134         R_SetupShader_SetPermutationGLSL(11, 2049);
3135         R_SetupShader_SetPermutationGLSL(11, 8193);
3136         R_SetupShader_SetPermutationGLSL(11, 10241);
3137         Con_DPrintf("Compiling most used shaders for SS:BR android... END\n");
3138 #endif
3139 }
3140
3141 extern unsigned int r_shadow_occlusion_buf;
3142
3143 static void gl_main_shutdown(void)
3144 {
3145         R_RenderTarget_FreeUnused(true);
3146         Mem_ExpandableArray_FreeArray(&r_fb.rendertargets);
3147         R_AnimCache_Free();
3148         R_FrameData_Reset();
3149         R_BufferData_Reset();
3150
3151         R_Main_FreeViewCache();
3152
3153         switch(vid.renderpath)
3154         {
3155         case RENDERPATH_GL32:
3156         case RENDERPATH_GLES2:
3157 #if defined(GL_SAMPLES_PASSED) && !defined(USE_GLES2)
3158                 if (r_maxqueries)
3159                         qglDeleteQueries(r_maxqueries, r_queries);
3160 #endif
3161                 break;
3162         }
3163         r_shadow_occlusion_buf = 0;
3164         r_numqueries = 0;
3165         r_maxqueries = 0;
3166         memset(r_queries, 0, sizeof(r_queries));
3167
3168         r_qwskincache = NULL;
3169         r_qwskincache_size = 0;
3170
3171         // clear out the r_skinframe state
3172         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
3173         memset(&r_skinframe, 0, sizeof(r_skinframe));
3174
3175         if (r_svbsp.nodes)
3176                 Mem_Free(r_svbsp.nodes);
3177         memset(&r_svbsp, 0, sizeof (r_svbsp));
3178         R_FreeTexturePool(&r_main_texturepool);
3179         loadingscreentexture = NULL;
3180         r_texture_blanknormalmap = NULL;
3181         r_texture_white = NULL;
3182         r_texture_grey128 = NULL;
3183         r_texture_black = NULL;
3184         r_texture_whitecube = NULL;
3185         r_texture_normalizationcube = NULL;
3186         r_texture_fogattenuation = NULL;
3187         r_texture_fogheighttexture = NULL;
3188         r_texture_gammaramps = NULL;
3189         r_texture_numcubemaps = 0;
3190         //r_texture_fogintensity = NULL;
3191         memset(&r_fb, 0, sizeof(r_fb));
3192         R_GLSL_Restart_f(&cmd_client);
3193
3194         r_glsl_permutation = NULL;
3195         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3196         Mem_ExpandableArray_FreeArray(&r_glsl_permutationarray);
3197 }
3198
3199 static void gl_main_newmap(void)
3200 {
3201         // FIXME: move this code to client
3202         char *entities, entname[MAX_QPATH];
3203         if (r_qwskincache)
3204                 Mem_Free(r_qwskincache);
3205         r_qwskincache = NULL;
3206         r_qwskincache_size = 0;
3207         if (cl.worldmodel)
3208         {
3209                 dpsnprintf(entname, sizeof(entname), "%s.ent", cl.worldnamenoextension);
3210                 if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
3211                 {
3212                         CL_ParseEntityLump(entities);
3213                         Mem_Free(entities);
3214                         return;
3215                 }
3216                 if (cl.worldmodel->brush.entities)
3217                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
3218         }
3219         R_Main_FreeViewCache();
3220
3221         R_FrameData_Reset();
3222         R_BufferData_Reset();
3223 }
3224
3225 void GL_Main_Init(void)
3226 {
3227         int i;
3228         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
3229         R_InitShaderModeInfo();
3230
3231         Cmd_AddCommand(CF_CLIENT, "r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
3232         Cmd_AddCommand(CF_CLIENT, "r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
3233         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
3234         if (gamemode == GAME_NEHAHRA)
3235         {
3236                 Cvar_RegisterVariable (&gl_fogenable);
3237                 Cvar_RegisterVariable (&gl_fogdensity);
3238                 Cvar_RegisterVariable (&gl_fogred);
3239                 Cvar_RegisterVariable (&gl_foggreen);
3240                 Cvar_RegisterVariable (&gl_fogblue);
3241                 Cvar_RegisterVariable (&gl_fogstart);
3242                 Cvar_RegisterVariable (&gl_fogend);
3243                 Cvar_RegisterVariable (&gl_skyclip);
3244         }
3245         Cvar_RegisterVariable(&r_motionblur);
3246         Cvar_RegisterVariable(&r_damageblur);
3247         Cvar_RegisterVariable(&r_motionblur_averaging);
3248         Cvar_RegisterVariable(&r_motionblur_randomize);
3249         Cvar_RegisterVariable(&r_motionblur_minblur);
3250         Cvar_RegisterVariable(&r_motionblur_maxblur);
3251         Cvar_RegisterVariable(&r_motionblur_velocityfactor);
3252         Cvar_RegisterVariable(&r_motionblur_velocityfactor_minspeed);
3253         Cvar_RegisterVariable(&r_motionblur_velocityfactor_maxspeed);
3254         Cvar_RegisterVariable(&r_motionblur_mousefactor);
3255         Cvar_RegisterVariable(&r_motionblur_mousefactor_minspeed);
3256         Cvar_RegisterVariable(&r_motionblur_mousefactor_maxspeed);
3257         Cvar_RegisterVariable(&r_depthfirst);
3258         Cvar_RegisterVariable(&r_useinfinitefarclip);
3259         Cvar_RegisterVariable(&r_farclip_base);
3260         Cvar_RegisterVariable(&r_farclip_world);
3261         Cvar_RegisterVariable(&r_nearclip);
3262         Cvar_RegisterVariable(&r_deformvertexes);
3263         Cvar_RegisterVariable(&r_transparent);
3264         Cvar_RegisterVariable(&r_transparent_alphatocoverage);
3265         Cvar_RegisterVariable(&r_transparent_sortsurfacesbynearest);
3266         Cvar_RegisterVariable(&r_transparent_useplanardistance);
3267         Cvar_RegisterVariable(&r_showoverdraw);
3268         Cvar_RegisterVariable(&r_showbboxes);
3269         Cvar_RegisterVariable(&r_showbboxes_client);
3270         Cvar_RegisterVariable(&r_showsurfaces);
3271         Cvar_RegisterVariable(&r_showtris);
3272         Cvar_RegisterVariable(&r_shownormals);
3273         Cvar_RegisterVariable(&r_showlighting);
3274         Cvar_RegisterVariable(&r_showcollisionbrushes);
3275         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
3276         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
3277         Cvar_RegisterVariable(&r_showdisabledepthtest);
3278         Cvar_RegisterVariable(&r_showspriteedges);
3279         Cvar_RegisterVariable(&r_showparticleedges);
3280         Cvar_RegisterVariable(&r_drawportals);
3281         Cvar_RegisterVariable(&r_drawentities);
3282         Cvar_RegisterVariable(&r_draw2d);
3283         Cvar_RegisterVariable(&r_drawworld);
3284         Cvar_RegisterVariable(&r_cullentities_trace);
3285         Cvar_RegisterVariable(&r_cullentities_trace_entityocclusion);
3286         Cvar_RegisterVariable(&r_cullentities_trace_samples);
3287         Cvar_RegisterVariable(&r_cullentities_trace_tempentitysamples);
3288         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
3289         Cvar_RegisterVariable(&r_cullentities_trace_expand);
3290         Cvar_RegisterVariable(&r_cullentities_trace_pad);
3291         Cvar_RegisterVariable(&r_cullentities_trace_delay);
3292         Cvar_RegisterVariable(&r_cullentities_trace_eyejitter);
3293         Cvar_RegisterVariable(&r_sortentities);
3294         Cvar_RegisterVariable(&r_drawviewmodel);
3295         Cvar_RegisterVariable(&r_drawexteriormodel);
3296         Cvar_RegisterVariable(&r_speeds);
3297         Cvar_RegisterVariable(&r_fullbrights);
3298         Cvar_RegisterVariable(&r_wateralpha);
3299         Cvar_RegisterVariable(&r_dynamic);
3300         Cvar_RegisterVariable(&r_fullbright_directed);
3301         Cvar_RegisterVariable(&r_fullbright_directed_ambient);
3302         Cvar_RegisterVariable(&r_fullbright_directed_diffuse);
3303         Cvar_RegisterVariable(&r_fullbright_directed_pitch);
3304         Cvar_RegisterVariable(&r_fullbright_directed_pitch_relative);
3305         Cvar_RegisterVariable(&r_fullbright);
3306         Cvar_RegisterVariable(&r_shadows);
3307         Cvar_RegisterVariable(&r_shadows_darken);
3308         Cvar_RegisterVariable(&r_shadows_drawafterrtlighting);
3309         Cvar_RegisterVariable(&r_shadows_castfrombmodels);
3310         Cvar_RegisterVariable(&r_shadows_throwdistance);
3311         Cvar_RegisterVariable(&r_shadows_throwdirection);
3312         Cvar_RegisterVariable(&r_shadows_focus);
3313         Cvar_RegisterVariable(&r_shadows_shadowmapscale);
3314         Cvar_RegisterVariable(&r_shadows_shadowmapbias);
3315         Cvar_RegisterVariable(&r_q1bsp_skymasking);
3316         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
3317         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
3318         Cvar_RegisterVariable(&r_polygonoffset_decals_factor);
3319         Cvar_RegisterVariable(&r_polygonoffset_decals_offset);
3320         Cvar_RegisterVariable(&r_fog_exp2);
3321         Cvar_RegisterVariable(&r_fog_clear);
3322         Cvar_RegisterVariable(&r_drawfog);
3323         Cvar_RegisterVariable(&r_transparentdepthmasking);
3324         Cvar_RegisterVariable(&r_transparent_sortmindist);
3325         Cvar_RegisterVariable(&r_transparent_sortmaxdist);
3326         Cvar_RegisterVariable(&r_transparent_sortarraysize);
3327         Cvar_RegisterVariable(&r_texture_dds_load);
3328         Cvar_RegisterVariable(&r_texture_dds_save);
3329         Cvar_RegisterVariable(&r_textureunits);
3330         Cvar_RegisterVariable(&gl_combine);
3331         Cvar_RegisterVariable(&r_usedepthtextures);
3332         Cvar_RegisterVariable(&r_viewfbo);
3333         Cvar_RegisterVariable(&r_rendertarget_debug);
3334         Cvar_RegisterVariable(&r_viewscale);
3335         Cvar_RegisterVariable(&r_viewscale_fpsscaling);
3336         Cvar_RegisterVariable(&r_viewscale_fpsscaling_min);
3337         Cvar_RegisterVariable(&r_viewscale_fpsscaling_multiply);
3338         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepsize);
3339         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepmax);
3340         Cvar_RegisterVariable(&r_viewscale_fpsscaling_target);
3341         Cvar_RegisterVariable(&r_glsl);
3342         Cvar_RegisterVariable(&r_glsl_deluxemapping);
3343         Cvar_RegisterVariable(&r_glsl_offsetmapping);
3344         Cvar_RegisterVariable(&r_glsl_offsetmapping_steps);
3345         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
3346         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_steps);
3347         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_refinesteps);
3348         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
3349         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod);
3350         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod_distance);
3351         Cvar_RegisterVariable(&r_glsl_postprocess);
3352         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
3353         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
3354         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
3355         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
3356         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1_enable);
3357         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2_enable);
3358         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3_enable);
3359         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4_enable);
3360         Cvar_RegisterVariable(&r_celshading);
3361         Cvar_RegisterVariable(&r_celoutlines);
3362
3363         Cvar_RegisterVariable(&r_water);
3364         Cvar_RegisterVariable(&r_water_cameraentitiesonly);
3365         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
3366         Cvar_RegisterVariable(&r_water_clippingplanebias);
3367         Cvar_RegisterVariable(&r_water_refractdistort);
3368         Cvar_RegisterVariable(&r_water_reflectdistort);
3369         Cvar_RegisterVariable(&r_water_scissormode);
3370         Cvar_RegisterVariable(&r_water_lowquality);
3371         Cvar_RegisterVariable(&r_water_hideplayer);
3372
3373         Cvar_RegisterVariable(&r_lerpsprites);
3374         Cvar_RegisterVariable(&r_lerpmodels);
3375         Cvar_RegisterVariable(&r_nolerp_list);
3376         Cvar_RegisterVariable(&r_lerplightstyles);
3377         Cvar_RegisterVariable(&r_waterscroll);
3378         Cvar_RegisterVariable(&r_bloom);
3379         Cvar_RegisterVariable(&r_colorfringe);
3380         Cvar_RegisterVariable(&r_bloom_colorscale);
3381         Cvar_RegisterVariable(&r_bloom_brighten);
3382         Cvar_RegisterVariable(&r_bloom_blur);
3383         Cvar_RegisterVariable(&r_bloom_resolution);
3384         Cvar_RegisterVariable(&r_bloom_colorexponent);
3385         Cvar_RegisterVariable(&r_bloom_colorsubtract);
3386         Cvar_RegisterVariable(&r_bloom_scenebrightness);
3387         Cvar_RegisterVariable(&r_hdr_scenebrightness);
3388         Cvar_RegisterVariable(&r_hdr_glowintensity);
3389         Cvar_RegisterVariable(&r_hdr_irisadaptation);
3390         Cvar_RegisterVariable(&r_hdr_irisadaptation_multiplier);
3391         Cvar_RegisterVariable(&r_hdr_irisadaptation_minvalue);
3392         Cvar_RegisterVariable(&r_hdr_irisadaptation_maxvalue);
3393         Cvar_RegisterVariable(&r_hdr_irisadaptation_value);
3394         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_up);
3395         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_down);
3396         Cvar_RegisterVariable(&r_hdr_irisadaptation_radius);
3397         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
3398         Cvar_RegisterVariable(&developer_texturelogging);
3399         Cvar_RegisterVariable(&gl_lightmaps);
3400         Cvar_RegisterVariable(&r_test);
3401         Cvar_RegisterVariable(&r_batch_multidraw);
3402         Cvar_RegisterVariable(&r_batch_multidraw_mintriangles);
3403         Cvar_RegisterVariable(&r_batch_debugdynamicvertexpath);
3404         Cvar_RegisterVariable(&r_glsl_skeletal);
3405         Cvar_RegisterVariable(&r_glsl_saturation);
3406         Cvar_RegisterVariable(&r_glsl_saturation_redcompensate);
3407         Cvar_RegisterVariable(&r_glsl_vertextextureblend_usebothalphas);
3408         Cvar_RegisterVariable(&r_framedatasize);
3409         for (i = 0;i < R_BUFFERDATA_COUNT;i++)
3410                 Cvar_RegisterVariable(&r_buffermegs[i]);
3411         Cvar_RegisterVariable(&r_batch_dynamicbuffer);
3412         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
3413                 Cvar_SetValue(&cvars_all, "r_fullbrights", 0);
3414 #ifdef DP_MOBILETOUCH
3415         // GLES devices have terrible depth precision in general, so...
3416         Cvar_SetValueQuick(&r_nearclip, 4);
3417         Cvar_SetValueQuick(&r_farclip_base, 4096);
3418         Cvar_SetValueQuick(&r_farclip_world, 0);
3419         Cvar_SetValueQuick(&r_useinfinitefarclip, 0);
3420 #endif
3421         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap, NULL, NULL);
3422 }
3423
3424 void Render_Init(void)
3425 {
3426         gl_backend_init();
3427         R_Textures_Init();
3428         GL_Main_Init();
3429         Font_Init();
3430         GL_Draw_Init();
3431         R_Shadow_Init();
3432         R_Sky_Init();
3433         GL_Surf_Init();
3434         Sbar_Init();
3435         R_Particles_Init();
3436         R_Explosion_Init();
3437         R_LightningBeams_Init();
3438         Mod_RenderInit();
3439 }
3440
3441 int R_CullBox(const vec3_t mins, const vec3_t maxs)
3442 {
3443         int i;
3444         mplane_t *p;
3445         if (r_trippy.integer)
3446                 return false;
3447         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
3448         {
3449                 p = r_refdef.view.frustum + i;
3450                 switch(p->signbits)
3451                 {
3452                 default:
3453                 case 0:
3454                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3455                                 return true;
3456                         break;
3457                 case 1:
3458                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3459                                 return true;
3460                         break;
3461                 case 2:
3462                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3463                                 return true;
3464                         break;
3465                 case 3:
3466                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3467                                 return true;
3468                         break;
3469                 case 4:
3470                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3471                                 return true;
3472                         break;
3473                 case 5:
3474                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3475                                 return true;
3476                         break;
3477                 case 6:
3478                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3479                                 return true;
3480                         break;
3481                 case 7:
3482                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3483                                 return true;
3484                         break;
3485                 }
3486         }
3487         return false;
3488 }
3489
3490 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
3491 {
3492         int i;
3493         const mplane_t *p;
3494         if (r_trippy.integer)
3495                 return false;
3496         for (i = 0;i < numplanes;i++)
3497         {
3498                 p = planes + i;
3499                 switch(p->signbits)
3500                 {
3501                 default:
3502                 case 0:
3503                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3504                                 return true;
3505                         break;
3506                 case 1:
3507                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3508                                 return true;
3509                         break;
3510                 case 2:
3511                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3512                                 return true;
3513                         break;
3514                 case 3:
3515                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3516                                 return true;
3517                         break;
3518                 case 4:
3519                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3520                                 return true;
3521                         break;
3522                 case 5:
3523                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3524                                 return true;
3525                         break;
3526                 case 6:
3527                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3528                                 return true;
3529                         break;
3530                 case 7:
3531                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3532                                 return true;
3533                         break;
3534                 }
3535         }
3536         return false;
3537 }
3538
3539 //==================================================================================
3540
3541 // LadyHavoc: this stores temporary data used within the same frame
3542
3543 typedef struct r_framedata_mem_s
3544 {
3545         struct r_framedata_mem_s *purge; // older mem block to free on next frame
3546         size_t size; // how much usable space
3547         size_t current; // how much space in use
3548         size_t mark; // last "mark" location, temporary memory can be freed by returning to this
3549         size_t wantedsize; // how much space was allocated
3550         unsigned char *data; // start of real data (16byte aligned)
3551 }
3552 r_framedata_mem_t;
3553
3554 static r_framedata_mem_t *r_framedata_mem;
3555
3556 void R_FrameData_Reset(void)
3557 {
3558         while (r_framedata_mem)
3559         {
3560                 r_framedata_mem_t *next = r_framedata_mem->purge;
3561                 Mem_Free(r_framedata_mem);
3562                 r_framedata_mem = next;
3563         }
3564 }
3565
3566 static void R_FrameData_Resize(qbool mustgrow)
3567 {
3568         size_t wantedsize;
3569         wantedsize = (size_t)(r_framedatasize.value * 1024*1024);
3570         wantedsize = bound(65536, wantedsize, 1000*1024*1024);
3571         if (!r_framedata_mem || r_framedata_mem->wantedsize != wantedsize || mustgrow)
3572         {
3573                 r_framedata_mem_t *newmem = (r_framedata_mem_t *)Mem_Alloc(r_main_mempool, wantedsize);
3574                 newmem->wantedsize = wantedsize;
3575                 newmem->data = (unsigned char *)(((size_t)(newmem+1) + 15) & ~15);
3576                 newmem->size = (unsigned char *)newmem + wantedsize - newmem->data;
3577                 newmem->current = 0;
3578                 newmem->mark = 0;
3579                 newmem->purge = r_framedata_mem;
3580                 r_framedata_mem = newmem;
3581         }
3582 }
3583
3584 void R_FrameData_NewFrame(void)
3585 {
3586         R_FrameData_Resize(false);
3587         if (!r_framedata_mem)
3588                 return;
3589         // if we ran out of space on the last frame, free the old memory now
3590         while (r_framedata_mem->purge)
3591         {
3592                 // repeatedly remove the second item in the list, leaving only head
3593                 r_framedata_mem_t *next = r_framedata_mem->purge->purge;
3594                 Mem_Free(r_framedata_mem->purge);
3595                 r_framedata_mem->purge = next;
3596         }
3597         // reset the current mem pointer
3598         r_framedata_mem->current = 0;
3599         r_framedata_mem->mark = 0;
3600 }
3601
3602 void *R_FrameData_Alloc(size_t size)
3603 {
3604         void *data;
3605         float newvalue;
3606
3607         // align to 16 byte boundary - the data pointer is already aligned, so we
3608         // only need to ensure the size of every allocation is also aligned
3609         size = (size + 15) & ~15;
3610
3611         while (!r_framedata_mem || r_framedata_mem->current + size > r_framedata_mem->size)
3612         {
3613                 // emergency - we ran out of space, allocate more memory
3614                 // note: this has no upper-bound, we'll fail to allocate memory eventually and just die
3615                 newvalue = r_framedatasize.value * 2.0f;
3616                 // upper bound based on architecture - if we try to allocate more than this we could overflow, better to loop until we error out on allocation failure
3617                 if (sizeof(size_t) >= 8)
3618                         newvalue = bound(0.25f, newvalue, (float)(1ll << 42));
3619                 else
3620                         newvalue = bound(0.25f, newvalue, (float)(1 << 10));
3621                 // this might not be a growing it, but we'll allocate another buffer every time
3622                 Cvar_SetValueQuick(&r_framedatasize, newvalue);
3623                 R_FrameData_Resize(true);
3624         }
3625
3626         data = r_framedata_mem->data + r_framedata_mem->current;
3627         r_framedata_mem->current += size;
3628
3629         // count the usage for stats
3630         r_refdef.stats[r_stat_framedatacurrent] = max(r_refdef.stats[r_stat_framedatacurrent], (int)r_framedata_mem->current);
3631         r_refdef.stats[r_stat_framedatasize] = max(r_refdef.stats[r_stat_framedatasize], (int)r_framedata_mem->size);
3632
3633         return (void *)data;
3634 }
3635
3636 void *R_FrameData_Store(size_t size, void *data)
3637 {
3638         void *d = R_FrameData_Alloc(size);
3639         if (d && data)
3640                 memcpy(d, data, size);
3641         return d;
3642 }
3643
3644 void R_FrameData_SetMark(void)
3645 {
3646         if (!r_framedata_mem)
3647                 return;
3648         r_framedata_mem->mark = r_framedata_mem->current;
3649 }
3650
3651 void R_FrameData_ReturnToMark(void)
3652 {
3653         if (!r_framedata_mem)
3654                 return;
3655         r_framedata_mem->current = r_framedata_mem->mark;
3656 }
3657
3658 //==================================================================================
3659
3660 // avoid reusing the same buffer objects on consecutive frames
3661 #define R_BUFFERDATA_CYCLE 3
3662
3663 typedef struct r_bufferdata_buffer_s
3664 {
3665         struct r_bufferdata_buffer_s *purge; // older buffer to free on next frame
3666         size_t size; // how much usable space
3667         size_t current; // how much space in use
3668         r_meshbuffer_t *buffer; // the buffer itself
3669 }
3670 r_bufferdata_buffer_t;
3671
3672 static int r_bufferdata_cycle = 0; // incremented and wrapped each frame
3673 static r_bufferdata_buffer_t *r_bufferdata_buffer[R_BUFFERDATA_CYCLE][R_BUFFERDATA_COUNT];
3674
3675 /// frees all dynamic buffers
3676 void R_BufferData_Reset(void)
3677 {
3678         int cycle, type;
3679         r_bufferdata_buffer_t **p, *mem;
3680         for (cycle = 0;cycle < R_BUFFERDATA_CYCLE;cycle++)
3681         {
3682                 for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3683                 {
3684                         // free all buffers
3685                         p = &r_bufferdata_buffer[cycle][type];
3686                         while (*p)
3687                         {
3688                                 mem = *p;
3689                                 *p = (*p)->purge;
3690                                 if (mem->buffer)
3691                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3692                                 Mem_Free(mem);
3693                         }
3694                 }
3695         }
3696 }
3697
3698 // resize buffer as needed (this actually makes a new one, the old one will be recycled next frame)
3699 static void R_BufferData_Resize(r_bufferdata_type_t type, qbool mustgrow, size_t minsize)
3700 {
3701         r_bufferdata_buffer_t *mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3702         size_t size;
3703         float newvalue = r_buffermegs[type].value;
3704
3705         // increase the cvar if we have to (but only if we already have a mem)
3706         if (mustgrow && mem)
3707                 newvalue *= 2.0f;
3708         newvalue = bound(0.25f, newvalue, 256.0f);
3709         while (newvalue * 1024*1024 < minsize)
3710                 newvalue *= 2.0f;
3711
3712         // clamp the cvar to valid range
3713         newvalue = bound(0.25f, newvalue, 256.0f);
3714         if (r_buffermegs[type].value != newvalue)
3715                 Cvar_SetValueQuick(&r_buffermegs[type], newvalue);
3716
3717         // calculate size in bytes
3718         size = (size_t)(newvalue * 1024*1024);
3719         size = bound(131072, size, 256*1024*1024);
3720
3721         // allocate a new buffer if the size is different (purge old one later)
3722         // or if we were told we must grow the buffer
3723         if (!mem || mem->size != size || mustgrow)
3724         {
3725                 mem = (r_bufferdata_buffer_t *)Mem_Alloc(r_main_mempool, sizeof(*mem));
3726                 mem->size = size;
3727                 mem->current = 0;
3728                 if (type == R_BUFFERDATA_VERTEX)
3729                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbuffervertex", false, false, true, false);
3730                 else if (type == R_BUFFERDATA_INDEX16)
3731                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex16", true, false, true, true);
3732                 else if (type == R_BUFFERDATA_INDEX32)
3733                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex32", true, false, true, false);
3734                 else if (type == R_BUFFERDATA_UNIFORM)
3735                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferuniform", false, true, true, false);
3736                 mem->purge = r_bufferdata_buffer[r_bufferdata_cycle][type];
3737                 r_bufferdata_buffer[r_bufferdata_cycle][type] = mem;
3738         }
3739 }
3740
3741 void R_BufferData_NewFrame(void)
3742 {
3743         int type;
3744         r_bufferdata_buffer_t **p, *mem;
3745         // cycle to the next frame's buffers
3746         r_bufferdata_cycle = (r_bufferdata_cycle + 1) % R_BUFFERDATA_CYCLE;
3747         // if we ran out of space on the last time we used these buffers, free the old memory now
3748         for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3749         {
3750                 if (r_bufferdata_buffer[r_bufferdata_cycle][type])
3751                 {
3752                         R_BufferData_Resize((r_bufferdata_type_t)type, false, 131072);
3753                         // free all but the head buffer, this is how we recycle obsolete
3754                         // buffers after they are no longer in use
3755                         p = &r_bufferdata_buffer[r_bufferdata_cycle][type]->purge;
3756                         while (*p)
3757                         {
3758                                 mem = *p;
3759                                 *p = (*p)->purge;
3760                                 if (mem->buffer)
3761                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3762                                 Mem_Free(mem);
3763                         }
3764                         // reset the current offset
3765                         r_bufferdata_buffer[r_bufferdata_cycle][type]->current = 0;
3766                 }
3767         }
3768 }
3769
3770 r_meshbuffer_t *R_BufferData_Store(size_t datasize, const void *data, r_bufferdata_type_t type, int *returnbufferoffset)
3771 {
3772         r_bufferdata_buffer_t *mem;
3773         int offset = 0;
3774         int padsize;
3775
3776         *returnbufferoffset = 0;
3777
3778         // align size to a byte boundary appropriate for the buffer type, this
3779         // makes all allocations have aligned start offsets
3780         if (type == R_BUFFERDATA_UNIFORM)
3781                 padsize = (datasize + r_uniformbufferalignment - 1) & ~(r_uniformbufferalignment - 1);
3782         else
3783                 padsize = (datasize + 15) & ~15;
3784
3785         // if we ran out of space in this buffer we must allocate a new one
3786         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3787                 R_BufferData_Resize(type, true, padsize);
3788
3789         // if the resize did not give us enough memory, fail
3790         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3791                 Sys_Error("R_BufferData_Store: failed to create a new buffer of sufficient size\n");
3792
3793         mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3794         offset = (int)mem->current;
3795         mem->current += padsize;
3796
3797         // upload the data to the buffer at the chosen offset
3798         if (offset == 0)
3799                 R_Mesh_UpdateMeshBuffer(mem->buffer, NULL, mem->size, false, 0);
3800         R_Mesh_UpdateMeshBuffer(mem->buffer, data, datasize, true, offset);
3801
3802         // count the usage for stats
3803         r_refdef.stats[r_stat_bufferdatacurrent_vertex + type] = max(r_refdef.stats[r_stat_bufferdatacurrent_vertex + type], (int)mem->current);
3804         r_refdef.stats[r_stat_bufferdatasize_vertex + type] = max(r_refdef.stats[r_stat_bufferdatasize_vertex + type], (int)mem->size);
3805
3806         // return the buffer offset
3807         *returnbufferoffset = offset;
3808
3809         return mem->buffer;
3810 }
3811
3812 //==================================================================================
3813
3814 // LadyHavoc: animcache originally written by Echon, rewritten since then
3815
3816 /**
3817  * Animation cache prevents re-generating mesh data for an animated model
3818  * multiple times in one frame for lighting, shadowing, reflections, etc.
3819  */
3820
3821 void R_AnimCache_Free(void)
3822 {
3823 }
3824
3825 void R_AnimCache_ClearCache(void)
3826 {
3827         int i;
3828         entity_render_t *ent;
3829
3830         for (i = 0;i < r_refdef.scene.numentities;i++)
3831         {
3832                 ent = r_refdef.scene.entities[i];
3833                 ent->animcache_vertex3f = NULL;
3834                 ent->animcache_vertex3f_vertexbuffer = NULL;
3835                 ent->animcache_vertex3f_bufferoffset = 0;
3836                 ent->animcache_normal3f = NULL;
3837                 ent->animcache_normal3f_vertexbuffer = NULL;
3838                 ent->animcache_normal3f_bufferoffset = 0;
3839                 ent->animcache_svector3f = NULL;
3840                 ent->animcache_svector3f_vertexbuffer = NULL;
3841                 ent->animcache_svector3f_bufferoffset = 0;
3842                 ent->animcache_tvector3f = NULL;
3843                 ent->animcache_tvector3f_vertexbuffer = NULL;
3844                 ent->animcache_tvector3f_bufferoffset = 0;
3845                 ent->animcache_skeletaltransform3x4 = NULL;
3846                 ent->animcache_skeletaltransform3x4buffer = NULL;
3847                 ent->animcache_skeletaltransform3x4offset = 0;
3848                 ent->animcache_skeletaltransform3x4size = 0;
3849         }
3850 }
3851
3852 qbool R_AnimCache_GetEntity(entity_render_t *ent, qbool wantnormals, qbool wanttangents)
3853 {
3854         dp_model_t *model = ent->model;
3855         int numvertices;
3856
3857         // see if this ent is worth caching
3858         if (!model || !model->Draw || !model->AnimateVertices)
3859                 return false;
3860         // nothing to cache if it contains no animations and has no skeleton
3861         if (!model->surfmesh.isanimated && !(model->num_bones && ent->skeleton && ent->skeleton->relativetransforms))
3862                 return false;
3863         // see if it is already cached for gpuskeletal
3864         if (ent->animcache_skeletaltransform3x4)
3865                 return false;
3866         // see if it is already cached as a mesh
3867         if (ent->animcache_vertex3f)
3868         {
3869                 // check if we need to add normals or tangents
3870                 if (ent->animcache_normal3f)
3871                         wantnormals = false;
3872                 if (ent->animcache_svector3f)
3873                         wanttangents = false;
3874                 if (!wantnormals && !wanttangents)
3875                         return false;
3876         }
3877
3878         // check which kind of cache we need to generate
3879         if (r_gpuskeletal && model->num_bones > 0 && model->surfmesh.data_skeletalindex4ub)
3880         {
3881                 // cache the skeleton so the vertex shader can use it
3882                 r_refdef.stats[r_stat_animcache_skeletal_count] += 1;
3883                 r_refdef.stats[r_stat_animcache_skeletal_bones] += model->num_bones;
3884                 r_refdef.stats[r_stat_animcache_skeletal_maxbones] = max(r_refdef.stats[r_stat_animcache_skeletal_maxbones], model->num_bones);
3885                 ent->animcache_skeletaltransform3x4 = (float *)R_FrameData_Alloc(sizeof(float[3][4]) * model->num_bones);
3886                 Mod_Skeletal_BuildTransforms(model, ent->frameblend, ent->skeleton, NULL, ent->animcache_skeletaltransform3x4); 
3887                 // note: this can fail if the buffer is at the grow limit
3888                 ent->animcache_skeletaltransform3x4size = sizeof(float[3][4]) * model->num_bones;
3889                 ent->animcache_skeletaltransform3x4buffer = R_BufferData_Store(ent->animcache_skeletaltransform3x4size, ent->animcache_skeletaltransform3x4, R_BUFFERDATA_UNIFORM, &ent->animcache_skeletaltransform3x4offset);
3890         }
3891         else if (ent->animcache_vertex3f)
3892         {
3893                 // mesh was already cached but we may need to add normals/tangents
3894                 // (this only happens with multiple views, reflections, cameras, etc)
3895                 if (wantnormals || wanttangents)
3896                 {
3897                         numvertices = model->surfmesh.num_vertices;
3898                         if (wantnormals)
3899                                 ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3900                         if (wanttangents)
3901                         {
3902                                 ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3903                                 ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3904                         }
3905                         model->AnimateVertices(model, ent->frameblend, ent->skeleton, NULL, wantnormals ? ent->animcache_normal3f : NULL, wanttangents ? ent->animcache_svector3f : NULL, wanttangents ? ent->animcache_tvector3f : NULL);
3906                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3907                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3908                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3909                 }
3910         }
3911         else
3912         {
3913                 // generate mesh cache
3914                 numvertices = model->surfmesh.num_vertices;
3915                 ent->animcache_vertex3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3916                 if (wantnormals)
3917                         ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3918                 if (wanttangents)
3919                 {
3920                         ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3921                         ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3922                 }
3923                 model->AnimateVertices(model, ent->frameblend, ent->skeleton, ent->animcache_vertex3f, ent->animcache_normal3f, ent->animcache_svector3f, ent->animcache_tvector3f);
3924                 if (wantnormals || wanttangents)
3925                 {
3926                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3927                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3928                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3929                 }
3930                 r_refdef.stats[r_stat_animcache_shape_count] += 1;
3931                 r_refdef.stats[r_stat_animcache_shape_vertices] += numvertices;
3932                 r_refdef.stats[r_stat_animcache_shape_maxvertices] = max(r_refdef.stats[r_stat_animcache_shape_maxvertices], numvertices);
3933         }
3934         return true;
3935 }
3936
3937 void R_AnimCache_CacheVisibleEntities(void)
3938 {
3939         int i;
3940
3941         // TODO: thread this
3942         // NOTE: R_PrepareRTLights() also caches entities
3943
3944         for (i = 0;i < r_refdef.scene.numentities;i++)
3945                 if (r_refdef.viewcache.entityvisible[i])
3946                         R_AnimCache_GetEntity(r_refdef.scene.entities[i], true, true);
3947 }
3948
3949 //==================================================================================
3950
3951 qbool R_CanSeeBox(int numsamples, vec_t eyejitter, vec_t entboxenlarge, vec_t entboxexpand, vec_t pad, vec3_t eye, vec3_t entboxmins, vec3_t entboxmaxs)
3952 {
3953         long unsigned int i;
3954         int j;
3955         vec3_t eyemins, eyemaxs;
3956         vec3_t boxmins, boxmaxs;
3957         vec3_t padmins, padmaxs;
3958         vec3_t start;
3959         vec3_t end;
3960         dp_model_t *model = r_refdef.scene.worldmodel;
3961         static vec3_t positions[] = {
3962                 { 0.5f, 0.5f, 0.5f },
3963                 { 0.0f, 0.0f, 0.0f },
3964                 { 0.0f, 0.0f, 1.0f },
3965                 { 0.0f, 1.0f, 0.0f },
3966                 { 0.0f, 1.0f, 1.0f },
3967                 { 1.0f, 0.0f, 0.0f },
3968                 { 1.0f, 0.0f, 1.0f },
3969                 { 1.0f, 1.0f, 0.0f },
3970                 { 1.0f, 1.0f, 1.0f },
3971         };
3972
3973         // sample count can be set to -1 to skip this logic, for flicker-prone objects
3974         if (numsamples < 0)
3975                 return true;
3976
3977         // view origin is not used for culling in portal/reflection/refraction renders or isometric views
3978         if (!r_refdef.view.usevieworiginculling)
3979                 return true;
3980
3981         if (!r_cullentities_trace_entityocclusion.integer && (!model || !model->brush.TraceLineOfSight))
3982                 return true;
3983
3984         // expand the eye box a little
3985         eyemins[0] = eye[0] - eyejitter;
3986         eyemaxs[0] = eye[0] + eyejitter;
3987         eyemins[1] = eye[1] - eyejitter;
3988         eyemaxs[1] = eye[1] + eyejitter;
3989         eyemins[2] = eye[2] - eyejitter;
3990         eyemaxs[2] = eye[2] + eyejitter;
3991         // expand the box a little
3992         boxmins[0] = (entboxenlarge + 1) * entboxmins[0] - entboxenlarge * entboxmaxs[0] - entboxexpand;
3993         boxmaxs[0] = (entboxenlarge + 1) * entboxmaxs[0] - entboxenlarge * entboxmins[0] + entboxexpand;
3994         boxmins[1] = (entboxenlarge + 1) * entboxmins[1] - entboxenlarge * entboxmaxs[1] - entboxexpand;
3995         boxmaxs[1] = (entboxenlarge + 1) * entboxmaxs[1] - entboxenlarge * entboxmins[1] + entboxexpand;
3996         boxmins[2] = (entboxenlarge + 1) * entboxmins[2] - entboxenlarge * entboxmaxs[2] - entboxexpand;
3997         boxmaxs[2] = (entboxenlarge + 1) * entboxmaxs[2] - entboxenlarge * entboxmins[2] + entboxexpand;
3998         // make an even larger box for the acceptable area
3999         padmins[0] = boxmins[0] - pad;
4000         padmaxs[0] = boxmaxs[0] + pad;
4001         padmins[1] = boxmins[1] - pad;
4002         padmaxs[1] = boxmaxs[1] + pad;
4003         padmins[2] = boxmins[2] - pad;
4004         padmaxs[2] = boxmaxs[2] + pad;
4005
4006         // return true if eye overlaps enlarged box
4007         if (BoxesOverlap(boxmins, boxmaxs, eyemins, eyemaxs))
4008                 return true;
4009
4010         // try specific positions in the box first - note that these can be cached
4011         if (r_cullentities_trace_entityocclusion.integer)
4012         {
4013                 for (i = 0; i < sizeof(positions) / sizeof(positions[0]); i++)
4014                 {
4015                         trace_t trace;
4016                         VectorCopy(eye, start);
4017                         end[0] = boxmins[0] + (boxmaxs[0] - boxmins[0]) * positions[i][0];
4018                         end[1] = boxmins[1] + (boxmaxs[1] - boxmins[1]) * positions[i][1];
4019                         end[2] = boxmins[2] + (boxmaxs[2] - boxmins[2]) * positions[i][2];
4020                         //trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
4021                         trace = CL_Cache_TraceLineSurfaces(start, end, MOVE_NORMAL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT);
4022                         // not picky - if the trace ended anywhere in the box we're good
4023                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
4024                                 return true;
4025                 }
4026         }
4027         else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
4028                 return true;
4029
4030         // try various random positions
4031         for (j = 0; j < numsamples; j++)
4032         {
4033                 VectorSet(start, lhrandom(eyemins[0], eyemaxs[0]), lhrandom(eyemins[1], eyemaxs[1]), lhrandom(eyemins[2], eyemaxs[2]));
4034                 VectorSet(end, lhrandom(boxmins[0], boxmaxs[0]), lhrandom(boxmins[1], boxmaxs[1]), lhrandom(boxmins[2], boxmaxs[2]));
4035                 if (r_cullentities_trace_entityocclusion.integer)
4036                 {
4037                         trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
4038                         // not picky - if the trace ended anywhere in the box we're good
4039                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
4040                                 return true;
4041                 }
4042                 else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
4043                         return true;
4044         }
4045
4046         return false;
4047 }
4048
4049
4050 static void R_View_UpdateEntityVisible (void)
4051 {
4052         int i;
4053         int renderimask;
4054         int samples;
4055         entity_render_t *ent;
4056
4057         if (r_refdef.envmap || r_fb.water.hideplayer)
4058                 renderimask = RENDER_EXTERIORMODEL | RENDER_VIEWMODEL;
4059         else if (chase_active.integer || r_fb.water.renderingscene)
4060                 renderimask = RENDER_VIEWMODEL;
4061         else
4062                 renderimask = RENDER_EXTERIORMODEL;
4063         if (!r_drawviewmodel.integer)
4064                 renderimask |= RENDER_VIEWMODEL;
4065         if (!r_drawexteriormodel.integer)
4066                 renderimask |= RENDER_EXTERIORMODEL;
4067         memset(r_refdef.viewcache.entityvisible, 0, r_refdef.scene.numentities);
4068         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
4069         {
4070                 // worldmodel can check visibility
4071                 for (i = 0;i < r_refdef.scene.numentities;i++)
4072                 {
4073                         ent = r_refdef.scene.entities[i];
4074                         if (!(ent->flags & renderimask))
4075                         if (!R_CullBox(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4076                         if ((ent->flags & (RENDER_NODEPTHTEST | RENDER_WORLDOBJECT | RENDER_VIEWMODEL)) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs))
4077                                 r_refdef.viewcache.entityvisible[i] = true;
4078                 }
4079         }
4080         else
4081         {
4082                 // no worldmodel or it can't check visibility
4083                 for (i = 0;i < r_refdef.scene.numentities;i++)
4084                 {
4085                         ent = r_refdef.scene.entities[i];
4086                         if (!(ent->flags & renderimask))
4087                         if (!R_CullBox(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4088                                 r_refdef.viewcache.entityvisible[i] = true;
4089                 }
4090         }
4091         if (r_cullentities_trace.integer)
4092         {
4093                 for (i = 0;i < r_refdef.scene.numentities;i++)
4094                 {
4095                         if (!r_refdef.viewcache.entityvisible[i])
4096                                 continue;
4097                         ent = r_refdef.scene.entities[i];
4098                         if (!(ent->flags & (RENDER_VIEWMODEL | RENDER_WORLDOBJECT | RENDER_NODEPTHTEST)) && !(ent->model && (ent->model->name[0] == '*')))
4099                         {
4100                                 samples = ent->last_trace_visibility == 0 ? r_cullentities_trace_tempentitysamples.integer : r_cullentities_trace_samples.integer;
4101                                 if (R_CanSeeBox(samples, r_cullentities_trace_eyejitter.value, r_cullentities_trace_enlarge.value, r_cullentities_trace_expand.value, r_cullentities_trace_pad.value, r_refdef.view.origin, ent->mins, ent->maxs))
4102                                         ent->last_trace_visibility = host.realtime;
4103                                 if (ent->last_trace_visibility < host.realtime - r_cullentities_trace_delay.value)
4104                                         r_refdef.viewcache.entityvisible[i] = 0;
4105                         }
4106                 }
4107         }
4108 }
4109
4110 /// only used if skyrendermasked, and normally returns false
4111 static int R_DrawBrushModelsSky (void)
4112 {
4113         int i, sky;
4114         entity_render_t *ent;
4115
4116         sky = false;
4117         for (i = 0;i < r_refdef.scene.numentities;i++)
4118         {
4119                 if (!r_refdef.viewcache.entityvisible[i])
4120                         continue;
4121                 ent = r_refdef.scene.entities[i];
4122                 if (!ent->model || !ent->model->DrawSky)
4123                         continue;
4124                 ent->model->DrawSky(ent);
4125                 sky = true;
4126         }
4127         return sky;
4128 }
4129
4130 static void R_DrawNoModel(entity_render_t *ent);
4131 static void R_DrawModels(void)
4132 {
4133         int i;
4134         entity_render_t *ent;
4135
4136         for (i = 0;i < r_refdef.scene.numentities;i++)
4137         {
4138                 if (!r_refdef.viewcache.entityvisible[i])
4139                         continue;
4140                 ent = r_refdef.scene.entities[i];
4141                 r_refdef.stats[r_stat_entities]++;
4142                 /*
4143                 if (ent->model && !strncmp(ent->model->name, "models/proto_", 13))
4144                 {
4145                         vec3_t f, l, u, o;
4146                         Matrix4x4_ToVectors(&ent->matrix, f, l, u, o);
4147                         Con_Printf("R_DrawModels\n");
4148                         Con_Printf("model %s O %f %f %f F %f %f %f L %f %f %f U %f %f %f\n", ent->model->name, o[0], o[1], o[2], f[0], f[1], f[2], l[0], l[1], l[2], u[0], u[1], u[2]);
4149                         Con_Printf("group: %i %f %i %f %i %f %i %f\n", ent->framegroupblend[0].frame, ent->framegroupblend[0].lerp, ent->framegroupblend[1].frame, ent->framegroupblend[1].lerp, ent->framegroupblend[2].frame, ent->framegroupblend[2].lerp, ent->framegroupblend[3].frame, ent->framegroupblend[3].lerp);
4150                         Con_Printf("blend: %i %f %i %f %i %f %i %f %i %f %i %f %i %f %i %f\n", ent->frameblend[0].subframe, ent->frameblend[0].lerp, ent->frameblend[1].subframe, ent->frameblend[1].lerp, ent->frameblend[2].subframe, ent->frameblend[2].lerp, ent->frameblend[3].subframe, ent->frameblend[3].lerp, ent->frameblend[4].subframe, ent->frameblend[4].lerp, ent->frameblend[5].subframe, ent->frameblend[5].lerp, ent->frameblend[6].subframe, ent->frameblend[6].lerp, ent->frameblend[7].subframe, ent->frameblend[7].lerp);
4151                 }
4152                 */
4153                 if (ent->model && ent->model->Draw != NULL)
4154                         ent->model->Draw(ent);
4155                 else
4156                         R_DrawNoModel(ent);
4157         }
4158 }
4159
4160 static void R_DrawModelsDepth(void)
4161 {
4162         int i;
4163         entity_render_t *ent;
4164
4165         for (i = 0;i < r_refdef.scene.numentities;i++)
4166         {
4167                 if (!r_refdef.viewcache.entityvisible[i])
4168                         continue;
4169                 ent = r_refdef.scene.entities[i];
4170                 if (ent->model && ent->model->DrawDepth != NULL)
4171                         ent->model->DrawDepth(ent);
4172         }
4173 }
4174
4175 static void R_DrawModelsDebug(void)
4176 {
4177         int i;
4178         entity_render_t *ent;
4179
4180         for (i = 0;i < r_refdef.scene.numentities;i++)
4181         {
4182                 if (!r_refdef.viewcache.entityvisible[i])
4183                         continue;
4184                 ent = r_refdef.scene.entities[i];
4185                 if (ent->model && ent->model->DrawDebug != NULL)
4186                         ent->model->DrawDebug(ent);
4187         }
4188 }
4189
4190 static void R_DrawModelsAddWaterPlanes(void)
4191 {
4192         int i;
4193         entity_render_t *ent;
4194
4195         for (i = 0;i < r_refdef.scene.numentities;i++)
4196         {
4197                 if (!r_refdef.viewcache.entityvisible[i])
4198                         continue;
4199                 ent = r_refdef.scene.entities[i];
4200                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
4201                         ent->model->DrawAddWaterPlanes(ent);
4202         }
4203 }
4204
4205 static float irisvecs[7][3] = {{0, 0, 0}, {-1, 0, 0}, {1, 0, 0}, {0, -1, 0}, {0, 1, 0}, {0, 0, -1}, {0, 0, 1}};
4206
4207 void R_HDR_UpdateIrisAdaptation(const vec3_t point)
4208 {
4209         if (r_hdr_irisadaptation.integer)
4210         {
4211                 vec3_t p;
4212                 vec3_t ambient;
4213                 vec3_t diffuse;
4214                 vec3_t diffusenormal;
4215                 vec3_t forward;
4216                 vec_t brightness = 0.0f;
4217                 vec_t goal;
4218                 vec_t current;
4219                 vec_t d;
4220                 int c;
4221                 VectorCopy(r_refdef.view.forward, forward);
4222                 for (c = 0;c < (int)(sizeof(irisvecs)/sizeof(irisvecs[0]));c++)
4223                 {
4224                         p[0] = point[0] + irisvecs[c][0] * r_hdr_irisadaptation_radius.value;
4225                         p[1] = point[1] + irisvecs[c][1] * r_hdr_irisadaptation_radius.value;
4226                         p[2] = point[2] + irisvecs[c][2] * r_hdr_irisadaptation_radius.value;
4227                         R_CompleteLightPoint(ambient, diffuse, diffusenormal, p, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT, r_refdef.scene.lightmapintensity, r_refdef.scene.ambientintensity);
4228                         d = DotProduct(forward, diffusenormal);
4229                         brightness += VectorLength(ambient);
4230                         if (d > 0)
4231                                 brightness += d * VectorLength(diffuse);
4232                 }
4233                 brightness *= 1.0f / c;
4234                 brightness += 0.00001f; // make sure it's never zero
4235                 goal = r_hdr_irisadaptation_multiplier.value / brightness;
4236                 goal = bound(r_hdr_irisadaptation_minvalue.value, goal, r_hdr_irisadaptation_maxvalue.value);
4237                 current = r_hdr_irisadaptation_value.value;
4238                 if (current < goal)
4239                         current = min(current + r_hdr_irisadaptation_fade_up.value * cl.realframetime, goal);
4240                 else if (current > goal)
4241                         current = max(current - r_hdr_irisadaptation_fade_down.value * cl.realframetime, goal);
4242                 if (fabs(r_hdr_irisadaptation_value.value - current) > 0.0001f)
4243                         Cvar_SetValueQuick(&r_hdr_irisadaptation_value, current);
4244         }
4245         else if (r_hdr_irisadaptation_value.value != 1.0f)
4246                 Cvar_SetValueQuick(&r_hdr_irisadaptation_value, 1.0f);
4247 }
4248
4249 extern cvar_t r_lockvisibility;
4250 extern cvar_t r_lockpvs;
4251
4252 static void R_View_SetFrustum(const int *scissor)
4253 {
4254         int i;
4255         double fpx = +1, fnx = -1, fpy = +1, fny = -1;
4256         vec3_t forward, left, up, origin, v;
4257         if(r_lockvisibility.integer || r_lockpvs.integer)
4258                 return;
4259         if(scissor)
4260         {
4261                 // flipped x coordinates (because x points left here)
4262                 fpx =  1.0 - 2.0 * (scissor[0]              - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4263                 fnx =  1.0 - 2.0 * (scissor[0] + scissor[2] - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4264                 // non-flipped y coordinates
4265                 fny = -1.0 + 2.0 * (scissor[1]              - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4266                 fpy = -1.0 + 2.0 * (scissor[1] + scissor[3] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4267         }
4268
4269         // we can't trust r_refdef.view.forward and friends in reflected scenes
4270         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
4271
4272 #if 0
4273         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
4274         r_refdef.view.frustum[0].normal[1] = 0 - 0;
4275         r_refdef.view.frustum[0].normal[2] = -1 - 0;
4276         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
4277         r_refdef.view.frustum[1].normal[1] = 0 + 0;
4278         r_refdef.view.frustum[1].normal[2] = -1 + 0;
4279         r_refdef.view.frustum[2].normal[0] = 0 - 0;
4280         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
4281         r_refdef.view.frustum[2].normal[2] = -1 - 0;
4282         r_refdef.view.frustum[3].normal[0] = 0 + 0;
4283         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
4284         r_refdef.view.frustum[3].normal[2] = -1 + 0;
4285 #endif
4286
4287 #if 0
4288         zNear = r_refdef.nearclip;
4289         nudge = 1.0 - 1.0 / (1<<23);
4290         r_refdef.view.frustum[4].normal[0] = 0 - 0;
4291         r_refdef.view.frustum[4].normal[1] = 0 - 0;
4292         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
4293         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
4294         r_refdef.view.frustum[5].normal[0] = 0 + 0;
4295         r_refdef.view.frustum[5].normal[1] = 0 + 0;
4296         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
4297         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
4298 #endif
4299
4300
4301
4302 #if 0
4303         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
4304         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
4305         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
4306         r_refdef.view.frustum[0].dist = m[15] - m[12];
4307
4308         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
4309         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
4310         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
4311         r_refdef.view.frustum[1].dist = m[15] + m[12];
4312
4313         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
4314         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
4315         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
4316         r_refdef.view.frustum[2].dist = m[15] - m[13];
4317
4318         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
4319         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
4320         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
4321         r_refdef.view.frustum[3].dist = m[15] + m[13];
4322
4323         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
4324         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
4325         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
4326         r_refdef.view.frustum[4].dist = m[15] - m[14];
4327
4328         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
4329         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
4330         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
4331         r_refdef.view.frustum[5].dist = m[15] + m[14];
4332 #endif
4333
4334         if (r_refdef.view.useperspective)
4335         {
4336                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
4337                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[0]);
4338                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[1]);
4339                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[2]);
4340                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[3]);
4341
4342                 // then the normals from the corners relative to origin
4343                 CrossProduct(r_refdef.view.frustumcorner[2], r_refdef.view.frustumcorner[0], r_refdef.view.frustum[0].normal);
4344                 CrossProduct(r_refdef.view.frustumcorner[1], r_refdef.view.frustumcorner[3], r_refdef.view.frustum[1].normal);
4345                 CrossProduct(r_refdef.view.frustumcorner[0], r_refdef.view.frustumcorner[1], r_refdef.view.frustum[2].normal);
4346                 CrossProduct(r_refdef.view.frustumcorner[3], r_refdef.view.frustumcorner[2], r_refdef.view.frustum[3].normal);
4347
4348                 // in a NORMAL view, forward cross left == up
4349                 // in a REFLECTED view, forward cross left == down
4350                 // so our cross products above need to be adjusted for a left handed coordinate system
4351                 CrossProduct(forward, left, v);
4352                 if(DotProduct(v, up) < 0)
4353                 {
4354                         VectorNegate(r_refdef.view.frustum[0].normal, r_refdef.view.frustum[0].normal);
4355                         VectorNegate(r_refdef.view.frustum[1].normal, r_refdef.view.frustum[1].normal);
4356                         VectorNegate(r_refdef.view.frustum[2].normal, r_refdef.view.frustum[2].normal);
4357                         VectorNegate(r_refdef.view.frustum[3].normal, r_refdef.view.frustum[3].normal);
4358                 }
4359
4360                 // Leaving those out was a mistake, those were in the old code, and they
4361                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
4362                 // I couldn't reproduce it after adding those normalizations. --blub
4363                 VectorNormalize(r_refdef.view.frustum[0].normal);
4364                 VectorNormalize(r_refdef.view.frustum[1].normal);
4365                 VectorNormalize(r_refdef.view.frustum[2].normal);
4366                 VectorNormalize(r_refdef.view.frustum[3].normal);
4367
4368                 // make the corners absolute
4369                 VectorAdd(r_refdef.view.frustumcorner[0], r_refdef.view.origin, r_refdef.view.frustumcorner[0]);
4370                 VectorAdd(r_refdef.view.frustumcorner[1], r_refdef.view.origin, r_refdef.view.frustumcorner[1]);
4371                 VectorAdd(r_refdef.view.frustumcorner[2], r_refdef.view.origin, r_refdef.view.frustumcorner[2]);
4372                 VectorAdd(r_refdef.view.frustumcorner[3], r_refdef.view.origin, r_refdef.view.frustumcorner[3]);
4373
4374                 // one more normal
4375                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
4376
4377                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
4378                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
4379                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
4380                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
4381                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
4382         }
4383         else
4384         {
4385                 VectorScale(left, -1.0f, r_refdef.view.frustum[0].normal);
4386                 VectorScale(left,  1.0f, r_refdef.view.frustum[1].normal);
4387                 VectorScale(up, -1.0f, r_refdef.view.frustum[2].normal);
4388                 VectorScale(up,  1.0f, r_refdef.view.frustum[3].normal);
4389                 VectorScale(forward, -1.0f, r_refdef.view.frustum[4].normal);
4390                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) - r_refdef.view.ortho_x;
4391                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) - r_refdef.view.ortho_x;
4392                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) - r_refdef.view.ortho_y;
4393                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) - r_refdef.view.ortho_y;
4394                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) - r_refdef.farclip;
4395         }
4396         r_refdef.view.numfrustumplanes = 5;
4397
4398         if (r_refdef.view.useclipplane)
4399         {
4400                 r_refdef.view.numfrustumplanes = 6;
4401                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
4402         }
4403
4404         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
4405                 PlaneClassify(r_refdef.view.frustum + i);
4406
4407         // LadyHavoc: note to all quake engine coders, Quake had a special case
4408         // for 90 degrees which assumed a square view (wrong), so I removed it,
4409         // Quake2 has it disabled as well.
4410
4411         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
4412         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
4413         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
4414         //PlaneClassify(&frustum[0]);
4415
4416         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
4417         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
4418         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
4419         //PlaneClassify(&frustum[1]);
4420
4421         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
4422         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
4423         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
4424         //PlaneClassify(&frustum[2]);
4425
4426         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
4427         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
4428         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
4429         //PlaneClassify(&frustum[3]);
4430
4431         // nearclip plane
4432         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
4433         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
4434         //PlaneClassify(&frustum[4]);
4435 }
4436
4437 static void R_View_UpdateWithScissor(const int *myscissor)
4438 {
4439         R_Main_ResizeViewCache();
4440         R_View_SetFrustum(myscissor);
4441         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4442         R_View_UpdateEntityVisible();
4443 }
4444
4445 static void R_View_Update(void)
4446 {
4447         R_Main_ResizeViewCache();
4448         R_View_SetFrustum(NULL);
4449         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4450         R_View_UpdateEntityVisible();
4451 }
4452
4453 float viewscalefpsadjusted = 1.0f;
4454
4455 void R_SetupView(qbool allowwaterclippingplane, int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4456 {
4457         const float *customclipplane = NULL;
4458         float plane[4];
4459         int /*rtwidth,*/ rtheight;
4460         if (r_refdef.view.useclipplane && allowwaterclippingplane)
4461         {
4462                 // LadyHavoc: couldn't figure out how to make this approach work the same in DPSOFTRAST
4463                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
4464                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
4465                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
4466                         dist = r_refdef.view.clipplane.dist;
4467                 plane[0] = r_refdef.view.clipplane.normal[0];
4468                 plane[1] = r_refdef.view.clipplane.normal[1];
4469                 plane[2] = r_refdef.view.clipplane.normal[2];
4470                 plane[3] = -dist;
4471                 customclipplane = plane;
4472         }
4473
4474         //rtwidth = viewfbo ? R_TextureWidth(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.width;
4475         rtheight = viewfbo ? R_TextureHeight(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.height;
4476
4477         if (!r_refdef.view.useperspective)
4478                 R_Viewport_InitOrtho3D(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip, customclipplane);
4479         else if (vid.stencil && r_useinfinitefarclip.integer)
4480                 R_Viewport_InitPerspectiveInfinite(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, customclipplane);
4481         else
4482                 R_Viewport_InitPerspective(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip, customclipplane);
4483         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4484         R_SetViewport(&r_refdef.view.viewport);
4485 }
4486
4487 void R_EntityMatrix(const matrix4x4_t *matrix)
4488 {
4489         if (gl_modelmatrixchanged || memcmp(matrix, &gl_modelmatrix, sizeof(matrix4x4_t)))
4490         {
4491                 gl_modelmatrixchanged = false;
4492                 gl_modelmatrix = *matrix;
4493                 Matrix4x4_Concat(&gl_modelviewmatrix, &gl_viewmatrix, &gl_modelmatrix);
4494                 Matrix4x4_Concat(&gl_modelviewprojectionmatrix, &gl_projectionmatrix, &gl_modelviewmatrix);
4495                 Matrix4x4_ToArrayFloatGL(&gl_modelviewmatrix, gl_modelview16f);
4496                 Matrix4x4_ToArrayFloatGL(&gl_modelviewprojectionmatrix, gl_modelviewprojection16f);
4497                 CHECKGLERROR
4498                 switch(vid.renderpath)
4499                 {
4500                 case RENDERPATH_GL32:
4501                 case RENDERPATH_GLES2:
4502                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
4503                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
4504                         break;
4505                 }
4506         }
4507 }
4508
4509 void R_ResetViewRendering2D_Common(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight, float x2, float y2)
4510 {
4511         r_viewport_t viewport;
4512
4513         CHECKGLERROR
4514
4515         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
4516         R_Viewport_InitOrtho(&viewport, &identitymatrix, viewx, vid.height - viewheight - viewy, viewwidth, viewheight, 0, 0, x2, y2, -10, 100, NULL);
4517         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4518         R_SetViewport(&viewport);
4519         GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
4520         GL_Color(1, 1, 1, 1);
4521         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4522         GL_BlendFunc(GL_ONE, GL_ZERO);
4523         GL_ScissorTest(false);
4524         GL_DepthMask(false);
4525         GL_DepthRange(0, 1);
4526         GL_DepthTest(false);
4527         GL_DepthFunc(GL_LEQUAL);
4528         R_EntityMatrix(&identitymatrix);
4529         R_Mesh_ResetTextureState();
4530         GL_PolygonOffset(0, 0);
4531         switch(vid.renderpath)
4532         {
4533         case RENDERPATH_GL32:
4534         case RENDERPATH_GLES2:
4535                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4536                 break;
4537         }
4538         GL_CullFace(GL_NONE);
4539
4540         CHECKGLERROR
4541 }
4542
4543 void R_ResetViewRendering2D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4544 {
4545         R_ResetViewRendering2D_Common(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight, 1.0f, 1.0f);
4546 }
4547
4548 void R_ResetViewRendering3D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4549 {
4550         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
4551         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
4552         GL_Color(1, 1, 1, 1);
4553         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4554         GL_BlendFunc(GL_ONE, GL_ZERO);
4555         GL_ScissorTest(true);
4556         GL_DepthMask(true);
4557         GL_DepthRange(0, 1);
4558         GL_DepthTest(true);
4559         GL_DepthFunc(GL_LEQUAL);
4560         R_EntityMatrix(&identitymatrix);
4561         R_Mesh_ResetTextureState();
4562         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
4563         switch(vid.renderpath)
4564         {
4565         case RENDERPATH_GL32:
4566         case RENDERPATH_GLES2:
4567                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4568                 break;
4569         }
4570         GL_CullFace(r_refdef.view.cullface_back);
4571 }
4572
4573 /*
4574 ================
4575 R_RenderView_UpdateViewVectors
4576 ================
4577 */
4578 void R_RenderView_UpdateViewVectors(void)
4579 {
4580         // break apart the view matrix into vectors for various purposes
4581         // it is important that this occurs outside the RenderScene function because that can be called from reflection renders, where the vectors come out wrong
4582         // however the r_refdef.view.origin IS updated in RenderScene intentionally - otherwise the sky renders at the wrong origin, etc
4583         Matrix4x4_ToVectors(&r_refdef.view.matrix, r_refdef.view.forward, r_refdef.view.left, r_refdef.view.up, r_refdef.view.origin);
4584         VectorNegate(r_refdef.view.left, r_refdef.view.right);
4585         // make an inverted copy of the view matrix for tracking sprites
4586         Matrix4x4_Invert_Full(&r_refdef.view.inverse_matrix, &r_refdef.view.matrix);
4587 }
4588
4589 void R_RenderTarget_FreeUnused(qbool force)
4590 {
4591         unsigned int i, j, end;
4592         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4593         for (i = 0; i < end; i++)
4594         {
4595                 r_rendertarget_t *r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4596                 // free resources for rendertargets that have not been used for a while
4597                 // (note: this check is run after the frame render, so any targets used
4598                 // this frame will not be affected even at low framerates)
4599                 if (r && (host.realtime - r->lastusetime > 0.2 || force))
4600                 {
4601                         if (r->fbo)
4602                                 R_Mesh_DestroyFramebufferObject(r->fbo);
4603                         for (j = 0; j < sizeof(r->colortexture) / sizeof(r->colortexture[0]); j++)
4604                                 if (r->colortexture[j])
4605                                         R_FreeTexture(r->colortexture[j]);
4606                         if (r->depthtexture)
4607                                 R_FreeTexture(r->depthtexture);
4608                         Mem_ExpandableArray_FreeRecord(&r_fb.rendertargets, r);
4609                 }
4610         }
4611 }
4612
4613 static void R_CalcTexCoordsForView(float x, float y, float w, float h, float tw, float th, float *texcoord2f)
4614 {
4615         float iw = 1.0f / tw, ih = 1.0f / th, x1, y1, x2, y2;
4616         x1 = x * iw;
4617         x2 = (x + w) * iw;
4618         y1 = (th - y) * ih;
4619         y2 = (th - y - h) * ih;
4620         texcoord2f[0] = x1;
4621         texcoord2f[2] = x2;
4622         texcoord2f[4] = x2;
4623         texcoord2f[6] = x1;
4624         texcoord2f[1] = y1;
4625         texcoord2f[3] = y1;
4626         texcoord2f[5] = y2;
4627         texcoord2f[7] = y2;
4628 }
4629
4630 r_rendertarget_t *R_RenderTarget_Get(int texturewidth, int textureheight, textype_t depthtextype, qbool depthisrenderbuffer, textype_t colortextype0, textype_t colortextype1, textype_t colortextype2, textype_t colortextype3)
4631 {
4632         unsigned int i, j, end;
4633         r_rendertarget_t *r = NULL;
4634         char vabuf[256];
4635         // first try to reuse an existing slot if possible
4636         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4637         for (i = 0; i < end; i++)
4638         {
4639                 r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4640                 if (r && r->lastusetime != host.realtime && r->texturewidth == texturewidth && r->textureheight == textureheight && r->depthtextype == depthtextype && r->colortextype[0] == colortextype0 && r->colortextype[1] == colortextype1 && r->colortextype[2] == colortextype2 && r->colortextype[3] == colortextype3)
4641                         break;
4642         }
4643         if (i == end)
4644         {
4645                 // no unused exact match found, so we have to make one in the first unused slot
4646                 r = (r_rendertarget_t *)Mem_ExpandableArray_AllocRecord(&r_fb.rendertargets);
4647                 r->texturewidth = texturewidth;
4648                 r->textureheight = textureheight;
4649                 r->colortextype[0] = colortextype0;
4650                 r->colortextype[1] = colortextype1;
4651                 r->colortextype[2] = colortextype2;
4652                 r->colortextype[3] = colortextype3;
4653                 r->depthtextype = depthtextype;
4654                 r->depthisrenderbuffer = depthisrenderbuffer;
4655                 for (j = 0; j < 4; j++)
4656                         if (r->colortextype[j])
4657                                 r->colortexture[j] = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_%i_type%i", i, j, (int)r->colortextype[j]), r->texturewidth, r->textureheight, NULL, r->colortextype[j], TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4658                 if (r->depthtextype)
4659                 {
4660                         if (r->depthisrenderbuffer)
4661                                 r->depthtexture = R_LoadTextureRenderBuffer(r_main_texturepool, va(vabuf, sizeof(vabuf), "renderbuffer%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, r->depthtextype);
4662                         else
4663                                 r->depthtexture = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, NULL, r->depthtextype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4664                 }
4665                 r->fbo = R_Mesh_CreateFramebufferObject(r->depthtexture, r->colortexture[0], r->colortexture[1], r->colortexture[2], r->colortexture[3]);
4666         }
4667         r_refdef.stats[r_stat_rendertargets_used]++;
4668         r_refdef.stats[r_stat_rendertargets_pixels] += r->texturewidth * r->textureheight;
4669         r->lastusetime = host.realtime;
4670         R_CalcTexCoordsForView(0, 0, r->texturewidth, r->textureheight, r->texturewidth, r->textureheight, r->texcoord2f);
4671         return r;
4672 }
4673
4674 static void R_Water_StartFrame(int viewwidth, int viewheight)
4675 {
4676         int waterwidth, waterheight;
4677
4678         if (viewwidth > (int)vid.maxtexturesize_2d || viewheight > (int)vid.maxtexturesize_2d)
4679                 return;
4680
4681         // set waterwidth and waterheight to the water resolution that will be
4682         // used (often less than the screen resolution for faster rendering)
4683         waterwidth = (int)bound(16, viewwidth * r_water_resolutionmultiplier.value, viewwidth);
4684         waterheight = (int)bound(16, viewheight * r_water_resolutionmultiplier.value, viewheight);
4685
4686         if (!r_water.integer || r_showsurfaces.integer || r_lockvisibility.integer || r_lockpvs.integer)
4687                 waterwidth = waterheight = 0;
4688
4689         // set up variables that will be used in shader setup
4690         r_fb.water.waterwidth = waterwidth;
4691         r_fb.water.waterheight = waterheight;
4692         r_fb.water.texturewidth = waterwidth;
4693         r_fb.water.textureheight = waterheight;
4694         r_fb.water.camerawidth = waterwidth;
4695         r_fb.water.cameraheight = waterheight;
4696         r_fb.water.screenscale[0] = 0.5f;
4697         r_fb.water.screenscale[1] = 0.5f;
4698         r_fb.water.screencenter[0] = 0.5f;
4699         r_fb.water.screencenter[1] = 0.5f;
4700         r_fb.water.enabled = waterwidth != 0;
4701
4702         r_fb.water.maxwaterplanes = MAX_WATERPLANES;
4703         r_fb.water.numwaterplanes = 0;
4704 }
4705
4706 void R_Water_AddWaterPlane(msurface_t *surface, int entno)
4707 {
4708         int planeindex, bestplaneindex, vertexindex;
4709         vec3_t mins, maxs, normal, center, v, n;
4710         vec_t planescore, bestplanescore;
4711         mplane_t plane;
4712         r_waterstate_waterplane_t *p;
4713         texture_t *t = R_GetCurrentTexture(surface->texture);
4714
4715         rsurface.texture = t;
4716         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS, 1, ((const msurface_t **)&surface));
4717         // if the model has no normals, it's probably off-screen and they were not generated, so don't add it anyway
4718         if (!rsurface.batchnormal3f || rsurface.batchnumvertices < 1)
4719                 return;
4720         // average the vertex normals, find the surface bounds (after deformvertexes)
4721         Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f, v);
4722         Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f, n);
4723         VectorCopy(n, normal);
4724         VectorCopy(v, mins);
4725         VectorCopy(v, maxs);
4726         for (vertexindex = 1;vertexindex < rsurface.batchnumvertices;vertexindex++)
4727         {
4728                 Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f + vertexindex*3, v);
4729                 Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f + vertexindex*3, n);
4730                 VectorAdd(normal, n, normal);
4731                 mins[0] = min(mins[0], v[0]);
4732                 mins[1] = min(mins[1], v[1]);
4733                 mins[2] = min(mins[2], v[2]);
4734                 maxs[0] = max(maxs[0], v[0]);
4735                 maxs[1] = max(maxs[1], v[1]);
4736                 maxs[2] = max(maxs[2], v[2]);
4737         }
4738         VectorNormalize(normal);
4739         VectorMAM(0.5f, mins, 0.5f, maxs, center);
4740
4741         VectorCopy(normal, plane.normal);
4742         VectorNormalize(plane.normal);
4743         plane.dist = DotProduct(center, plane.normal);
4744         PlaneClassify(&plane);
4745         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
4746         {
4747                 // skip backfaces (except if nocullface is set)
4748 //              if (!(t->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
4749 //                      return;
4750                 VectorNegate(plane.normal, plane.normal);
4751                 plane.dist *= -1;
4752                 PlaneClassify(&plane);
4753         }
4754
4755
4756         // find a matching plane if there is one
4757         bestplaneindex = -1;
4758         bestplanescore = 1048576.0f;
4759         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4760         {
4761                 if(p->camera_entity == t->camera_entity)
4762                 {
4763                         planescore = 1.0f - DotProduct(plane.normal, p->plane.normal) + fabs(plane.dist - p->plane.dist) * 0.001f;
4764                         if (bestplaneindex < 0 || bestplanescore > planescore)
4765                         {
4766                                 bestplaneindex = planeindex;
4767                                 bestplanescore = planescore;
4768                         }
4769                 }
4770         }
4771         planeindex = bestplaneindex;
4772
4773         // if this surface does not fit any known plane rendered this frame, add one
4774         if (planeindex < 0 || bestplanescore > 0.001f)
4775         {
4776                 if (r_fb.water.numwaterplanes < r_fb.water.maxwaterplanes)
4777                 {
4778                         // store the new plane
4779                         planeindex = r_fb.water.numwaterplanes++;
4780                         p = r_fb.water.waterplanes + planeindex;
4781                         p->plane = plane;
4782                         // clear materialflags and pvs
4783                         p->materialflags = 0;
4784                         p->pvsvalid = false;
4785                         p->camera_entity = t->camera_entity;
4786                         VectorCopy(mins, p->mins);
4787                         VectorCopy(maxs, p->maxs);
4788                 }
4789                 else
4790                 {
4791                         // We're totally screwed.
4792                         return;
4793                 }
4794         }
4795         else
4796         {
4797                 // merge mins/maxs when we're adding this surface to the plane
4798                 p = r_fb.water.waterplanes + planeindex;
4799                 p->mins[0] = min(p->mins[0], mins[0]);
4800                 p->mins[1] = min(p->mins[1], mins[1]);
4801                 p->mins[2] = min(p->mins[2], mins[2]);
4802                 p->maxs[0] = max(p->maxs[0], maxs[0]);
4803                 p->maxs[1] = max(p->maxs[1], maxs[1]);
4804                 p->maxs[2] = max(p->maxs[2], maxs[2]);
4805         }
4806         // merge this surface's materialflags into the waterplane
4807         p->materialflags |= t->currentmaterialflags;
4808         if(!(p->materialflags & MATERIALFLAG_CAMERA))
4809         {
4810                 // merge this surface's PVS into the waterplane
4811                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
4812                  && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
4813                 {
4814                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
4815                         p->pvsvalid = true;
4816                 }
4817         }
4818 }
4819
4820 extern cvar_t r_drawparticles;
4821 extern cvar_t r_drawdecals;
4822
4823 static void R_Water_ProcessPlanes(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int viewx, int viewy, int viewwidth, int viewheight)
4824 {
4825         int myscissor[4];
4826         r_refdef_view_t originalview;
4827         r_refdef_view_t myview;
4828         int planeindex, qualityreduction = 0, old_r_dynamic = 0, old_r_shadows = 0, old_r_worldrtlight = 0, old_r_dlight = 0, old_r_particles = 0, old_r_decals = 0;
4829         r_waterstate_waterplane_t *p;
4830         vec3_t visorigin;
4831         r_rendertarget_t *rt;
4832
4833         originalview = r_refdef.view;
4834
4835         // lowquality hack, temporarily shut down some cvars and restore afterwards
4836         qualityreduction = r_water_lowquality.integer;
4837         if (qualityreduction > 0)
4838         {
4839                 if (qualityreduction >= 1)
4840                 {
4841                         old_r_shadows = r_shadows.integer;
4842                         old_r_worldrtlight = r_shadow_realtime_world.integer;
4843                         old_r_dlight = r_shadow_realtime_dlight.integer;
4844                         Cvar_SetValueQuick(&r_shadows, 0);
4845                         Cvar_SetValueQuick(&r_shadow_realtime_world, 0);
4846                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, 0);
4847                 }
4848                 if (qualityreduction >= 2)
4849                 {
4850                         old_r_dynamic = r_dynamic.integer;
4851                         old_r_particles = r_drawparticles.integer;
4852                         old_r_decals = r_drawdecals.integer;
4853                         Cvar_SetValueQuick(&r_dynamic, 0);
4854                         Cvar_SetValueQuick(&r_drawparticles, 0);
4855                         Cvar_SetValueQuick(&r_drawdecals, 0);
4856                 }
4857         }
4858
4859         for (planeindex = 0, p = r_fb.water.waterplanes; planeindex < r_fb.water.numwaterplanes; planeindex++, p++)
4860         {
4861                 p->rt_reflection = NULL;
4862                 p->rt_refraction = NULL;
4863                 p->rt_camera = NULL;
4864         }
4865
4866         // render views
4867         r_refdef.view = originalview;
4868         r_refdef.view.showdebug = false;
4869         r_refdef.view.width = r_fb.water.waterwidth;
4870         r_refdef.view.height = r_fb.water.waterheight;
4871         r_refdef.view.useclipplane = true;
4872         myview = r_refdef.view;
4873         r_fb.water.renderingscene = true;
4874         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4875         {
4876                 if (r_water_cameraentitiesonly.value != 0 && !p->camera_entity)
4877                         continue;
4878
4879                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
4880                 {
4881                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4882                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4883                                 goto error;
4884                         r_refdef.view = myview;
4885                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
4886                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
4887                         if(r_water_scissormode.integer)
4888                         {
4889                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4890                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4891                                 {
4892                                         p->rt_reflection = NULL;
4893                                         p->rt_refraction = NULL;
4894                                         p->rt_camera = NULL;
4895                                         continue;
4896                                 }
4897                         }
4898
4899                         r_refdef.view.clipplane = p->plane;
4900                         // reflected view origin may be in solid, so don't cull with it
4901                         r_refdef.view.usevieworiginculling = false;
4902                         // reverse the cullface settings for this render
4903                         r_refdef.view.cullface_front = GL_FRONT;
4904                         r_refdef.view.cullface_back = GL_BACK;
4905                         // combined pvs (based on what can be seen from each surface center)
4906                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4907                         {
4908                                 r_refdef.view.usecustompvs = true;
4909                                 if (p->pvsvalid)
4910                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4911                                 else
4912                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4913                         }
4914
4915                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 2) && !chase_active.integer);
4916                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4917                         GL_ScissorTest(false);
4918                         R_ClearScreen(r_refdef.fogenabled);
4919                         GL_ScissorTest(true);
4920                         if(r_water_scissormode.integer & 2)
4921                                 R_View_UpdateWithScissor(myscissor);
4922                         else
4923                                 R_View_Update();
4924                         R_AnimCache_CacheVisibleEntities();
4925                         if(r_water_scissormode.integer & 1)
4926                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4927                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4928
4929                         r_fb.water.hideplayer = false;
4930                         p->rt_reflection = rt;
4931                 }
4932
4933                 // render the normal view scene and copy into texture
4934                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
4935                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
4936                 {
4937                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4938                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4939                                 goto error;
4940                         r_refdef.view = myview;
4941                         if(r_water_scissormode.integer)
4942                         {
4943                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4944                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4945                                 {
4946                                         p->rt_reflection = NULL;
4947                                         p->rt_refraction = NULL;
4948                                         p->rt_camera = NULL;
4949                                         continue;
4950                                 }
4951                         }
4952
4953                         // combined pvs (based on what can be seen from each surface center)
4954                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4955                         {
4956                                 r_refdef.view.usecustompvs = true;
4957                                 if (p->pvsvalid)
4958                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4959                                 else
4960                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4961                         }
4962
4963                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 1) && !chase_active.integer);
4964
4965                         r_refdef.view.clipplane = p->plane;
4966                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4967                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4968
4969                         if((p->materialflags & MATERIALFLAG_CAMERA) && p->camera_entity)
4970                         {
4971                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4972                                 r_fb.water.hideplayer = false; // we don't want to hide the player model from these ones
4973                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4974                                 R_RenderView_UpdateViewVectors();
4975                                 if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4976                                 {
4977                                         r_refdef.view.usecustompvs = true;
4978                                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4979                                 }
4980                         }
4981
4982                         PlaneClassify(&r_refdef.view.clipplane);
4983
4984                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4985                         GL_ScissorTest(false);
4986                         R_ClearScreen(r_refdef.fogenabled);
4987                         GL_ScissorTest(true);
4988                         if(r_water_scissormode.integer & 2)
4989                                 R_View_UpdateWithScissor(myscissor);
4990                         else
4991                                 R_View_Update();
4992                         R_AnimCache_CacheVisibleEntities();
4993                         if(r_water_scissormode.integer & 1)
4994                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4995                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4996
4997                         r_fb.water.hideplayer = false;
4998                         p->rt_refraction = rt;
4999                 }
5000                 else if (p->materialflags & MATERIALFLAG_CAMERA)
5001                 {
5002                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5003                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
5004                                 goto error;
5005                         r_refdef.view = myview;
5006
5007                         r_refdef.view.clipplane = p->plane;
5008                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
5009                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
5010
5011                         r_refdef.view.width = r_fb.water.camerawidth;
5012                         r_refdef.view.height = r_fb.water.cameraheight;
5013                         r_refdef.view.frustum_x = 1; // tan(45 * M_PI / 180.0);
5014                         r_refdef.view.frustum_y = 1; // tan(45 * M_PI / 180.0);
5015                         r_refdef.view.ortho_x = 90; // abused as angle by VM_CL_R_SetView
5016                         r_refdef.view.ortho_y = 90; // abused as angle by VM_CL_R_SetView
5017
5018                         if(p->camera_entity)
5019                         {
5020                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
5021                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
5022                         }
5023
5024                         // note: all of the view is used for displaying... so
5025                         // there is no use in scissoring
5026
5027                         // reverse the cullface settings for this render
5028                         r_refdef.view.cullface_front = GL_FRONT;
5029                         r_refdef.view.cullface_back = GL_BACK;
5030                         // also reverse the view matrix
5031                         Matrix4x4_ConcatScale3(&r_refdef.view.matrix, 1, 1, -1); // this serves to invert texcoords in the result, as the copied texture is mapped the wrong way round
5032                         R_RenderView_UpdateViewVectors();
5033                         if(p->camera_entity && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
5034                         {
5035                                 r_refdef.view.usecustompvs = true;
5036                                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
5037                         }
5038                         
5039                         // camera needs no clipplane
5040                         r_refdef.view.useclipplane = false;
5041                         // TODO: is the camera origin always valid?  if so we don't need to clear this
5042                         r_refdef.view.usevieworiginculling = false;
5043
5044                         PlaneClassify(&r_refdef.view.clipplane);
5045
5046                         r_fb.water.hideplayer = false;
5047
5048                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5049                         GL_ScissorTest(false);
5050                         R_ClearScreen(r_refdef.fogenabled);
5051                         GL_ScissorTest(true);
5052                         R_View_Update();
5053                         R_AnimCache_CacheVisibleEntities();
5054                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5055
5056                         r_fb.water.hideplayer = false;
5057                         p->rt_camera = rt;
5058                 }
5059
5060         }
5061         r_fb.water.renderingscene = false;
5062         r_refdef.view = originalview;
5063         R_ResetViewRendering3D(fbo, depthtexture, colortexture, viewx, viewy, viewwidth, viewheight);
5064         R_View_Update();
5065         R_AnimCache_CacheVisibleEntities();
5066         goto finish;
5067 error:
5068         r_refdef.view = originalview;
5069         r_fb.water.renderingscene = false;
5070         Cvar_SetValueQuick(&r_water, 0);
5071         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
5072 finish:
5073         // lowquality hack, restore cvars
5074         if (qualityreduction > 0)
5075         {
5076                 if (qualityreduction >= 1)
5077                 {
5078                         Cvar_SetValueQuick(&r_shadows, old_r_shadows);
5079                         Cvar_SetValueQuick(&r_shadow_realtime_world, old_r_worldrtlight);
5080                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, old_r_dlight);
5081                 }
5082                 if (qualityreduction >= 2)
5083                 {
5084                         Cvar_SetValueQuick(&r_dynamic, old_r_dynamic);
5085                         Cvar_SetValueQuick(&r_drawparticles, old_r_particles);
5086                         Cvar_SetValueQuick(&r_drawdecals, old_r_decals);
5087                 }
5088         }
5089 }
5090
5091 static void R_Bloom_StartFrame(void)
5092 {
5093         int screentexturewidth, screentextureheight;
5094         textype_t textype = TEXTYPE_COLORBUFFER;
5095         double scale;
5096
5097         // clear the pointers to rendertargets from last frame as they're stale
5098         r_fb.rt_screen = NULL;
5099         r_fb.rt_bloom = NULL;
5100
5101         switch (vid.renderpath)
5102         {
5103         case RENDERPATH_GL32:
5104                 r_fb.usedepthtextures = r_usedepthtextures.integer != 0;
5105                 if (r_viewfbo.integer == 2) textype = TEXTYPE_COLORBUFFER16F;
5106                 if (r_viewfbo.integer == 3) textype = TEXTYPE_COLORBUFFER32F;
5107                 break;
5108         case RENDERPATH_GLES2:
5109                 r_fb.usedepthtextures = false;
5110                 break;
5111         }
5112
5113         if (r_viewscale_fpsscaling.integer)
5114         {
5115                 double actualframetime;
5116                 double targetframetime;
5117                 double adjust;
5118                 actualframetime = r_refdef.lastdrawscreentime;
5119                 targetframetime = (1.0 / r_viewscale_fpsscaling_target.value);
5120                 adjust = (targetframetime - actualframetime) * r_viewscale_fpsscaling_multiply.value;
5121                 adjust = bound(-r_viewscale_fpsscaling_stepmax.value, adjust, r_viewscale_fpsscaling_stepmax.value);
5122                 if (r_viewscale_fpsscaling_stepsize.value > 0)
5123                 {
5124                         if (adjust > 0)
5125                                 adjust = floor(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5126                         else
5127                                 adjust = ceil(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5128                 }
5129                 viewscalefpsadjusted += adjust;
5130                 viewscalefpsadjusted = bound(r_viewscale_fpsscaling_min.value, viewscalefpsadjusted, 1.0f);
5131         }
5132         else
5133                 viewscalefpsadjusted = 1.0f;
5134
5135         scale = r_viewscale.value * sqrt(viewscalefpsadjusted);
5136         if (vid.samples)
5137                 scale *= sqrt(vid.samples); // supersampling
5138         scale = bound(0.03125f, scale, 4.0f);
5139         screentexturewidth = (int)ceil(r_refdef.view.width * scale);
5140         screentextureheight = (int)ceil(r_refdef.view.height * scale);
5141         screentexturewidth = bound(1, screentexturewidth, (int)vid.maxtexturesize_2d);
5142         screentextureheight = bound(1, screentextureheight, (int)vid.maxtexturesize_2d);
5143
5144         // set bloomwidth and bloomheight to the bloom resolution that will be
5145         // used (often less than the screen resolution for faster rendering)
5146         r_fb.bloomheight = bound(1, r_bloom_resolution.value * 0.75f, screentextureheight);
5147         r_fb.bloomwidth = r_fb.bloomheight * screentexturewidth / screentextureheight;
5148         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, screentexturewidth);
5149         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, (int)vid.maxtexturesize_2d);
5150         r_fb.bloomheight = bound(1, r_fb.bloomheight, (int)vid.maxtexturesize_2d);
5151
5152         if ((r_bloom.integer || (!R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0))) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > (int)vid.maxtexturesize_2d || r_refdef.view.height > (int)vid.maxtexturesize_2d))
5153         {
5154                 Cvar_SetValueQuick(&r_bloom, 0);
5155                 Cvar_SetValueQuick(&r_motionblur, 0);
5156                 Cvar_SetValueQuick(&r_damageblur, 0);
5157         }
5158         if (!r_bloom.integer)
5159                 r_fb.bloomwidth = r_fb.bloomheight = 0;
5160
5161         // allocate motionblur ghost texture if needed - this is the only persistent texture and is only useful on the main view
5162         if (r_refdef.view.ismain && (r_fb.screentexturewidth != screentexturewidth || r_fb.screentextureheight != screentextureheight || r_fb.textype != textype))
5163         {
5164                 if (r_fb.ghosttexture)
5165                         R_FreeTexture(r_fb.ghosttexture);
5166                 r_fb.ghosttexture = NULL;
5167
5168                 r_fb.screentexturewidth = screentexturewidth;
5169                 r_fb.screentextureheight = screentextureheight;
5170                 r_fb.textype = textype;
5171
5172                 if (r_fb.screentexturewidth && r_fb.screentextureheight)
5173                 {
5174                         if (r_motionblur.value > 0 || r_damageblur.value > 0)
5175                                 r_fb.ghosttexture = R_LoadTexture2D(r_main_texturepool, "framebuffermotionblur", r_fb.screentexturewidth, r_fb.screentextureheight, NULL, r_fb.textype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
5176                         r_fb.ghosttexture_valid = false;
5177                 }
5178         }
5179
5180         r_fb.rt_screen = R_RenderTarget_Get(screentexturewidth, screentextureheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5181
5182         r_refdef.view.clear = true;
5183 }
5184
5185 static void R_Bloom_MakeTexture(void)
5186 {
5187         int x, range, dir;
5188         float xoffset, yoffset, r, brighten;
5189         float colorscale = r_bloom_colorscale.value;
5190         r_viewport_t bloomviewport;
5191         r_rendertarget_t *prev, *cur;
5192         textype_t textype = r_fb.rt_screen->colortextype[0];
5193
5194         r_refdef.stats[r_stat_bloom]++;
5195
5196         R_Viewport_InitOrtho(&bloomviewport, &identitymatrix, 0, 0, r_fb.bloomwidth, r_fb.bloomheight, 0, 0, 1, 1, -10, 100, NULL);
5197
5198         // scale down screen texture to the bloom texture size
5199         CHECKGLERROR
5200         prev = r_fb.rt_screen;
5201         cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5202         R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5203         R_SetViewport(&bloomviewport);
5204         GL_CullFace(GL_NONE);
5205         GL_DepthTest(false);
5206         GL_BlendFunc(GL_ONE, GL_ZERO);
5207         GL_Color(colorscale, colorscale, colorscale, 1);
5208         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5209         // TODO: do boxfilter scale-down in shader?
5210         R_SetupShader_Generic(prev->colortexture[0], false, true, true);
5211         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5212         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5213         // we now have a properly scaled bloom image
5214
5215         // multiply bloom image by itself as many times as desired to darken it
5216         // TODO: if people actually use this it could be done more quickly in the previous shader pass
5217         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
5218         {
5219                 prev = cur;
5220                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5221                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5222                 x *= 2;
5223                 r = bound(0, r_bloom_colorexponent.value / x, 1); // always 0.5 to 1
5224                 if(x <= 2)
5225                         GL_Clear(GL_COLOR_BUFFER_BIT, NULL, 1.0f, 0);
5226                 GL_BlendFunc(GL_SRC_COLOR, GL_ZERO); // square it
5227                 GL_Color(1,1,1,1); // no fix factor supported here
5228                 R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5229                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5230                 R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5231                 r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5232         }
5233         CHECKGLERROR
5234
5235         range = r_bloom_blur.integer * r_fb.bloomwidth / 320;
5236         brighten = r_bloom_brighten.value;
5237         brighten = sqrt(brighten);
5238         if(range >= 1)
5239                 brighten *= (3 * range) / (2 * range - 1); // compensate for the "dot particle"
5240
5241         for (dir = 0;dir < 2;dir++)
5242         {
5243                 prev = cur;
5244                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5245                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5246                 // blend on at multiple vertical offsets to achieve a vertical blur
5247                 // TODO: do offset blends using GLSL
5248                 // TODO instead of changing the texcoords, change the target positions to prevent artifacts at edges
5249                 CHECKGLERROR
5250                 GL_BlendFunc(GL_ONE, GL_ZERO);
5251                 CHECKGLERROR
5252                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5253                 CHECKGLERROR
5254                 for (x = -range;x <= range;x++)
5255                 {
5256                         if (!dir){xoffset = 0;yoffset = x;}
5257                         else {xoffset = x;yoffset = 0;}
5258                         xoffset /= (float)prev->texturewidth;
5259                         yoffset /= (float)prev->textureheight;
5260                         // compute a texcoord array with the specified x and y offset
5261                         r_fb.offsettexcoord2f[0] = xoffset+prev->texcoord2f[0];
5262                         r_fb.offsettexcoord2f[1] = yoffset+prev->texcoord2f[1];
5263                         r_fb.offsettexcoord2f[2] = xoffset+prev->texcoord2f[2];
5264                         r_fb.offsettexcoord2f[3] = yoffset+prev->texcoord2f[3];
5265                         r_fb.offsettexcoord2f[4] = xoffset+prev->texcoord2f[4];
5266                         r_fb.offsettexcoord2f[5] = yoffset+prev->texcoord2f[5];
5267                         r_fb.offsettexcoord2f[6] = xoffset+prev->texcoord2f[6];
5268                         r_fb.offsettexcoord2f[7] = yoffset+prev->texcoord2f[7];
5269                         // this r value looks like a 'dot' particle, fading sharply to
5270                         // black at the edges
5271                         // (probably not realistic but looks good enough)
5272                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
5273                         //r = brighten/(range*2+1);
5274                         r = brighten / (range * 2 + 1);
5275                         if(range >= 1)
5276                                 r *= (1 - x*x/(float)((range+1)*(range+1)));
5277                         if (r <= 0)
5278                                 continue;
5279                         CHECKGLERROR
5280                         GL_Color(r, r, r, 1);
5281                         CHECKGLERROR
5282                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.offsettexcoord2f);
5283                         CHECKGLERROR
5284                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5285                         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5286                         CHECKGLERROR
5287                         GL_BlendFunc(GL_ONE, GL_ONE);
5288                         CHECKGLERROR
5289                 }
5290         }
5291
5292         // now we have the bloom image, so keep track of it
5293         r_fb.rt_bloom = cur;
5294 }
5295
5296 static void R_BlendView(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5297 {
5298         uint64_t permutation;
5299         float uservecs[4][4];
5300         rtexture_t *viewtexture;
5301         rtexture_t *bloomtexture;
5302
5303         R_EntityMatrix(&identitymatrix);
5304
5305         if(r_refdef.view.ismain && !R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0) && r_fb.ghosttexture)
5306         {
5307                 // declare variables
5308                 float blur_factor, blur_mouseaccel, blur_velocity;
5309                 static float blur_average; 
5310                 static vec3_t blur_oldangles; // used to see how quickly the mouse is moving
5311
5312                 // set a goal for the factoring
5313                 blur_velocity = bound(0, (VectorLength(cl.movement_velocity) - r_motionblur_velocityfactor_minspeed.value) 
5314                         / max(1, r_motionblur_velocityfactor_maxspeed.value - r_motionblur_velocityfactor_minspeed.value), 1);
5315                 blur_mouseaccel = bound(0, ((fabs(VectorLength(cl.viewangles) - VectorLength(blur_oldangles)) * 10) - r_motionblur_mousefactor_minspeed.value) 
5316                         / max(1, r_motionblur_mousefactor_maxspeed.value - r_motionblur_mousefactor_minspeed.value), 1);
5317                 blur_factor = ((blur_velocity * r_motionblur_velocityfactor.value) 
5318                         + (blur_mouseaccel * r_motionblur_mousefactor.value));
5319
5320                 // from the goal, pick an averaged value between goal and last value
5321                 cl.motionbluralpha = bound(0, (cl.time - cl.oldtime) / max(0.001, r_motionblur_averaging.value), 1);
5322                 blur_average = blur_average * (1 - cl.motionbluralpha) + blur_factor * cl.motionbluralpha;
5323
5324                 // enforce minimum amount of blur 
5325                 blur_factor = blur_average * (1 - r_motionblur_minblur.value) + r_motionblur_minblur.value;
5326
5327                 //Con_Printf("motionblur: direct factor: %f, averaged factor: %f, velocity: %f, mouse accel: %f \n", blur_factor, blur_average, blur_velocity, blur_mouseaccel);
5328
5329                 // calculate values into a standard alpha
5330                 cl.motionbluralpha = 1 - exp(-
5331                                 (
5332                                         (r_motionblur.value * blur_factor / 80)
5333                                         +
5334                                         (r_damageblur.value * (cl.cshifts[CSHIFT_DAMAGE].percent / 1600))
5335                                 )
5336                                 /
5337                                 max(0.0001, cl.time - cl.oldtime) // fps independent
5338                                 );
5339
5340                 // randomization for the blur value to combat persistent ghosting
5341                 cl.motionbluralpha *= lhrandom(1 - r_motionblur_randomize.value, 1 + r_motionblur_randomize.value);
5342                 cl.motionbluralpha = bound(0, cl.motionbluralpha, r_motionblur_maxblur.value);
5343
5344                 // apply the blur
5345                 R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5346                 if (cl.motionbluralpha > 0 && !r_refdef.envmap && r_fb.ghosttexture_valid)
5347                 {
5348                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
5349                         GL_Color(1, 1, 1, cl.motionbluralpha);
5350                         R_CalcTexCoordsForView(0, 0, viewwidth, viewheight, viewwidth, viewheight, r_fb.ghosttexcoord2f);
5351                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.ghosttexcoord2f);
5352                         R_SetupShader_Generic(r_fb.ghosttexture, false, true, true);
5353                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5354                         r_refdef.stats[r_stat_bloom_drawpixels] += viewwidth * viewheight;
5355                 }
5356
5357                 // updates old view angles for next pass
5358                 VectorCopy(cl.viewangles, blur_oldangles);
5359
5360                 // copy view into the ghost texture
5361                 R_Mesh_CopyToTexture(r_fb.ghosttexture, 0, 0, viewx, viewy, viewwidth, viewheight);
5362                 r_refdef.stats[r_stat_bloom_copypixels] += viewwidth * viewheight;
5363                 r_fb.ghosttexture_valid = true;
5364         }
5365
5366         if (r_fb.bloomwidth)
5367         {
5368                 // make the bloom texture
5369                 R_Bloom_MakeTexture();
5370         }
5371
5372 #if _MSC_VER >= 1400
5373 #define sscanf sscanf_s
5374 #endif
5375         memset(uservecs, 0, sizeof(uservecs));
5376         if (r_glsl_postprocess_uservec1_enable.integer)
5377                 sscanf(r_glsl_postprocess_uservec1.string, "%f %f %f %f", &uservecs[0][0], &uservecs[0][1], &uservecs[0][2], &uservecs[0][3]);
5378         if (r_glsl_postprocess_uservec2_enable.integer)
5379                 sscanf(r_glsl_postprocess_uservec2.string, "%f %f %f %f", &uservecs[1][0], &uservecs[1][1], &uservecs[1][2], &uservecs[1][3]);
5380         if (r_glsl_postprocess_uservec3_enable.integer)
5381                 sscanf(r_glsl_postprocess_uservec3.string, "%f %f %f %f", &uservecs[2][0], &uservecs[2][1], &uservecs[2][2], &uservecs[2][3]);
5382         if (r_glsl_postprocess_uservec4_enable.integer)
5383                 sscanf(r_glsl_postprocess_uservec4.string, "%f %f %f %f", &uservecs[3][0], &uservecs[3][1], &uservecs[3][2], &uservecs[3][3]);
5384
5385         // render to the screen fbo
5386         R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5387         GL_Color(1, 1, 1, 1);
5388         GL_BlendFunc(GL_ONE, GL_ZERO);
5389
5390         viewtexture = r_fb.rt_screen->colortexture[0];
5391         bloomtexture = r_fb.rt_bloom ? r_fb.rt_bloom->colortexture[0] : NULL;
5392
5393         if (r_rendertarget_debug.integer >= 0)
5394         {
5395                 r_rendertarget_t *rt = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, r_rendertarget_debug.integer);
5396                 if (rt && rt->colortexture[0])
5397                 {
5398                         viewtexture = rt->colortexture[0];
5399                         bloomtexture = NULL;
5400                 }
5401         }
5402
5403         R_Mesh_PrepareVertices_Mesh_Arrays(4, r_screenvertex3f, NULL, NULL, NULL, NULL, r_fb.rt_screen->texcoord2f, bloomtexture ? r_fb.rt_bloom->texcoord2f : NULL);
5404         switch(vid.renderpath)
5405         {
5406         case RENDERPATH_GL32:
5407         case RENDERPATH_GLES2:
5408                 permutation =
5409                         (r_fb.bloomwidth ? SHADERPERMUTATION_BLOOM : 0)
5410                         | (r_refdef.viewblend[3] > 0 ? SHADERPERMUTATION_VIEWTINT : 0)
5411                         | (!vid_gammatables_trivial ? SHADERPERMUTATION_GAMMARAMPS : 0)
5412                         | (r_glsl_postprocess.integer ? SHADERPERMUTATION_POSTPROCESSING : 0)
5413                         | ((!R_Stereo_ColorMasking() && r_glsl_saturation.value != 1) ? SHADERPERMUTATION_SATURATION : 0);
5414                 R_SetupShader_SetPermutationGLSL(SHADERMODE_POSTPROCESS, permutation);
5415                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First     , viewtexture);
5416                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second    , bloomtexture);
5417                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps       );
5418                 if (r_glsl_permutation->loc_ViewTintColor           >= 0) qglUniform4f(r_glsl_permutation->loc_ViewTintColor     , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
5419                 if (r_glsl_permutation->loc_PixelSize               >= 0) qglUniform2f(r_glsl_permutation->loc_PixelSize         , 1.0/r_fb.screentexturewidth, 1.0/r_fb.screentextureheight);
5420                 if (r_glsl_permutation->loc_UserVec1                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec1          , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]);
5421                 if (r_glsl_permutation->loc_UserVec2                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec2          , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]);
5422                 if (r_glsl_permutation->loc_UserVec3                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec3          , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]);
5423                 if (r_glsl_permutation->loc_UserVec4                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec4          , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]);
5424                 if (r_glsl_permutation->loc_Saturation              >= 0) qglUniform1f(r_glsl_permutation->loc_Saturation        , r_glsl_saturation.value);
5425                 if (r_glsl_permutation->loc_PixelToScreenTexCoord   >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
5426                 if (r_glsl_permutation->loc_BloomColorSubtract      >= 0) qglUniform4f(r_glsl_permutation->loc_BloomColorSubtract   , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f);
5427                 if (r_glsl_permutation->loc_ColorFringe             >= 0) qglUniform1f(r_glsl_permutation->loc_ColorFringe, r_colorfringe.value );
5428                 break;
5429         }
5430         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5431         r_refdef.stats[r_stat_bloom_drawpixels] += r_refdef.view.width * r_refdef.view.height;
5432 }
5433
5434 matrix4x4_t r_waterscrollmatrix;
5435
5436 void R_UpdateFog(void)
5437 {
5438         // Nehahra fog
5439         if (gamemode == GAME_NEHAHRA)
5440         {
5441                 if (gl_fogenable.integer)
5442                 {
5443                         r_refdef.oldgl_fogenable = true;
5444                         r_refdef.fog_density = gl_fogdensity.value;
5445                         r_refdef.fog_red = gl_fogred.value;
5446                         r_refdef.fog_green = gl_foggreen.value;
5447                         r_refdef.fog_blue = gl_fogblue.value;
5448                         r_refdef.fog_alpha = 1;
5449                         r_refdef.fog_start = 0;
5450                         r_refdef.fog_end = gl_skyclip.value;
5451                         r_refdef.fog_height = 1<<30;
5452                         r_refdef.fog_fadedepth = 128;
5453                 }
5454                 else if (r_refdef.oldgl_fogenable)
5455                 {
5456                         r_refdef.oldgl_fogenable = false;
5457                         r_refdef.fog_density = 0;
5458                         r_refdef.fog_red = 0;
5459                         r_refdef.fog_green = 0;
5460                         r_refdef.fog_blue = 0;
5461                         r_refdef.fog_alpha = 0;
5462                         r_refdef.fog_start = 0;
5463                         r_refdef.fog_end = 0;
5464                         r_refdef.fog_height = 1<<30;
5465                         r_refdef.fog_fadedepth = 128;
5466                 }
5467         }
5468
5469         // fog parms
5470         r_refdef.fog_alpha = bound(0, r_refdef.fog_alpha, 1);
5471         r_refdef.fog_start = max(0, r_refdef.fog_start);
5472         r_refdef.fog_end = max(r_refdef.fog_start + 0.01, r_refdef.fog_end);
5473
5474         if (r_refdef.fog_density && r_drawfog.integer)
5475         {
5476                 r_refdef.fogenabled = true;
5477                 // this is the point where the fog reaches 0.9986 alpha, which we
5478                 // consider a good enough cutoff point for the texture
5479                 // (0.9986 * 256 == 255.6)
5480                 if (r_fog_exp2.integer)
5481                         r_refdef.fogrange = 32 / (r_refdef.fog_density * r_refdef.fog_density) + r_refdef.fog_start;
5482                 else
5483                         r_refdef.fogrange = 2048 / r_refdef.fog_density + r_refdef.fog_start;
5484                 r_refdef.fogrange = bound(r_refdef.fog_start, r_refdef.fogrange, r_refdef.fog_end);
5485                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
5486                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
5487                 if (strcmp(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename))
5488                         R_BuildFogHeightTexture();
5489                 // fog color was already set
5490                 // update the fog texture
5491                 if (r_refdef.fogmasktable_start != r_refdef.fog_start || r_refdef.fogmasktable_alpha != r_refdef.fog_alpha || r_refdef.fogmasktable_density != r_refdef.fog_density || r_refdef.fogmasktable_range != r_refdef.fogrange)
5492                         R_BuildFogTexture();
5493                 r_refdef.fog_height_texcoordscale = 1.0f / max(0.125f, r_refdef.fog_fadedepth);
5494                 r_refdef.fog_height_tablescale = r_refdef.fog_height_tablesize * r_refdef.fog_height_texcoordscale;
5495         }
5496         else
5497                 r_refdef.fogenabled = false;
5498
5499         // fog color
5500         if (r_refdef.fog_density)
5501         {
5502                 r_refdef.fogcolor[0] = r_refdef.fog_red;
5503                 r_refdef.fogcolor[1] = r_refdef.fog_green;
5504                 r_refdef.fogcolor[2] = r_refdef.fog_blue;
5505
5506                 Vector4Set(r_refdef.fogplane, 0, 0, 1, -r_refdef.fog_height);
5507                 r_refdef.fogplaneviewdist = DotProduct(r_refdef.fogplane, r_refdef.view.origin) + r_refdef.fogplane[3];
5508                 r_refdef.fogplaneviewabove = r_refdef.fogplaneviewdist >= 0;
5509                 r_refdef.fogheightfade = -0.5f/max(0.125f, r_refdef.fog_fadedepth);
5510
5511                 {
5512                         vec3_t fogvec;
5513                         VectorCopy(r_refdef.fogcolor, fogvec);
5514                         //   color.rgb *= ContrastBoost * SceneBrightness;
5515                         VectorScale(fogvec, r_refdef.view.colorscale, fogvec);
5516                         r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f);
5517                         r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f);
5518                         r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f);
5519                 }
5520         }
5521 }
5522
5523 void R_UpdateVariables(void)
5524 {
5525         R_Textures_Frame();
5526
5527         r_refdef.scene.ambientintensity = r_ambient.value * (1.0f / 64.0f);
5528
5529         r_refdef.farclip = r_farclip_base.value;
5530         if (r_refdef.scene.worldmodel)
5531                 r_refdef.farclip += r_refdef.scene.worldmodel->radius * r_farclip_world.value * 2;
5532         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
5533
5534         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
5535                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
5536         r_refdef.polygonfactor = 0;
5537         r_refdef.polygonoffset = 0;
5538
5539         r_refdef.scene.rtworld = r_shadow_realtime_world.integer != 0;
5540         r_refdef.scene.rtworldshadows = r_shadow_realtime_world_shadows.integer && vid.stencil;
5541         r_refdef.scene.rtdlight = r_shadow_realtime_dlight.integer != 0 && !gl_flashblend.integer && r_dynamic.integer;
5542         r_refdef.scene.rtdlightshadows = r_refdef.scene.rtdlight && r_shadow_realtime_dlight_shadows.integer && vid.stencil;
5543         r_refdef.scene.lightmapintensity = r_refdef.scene.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
5544         if (r_refdef.scene.worldmodel)
5545         {
5546                 r_refdef.scene.lightmapintensity *= r_refdef.scene.worldmodel->lightmapscale;
5547         }
5548         if (r_showsurfaces.integer)
5549         {
5550                 r_refdef.scene.rtworld = false;
5551                 r_refdef.scene.rtworldshadows = false;
5552                 r_refdef.scene.rtdlight = false;
5553                 r_refdef.scene.rtdlightshadows = false;
5554                 r_refdef.scene.lightmapintensity = 0;
5555         }
5556
5557         r_gpuskeletal = false;
5558         switch(vid.renderpath)
5559         {
5560         case RENDERPATH_GL32:
5561                 r_gpuskeletal = r_glsl_skeletal.integer && !r_showsurfaces.integer;
5562         case RENDERPATH_GLES2:
5563                 if(!vid_gammatables_trivial)
5564                 {
5565                         if(!r_texture_gammaramps || vid_gammatables_serial != r_texture_gammaramps_serial)
5566                         {
5567                                 // build GLSL gamma texture
5568 #define RAMPWIDTH 256
5569                                 unsigned short ramp[RAMPWIDTH * 3];
5570                                 unsigned char rampbgr[RAMPWIDTH][4];
5571                                 int i;
5572
5573                                 r_texture_gammaramps_serial = vid_gammatables_serial;
5574
5575                                 VID_BuildGammaTables(&ramp[0], RAMPWIDTH);
5576                                 for(i = 0; i < RAMPWIDTH; ++i)
5577                                 {
5578                                         rampbgr[i][0] = (unsigned char) (ramp[i + 2 * RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5579                                         rampbgr[i][1] = (unsigned char) (ramp[i + RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5580                                         rampbgr[i][2] = (unsigned char) (ramp[i] * 255.0 / 65535.0 + 0.5);
5581                                         rampbgr[i][3] = 0;
5582                                 }
5583                                 if (r_texture_gammaramps)
5584                                 {
5585                                         R_UpdateTexture(r_texture_gammaramps, &rampbgr[0][0], 0, 0, 0, RAMPWIDTH, 1, 1);
5586                                 }
5587                                 else
5588                                 {
5589                                         r_texture_gammaramps = R_LoadTexture2D(r_main_texturepool, "gammaramps", RAMPWIDTH, 1, &rampbgr[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
5590                                 }
5591                         }
5592                 }
5593                 else
5594                 {
5595                         // remove GLSL gamma texture
5596                 }
5597                 break;
5598         }
5599 }
5600
5601 static r_refdef_scene_type_t r_currentscenetype = RST_CLIENT;
5602 static r_refdef_scene_t r_scenes_store[ RST_COUNT ];
5603 /*
5604 ================
5605 R_SelectScene
5606 ================
5607 */
5608 void R_SelectScene( r_refdef_scene_type_t scenetype ) {
5609         if( scenetype != r_currentscenetype ) {
5610                 // store the old scenetype
5611                 r_scenes_store[ r_currentscenetype ] = r_refdef.scene;
5612                 r_currentscenetype = scenetype;
5613                 // move in the new scene
5614                 r_refdef.scene = r_scenes_store[ r_currentscenetype ];
5615         }
5616 }
5617
5618 /*
5619 ================
5620 R_GetScenePointer
5621 ================
5622 */
5623 r_refdef_scene_t * R_GetScenePointer( r_refdef_scene_type_t scenetype )
5624 {
5625         // of course, we could also add a qbool that provides a lock state and a ReleaseScenePointer function..
5626         if( scenetype == r_currentscenetype ) {
5627                 return &r_refdef.scene;
5628         } else {
5629                 return &r_scenes_store[ scenetype ];
5630         }
5631 }
5632
5633 static int R_SortEntities_Compare(const void *ap, const void *bp)
5634 {
5635         const entity_render_t *a = *(const entity_render_t **)ap;
5636         const entity_render_t *b = *(const entity_render_t **)bp;
5637
5638         // 1. compare model
5639         if(a->model < b->model)
5640                 return -1;
5641         if(a->model > b->model)
5642                 return +1;
5643
5644         // 2. compare skin
5645         // TODO possibly calculate the REAL skinnum here first using
5646         // skinscenes?
5647         if(a->skinnum < b->skinnum)
5648                 return -1;
5649         if(a->skinnum > b->skinnum)
5650                 return +1;
5651
5652         // everything we compared is equal
5653         return 0;
5654 }
5655 static void R_SortEntities(void)
5656 {
5657         // below or equal 2 ents, sorting never gains anything
5658         if(r_refdef.scene.numentities <= 2)
5659                 return;
5660         // sort
5661         qsort(r_refdef.scene.entities, r_refdef.scene.numentities, sizeof(*r_refdef.scene.entities), R_SortEntities_Compare);
5662 }
5663
5664 /*
5665 ================
5666 R_RenderView
5667 ================
5668 */
5669 extern cvar_t r_shadow_bouncegrid;
5670 extern cvar_t v_isometric;
5671 extern void V_MakeViewIsometric(void);
5672 void R_RenderView(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int x, int y, int width, int height)
5673 {
5674         matrix4x4_t originalmatrix = r_refdef.view.matrix, offsetmatrix;
5675         int viewfbo = 0;
5676         rtexture_t *viewdepthtexture = NULL;
5677         rtexture_t *viewcolortexture = NULL;
5678         int viewx = r_refdef.view.x, viewy = r_refdef.view.y, viewwidth = r_refdef.view.width, viewheight = r_refdef.view.height;
5679
5680         // finish any 2D rendering that was queued
5681         DrawQ_Finish();
5682
5683         if (r_timereport_active)
5684                 R_TimeReport("start");
5685         r_textureframe++; // used only by R_GetCurrentTexture
5686         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
5687
5688         if(R_CompileShader_CheckStaticParms())
5689                 R_GLSL_Restart_f(&cmd_client);
5690
5691         if (!r_drawentities.integer)
5692                 r_refdef.scene.numentities = 0;
5693         else if (r_sortentities.integer)
5694                 R_SortEntities();
5695
5696         R_AnimCache_ClearCache();
5697
5698         /* adjust for stereo display */
5699         if(R_Stereo_Active())
5700         {
5701                 Matrix4x4_CreateFromQuakeEntity(&offsetmatrix, 0, r_stereo_separation.value * (0.5f - r_stereo_side), 0, 0, r_stereo_angle.value * (0.5f - r_stereo_side), 0, 1);
5702                 Matrix4x4_Concat(&r_refdef.view.matrix, &originalmatrix, &offsetmatrix);
5703         }
5704
5705         if (r_refdef.view.isoverlay)
5706         {
5707                 // TODO: FIXME: move this into its own backend function maybe? [2/5/2008 Andreas]
5708                 R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL);
5709                 GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
5710                 R_TimeReport("depthclear");
5711
5712                 r_refdef.view.showdebug = false;
5713
5714                 r_fb.water.enabled = false;
5715                 r_fb.water.numwaterplanes = 0;
5716
5717                 R_RenderScene(0, NULL, NULL, r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
5718
5719                 r_refdef.view.matrix = originalmatrix;
5720
5721                 CHECKGLERROR
5722                 return;
5723         }
5724
5725         if (!r_refdef.scene.entities || r_refdef.view.width * r_refdef.view.height == 0 || !r_renderview.integer || cl_videoplaying/* || !r_refdef.scene.worldmodel*/)
5726         {
5727                 r_refdef.view.matrix = originalmatrix;
5728                 return;
5729         }
5730
5731         r_refdef.view.usevieworiginculling = !r_trippy.value && r_refdef.view.useperspective;
5732         if (v_isometric.integer && r_refdef.view.ismain)
5733                 V_MakeViewIsometric();
5734
5735         r_refdef.view.colorscale = r_hdr_scenebrightness.value * r_hdr_irisadaptation_value.value;
5736
5737         if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
5738                 // in sRGB fallback, behave similar to true sRGB: convert this
5739                 // value from linear to sRGB
5740                 r_refdef.view.colorscale = Image_sRGBFloatFromLinearFloat(r_refdef.view.colorscale);
5741
5742         R_RenderView_UpdateViewVectors();
5743
5744         R_Shadow_UpdateWorldLightSelection();
5745
5746         // this will set up r_fb.rt_screen
5747         R_Bloom_StartFrame();
5748
5749         // apply bloom brightness offset
5750         if(r_fb.rt_bloom)
5751                 r_refdef.view.colorscale *= r_bloom_scenebrightness.value;
5752
5753         // R_Bloom_StartFrame probably set up an fbo for us to render into, it will be rendered to the window later in R_BlendView
5754         if (r_fb.rt_screen)
5755         {
5756                 viewfbo = r_fb.rt_screen->fbo;
5757                 viewdepthtexture = r_fb.rt_screen->depthtexture;
5758                 viewcolortexture = r_fb.rt_screen->colortexture[0];
5759                 viewx = 0;
5760                 viewy = 0;
5761                 viewwidth = r_fb.rt_screen->texturewidth;
5762                 viewheight = r_fb.rt_screen->textureheight;
5763         }
5764
5765         R_Water_StartFrame(viewwidth, viewheight);
5766
5767         CHECKGLERROR
5768         if (r_timereport_active)
5769                 R_TimeReport("viewsetup");
5770
5771         R_ResetViewRendering3D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5772
5773         // clear the whole fbo every frame - otherwise the driver will consider
5774         // it to be an inter-frame texture and stall in multi-gpu configurations
5775         if (r_fb.rt_screen)
5776                 GL_ScissorTest(false);
5777         R_ClearScreen(r_refdef.fogenabled);
5778         if (r_timereport_active)
5779                 R_TimeReport("viewclear");
5780
5781         r_refdef.view.clear = true;
5782
5783         r_refdef.view.showdebug = true;
5784
5785         R_View_Update();
5786         if (r_timereport_active)
5787                 R_TimeReport("visibility");
5788
5789         R_AnimCache_CacheVisibleEntities();
5790         if (r_timereport_active)
5791                 R_TimeReport("animcache");
5792
5793         R_Shadow_UpdateBounceGridTexture();
5794         // R_Shadow_UpdateBounceGridTexture called R_TimeReport a few times internally, so we don't need to do that here.
5795
5796         r_fb.water.numwaterplanes = 0;
5797         if (r_fb.water.enabled)
5798                 R_RenderWaterPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5799
5800         // for the actual view render we use scissoring a fair amount, so scissor
5801         // test needs to be on
5802         if (r_fb.rt_screen)
5803                 GL_ScissorTest(true);
5804         GL_Scissor(viewx, viewy, viewwidth, viewheight);
5805         R_RenderScene(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5806         r_fb.water.numwaterplanes = 0;
5807
5808         // postprocess uses textures that are not aligned with the viewport we're rendering, so no scissoring
5809         GL_ScissorTest(false);
5810
5811         R_BlendView(fbo, depthtexture, colortexture, x, y, width, height);
5812         if (r_timereport_active)
5813                 R_TimeReport("blendview");
5814
5815         r_refdef.view.matrix = originalmatrix;
5816
5817         CHECKGLERROR
5818
5819         // go back to 2d rendering
5820         DrawQ_Start();
5821 }
5822
5823 void R_RenderWaterPlanes(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5824 {
5825         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawAddWaterPlanes)
5826         {
5827                 r_refdef.scene.worldmodel->DrawAddWaterPlanes(r_refdef.scene.worldentity);
5828                 if (r_timereport_active)
5829                         R_TimeReport("waterworld");
5830         }
5831
5832         // don't let sound skip if going slow
5833         if (r_refdef.scene.extraupdate)
5834                 S_ExtraUpdate ();
5835
5836         R_DrawModelsAddWaterPlanes();
5837         if (r_timereport_active)
5838                 R_TimeReport("watermodels");
5839
5840         if (r_fb.water.numwaterplanes)
5841         {
5842                 R_Water_ProcessPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5843                 if (r_timereport_active)
5844                         R_TimeReport("waterscenes");
5845         }
5846 }
5847
5848 extern cvar_t cl_locs_show;
5849 static void R_DrawLocs(void);
5850 static void R_DrawEntityBBoxes(prvm_prog_t *prog);
5851 static void R_DrawModelDecals(void);
5852 extern qbool r_shadow_usingdeferredprepass;
5853 extern int r_shadow_shadowmapatlas_modelshadows_size;
5854 void R_RenderScene(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5855 {
5856         qbool shadowmapping = false;
5857
5858         if (r_timereport_active)
5859                 R_TimeReport("beginscene");
5860
5861         r_refdef.stats[r_stat_renders]++;
5862
5863         R_UpdateFog();
5864
5865         // don't let sound skip if going slow
5866         if (r_refdef.scene.extraupdate)
5867                 S_ExtraUpdate ();
5868
5869         R_MeshQueue_BeginScene();
5870
5871         R_SkyStartFrame();
5872
5873         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.scene.time) * 0.025 * r_waterscroll.value, sin(r_refdef.scene.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
5874
5875         if (r_timereport_active)
5876                 R_TimeReport("skystartframe");
5877
5878         if (cl.csqc_vidvars.drawworld)
5879         {
5880                 // don't let sound skip if going slow
5881                 if (r_refdef.scene.extraupdate)
5882                         S_ExtraUpdate ();
5883
5884                 if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawSky)
5885                 {
5886                         r_refdef.scene.worldmodel->DrawSky(r_refdef.scene.worldentity);
5887                         if (r_timereport_active)
5888                                 R_TimeReport("worldsky");
5889                 }
5890
5891                 if (R_DrawBrushModelsSky() && r_timereport_active)
5892                         R_TimeReport("bmodelsky");
5893
5894                 if (skyrendermasked && skyrenderlater)
5895                 {
5896                         // we have to force off the water clipping plane while rendering sky
5897                         R_SetupView(false, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5898                         R_Sky();
5899                         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5900                         if (r_timereport_active)
5901                                 R_TimeReport("sky");
5902                 }
5903         }
5904
5905         // save the framebuffer info for R_Shadow_RenderMode_Reset during this view render
5906         r_shadow_viewfbo = viewfbo;
5907         r_shadow_viewdepthtexture = viewdepthtexture;
5908         r_shadow_viewcolortexture = viewcolortexture;
5909         r_shadow_viewx = viewx;
5910         r_shadow_viewy = viewy;
5911         r_shadow_viewwidth = viewwidth;
5912         r_shadow_viewheight = viewheight;
5913
5914         R_Shadow_PrepareModelShadows();
5915         R_Shadow_PrepareLights();
5916         if (r_timereport_active)
5917                 R_TimeReport("preparelights");
5918
5919         // render all the shadowmaps that will be used for this view
5920         shadowmapping = R_Shadow_ShadowMappingEnabled();
5921         if (shadowmapping || r_shadow_shadowmapatlas_modelshadows_size)
5922         {
5923                 R_Shadow_DrawShadowMaps();
5924                 if (r_timereport_active)
5925                         R_TimeReport("shadowmaps");
5926         }
5927
5928         // render prepass deferred lighting if r_shadow_deferred is on, this produces light buffers that will be sampled in forward pass
5929         if (r_shadow_usingdeferredprepass)
5930                 R_Shadow_DrawPrepass();
5931
5932         // now we begin the forward pass of the view render
5933         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDepth)
5934         {
5935                 r_refdef.scene.worldmodel->DrawDepth(r_refdef.scene.worldentity);
5936                 if (r_timereport_active)
5937                         R_TimeReport("worlddepth");
5938         }
5939         if (r_depthfirst.integer >= 2)
5940         {
5941                 R_DrawModelsDepth();
5942                 if (r_timereport_active)
5943                         R_TimeReport("modeldepth");
5944         }
5945
5946         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->Draw)
5947         {
5948                 r_refdef.scene.worldmodel->Draw(r_refdef.scene.worldentity);
5949                 if (r_timereport_active)
5950                         R_TimeReport("world");
5951         }
5952
5953         // don't let sound skip if going slow
5954         if (r_refdef.scene.extraupdate)
5955                 S_ExtraUpdate ();
5956
5957         R_DrawModels();
5958         if (r_timereport_active)
5959                 R_TimeReport("models");
5960
5961         // don't let sound skip if going slow
5962         if (r_refdef.scene.extraupdate)
5963                 S_ExtraUpdate ();
5964
5965         if (!r_shadow_usingdeferredprepass)
5966         {
5967                 R_Shadow_DrawLights();
5968                 if (r_timereport_active)
5969                         R_TimeReport("rtlights");
5970         }
5971
5972         // don't let sound skip if going slow
5973         if (r_refdef.scene.extraupdate)
5974                 S_ExtraUpdate ();
5975
5976         if (cl.csqc_vidvars.drawworld)
5977         {
5978                 R_DrawModelDecals();
5979                 if (r_timereport_active)
5980                         R_TimeReport("modeldecals");
5981
5982                 R_DrawParticles();
5983                 if (r_timereport_active)
5984                         R_TimeReport("particles");
5985
5986                 R_DrawExplosions();
5987                 if (r_timereport_active)
5988                         R_TimeReport("explosions");
5989         }
5990
5991         if (r_refdef.view.showdebug)
5992         {
5993                 if (cl_locs_show.integer)
5994                 {
5995                         R_DrawLocs();
5996                         if (r_timereport_active)
5997                                 R_TimeReport("showlocs");
5998                 }
5999
6000                 if (r_drawportals.integer)
6001                 {
6002                         R_DrawPortals();
6003                         if (r_timereport_active)
6004                                 R_TimeReport("portals");
6005                 }
6006
6007                 if (r_showbboxes_client.value > 0)
6008                 {
6009                         R_DrawEntityBBoxes(CLVM_prog);
6010                         if (r_timereport_active)
6011                                 R_TimeReport("clbboxes");
6012                 }
6013                 if (r_showbboxes.value > 0)
6014                 {
6015                         R_DrawEntityBBoxes(SVVM_prog);
6016                         if (r_timereport_active)
6017                                 R_TimeReport("svbboxes");
6018                 }
6019         }
6020
6021         if (r_transparent.integer)
6022         {
6023                 R_MeshQueue_RenderTransparent();
6024                 if (r_timereport_active)
6025                         R_TimeReport("drawtrans");
6026         }
6027
6028         if (r_refdef.view.showdebug && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value != 0 || r_showcollisionbrushes.value > 0 || r_showoverdraw.value > 0))
6029         {
6030                 r_refdef.scene.worldmodel->DrawDebug(r_refdef.scene.worldentity);
6031                 if (r_timereport_active)
6032                         R_TimeReport("worlddebug");
6033                 R_DrawModelsDebug();
6034                 if (r_timereport_active)
6035                         R_TimeReport("modeldebug");
6036         }
6037
6038         if (cl.csqc_vidvars.drawworld)
6039         {
6040                 R_Shadow_DrawCoronas();
6041                 if (r_timereport_active)
6042                         R_TimeReport("coronas");
6043         }
6044
6045         // don't let sound skip if going slow
6046         if (r_refdef.scene.extraupdate)
6047                 S_ExtraUpdate ();
6048 }
6049
6050 static const unsigned short bboxelements[36] =
6051 {
6052         5, 1, 3, 5, 3, 7,
6053         6, 2, 0, 6, 0, 4,
6054         7, 3, 2, 7, 2, 6,
6055         4, 0, 1, 4, 1, 5,
6056         4, 5, 7, 4, 7, 6,
6057         1, 0, 2, 1, 2, 3,
6058 };
6059
6060 #define BBOXEDGES 13
6061 static const float bboxedges[BBOXEDGES][6] = 
6062 {
6063         // whole box
6064         { 0, 0, 0, 1, 1, 1 },
6065         // bottom edges
6066         { 0, 0, 0, 0, 1, 0 },
6067         { 0, 0, 0, 1, 0, 0 },
6068         { 0, 1, 0, 1, 1, 0 },
6069         { 1, 0, 0, 1, 1, 0 },
6070         // top edges
6071         { 0, 0, 1, 0, 1, 1 },
6072         { 0, 0, 1, 1, 0, 1 },
6073         { 0, 1, 1, 1, 1, 1 },
6074         { 1, 0, 1, 1, 1, 1 },
6075         // vertical edges
6076         { 0, 0, 0, 0, 0, 1 },
6077         { 1, 0, 0, 1, 0, 1 },
6078         { 0, 1, 0, 0, 1, 1 },
6079         { 1, 1, 0, 1, 1, 1 },
6080 };
6081
6082 static void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
6083 {
6084         int numvertices = BBOXEDGES * 8;
6085         float vertex3f[BBOXEDGES * 8 * 3], color4f[BBOXEDGES * 8 * 4];
6086         int numtriangles = BBOXEDGES * 12;
6087         unsigned short elements[BBOXEDGES * 36];
6088         int i, edge;
6089         float *v, *c, f1, f2, edgemins[3], edgemaxs[3];
6090
6091         RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);
6092
6093         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6094         GL_DepthMask(false);
6095         GL_DepthRange(0, 1);
6096         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
6097
6098         for (edge = 0; edge < BBOXEDGES; edge++)
6099         {
6100                 for (i = 0; i < 3; i++)
6101                 {
6102                         edgemins[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][i] - 0.25f;
6103                         edgemaxs[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][3 + i] + 0.25f;
6104                 }
6105                 vertex3f[edge * 24 + 0] = edgemins[0]; vertex3f[edge * 24 + 1] = edgemins[1]; vertex3f[edge * 24 + 2] = edgemins[2];
6106                 vertex3f[edge * 24 + 3] = edgemaxs[0]; vertex3f[edge * 24 + 4] = edgemins[1]; vertex3f[edge * 24 + 5] = edgemins[2];
6107                 vertex3f[edge * 24 + 6] = edgemins[0]; vertex3f[edge * 24 + 7] = edgemaxs[1]; vertex3f[edge * 24 + 8] = edgemins[2];
6108                 vertex3f[edge * 24 + 9] = edgemaxs[0]; vertex3f[edge * 24 + 10] = edgemaxs[1]; vertex3f[edge * 24 + 11] = edgemins[2];
6109                 vertex3f[edge * 24 + 12] = edgemins[0]; vertex3f[edge * 24 + 13] = edgemins[1]; vertex3f[edge * 24 + 14] = edgemaxs[2];
6110                 vertex3f[edge * 24 + 15] = edgemaxs[0]; vertex3f[edge * 24 + 16] = edgemins[1]; vertex3f[edge * 24 + 17] = edgemaxs[2];
6111                 vertex3f[edge * 24 + 18] = edgemins[0]; vertex3f[edge * 24 + 19] = edgemaxs[1]; vertex3f[edge * 24 + 20] = edgemaxs[2];
6112                 vertex3f[edge * 24 + 21] = edgemaxs[0]; vertex3f[edge * 24 + 22] = edgemaxs[1]; vertex3f[edge * 24 + 23] = edgemaxs[2];
6113                 for (i = 0; i < 36; i++)
6114                         elements[edge * 36 + i] = edge * 8 + bboxelements[i];
6115         }
6116         R_FillColors(color4f, numvertices, cr, cg, cb, ca);
6117         if (r_refdef.fogenabled)
6118         {
6119                 for (i = 0, v = vertex3f, c = color4f; i < numvertices; i++, v += 3, c += 4)
6120                 {
6121                         f1 = RSurf_FogVertex(v);
6122                         f2 = 1 - f1;
6123                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
6124                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
6125                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
6126                 }
6127         }
6128         R_Mesh_PrepareVertices_Generic_Arrays(numvertices, vertex3f, color4f, NULL);
6129         R_Mesh_ResetTextureState();
6130         R_SetupShader_Generic_NoTexture(false, false);
6131         R_Mesh_Draw(0, numvertices, 0, numtriangles, NULL, NULL, 0, elements, NULL, 0);
6132 }
6133
6134 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6135 {
6136         // hacky overloading of the parameters
6137         prvm_prog_t *prog = (prvm_prog_t *)rtlight;
6138         int i;
6139         float color[4];
6140         prvm_edict_t *edict;
6141
6142         GL_CullFace(GL_NONE);
6143         R_SetupShader_Generic_NoTexture(false, false);
6144
6145         for (i = 0;i < numsurfaces;i++)
6146         {
6147                 edict = PRVM_EDICT_NUM(surfacelist[i]);
6148                 switch ((int)PRVM_serveredictfloat(edict, solid))
6149                 {
6150                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
6151                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
6152                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
6153                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
6154                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
6155                         case SOLID_CORPSE:   Vector4Set(color, 1, 0.5, 0, 0.05);break;
6156                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
6157                 }
6158                 if (prog == CLVM_prog)
6159                         color[3] *= r_showbboxes_client.value;
6160                 else
6161                         color[3] *= r_showbboxes.value;
6162                 color[3] = bound(0, color[3], 1);
6163                 GL_DepthTest(!r_showdisabledepthtest.integer);
6164                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
6165         }
6166 }
6167
6168 static void R_DrawEntityBBoxes(prvm_prog_t *prog)
6169 {
6170         int i;
6171         prvm_edict_t *edict;
6172         vec3_t center;
6173
6174         if (prog == NULL)
6175                 return;
6176
6177         for (i = 0; i < prog->num_edicts; i++)
6178         {
6179                 edict = PRVM_EDICT_NUM(i);
6180                 if (edict->priv.server->free)
6181                         continue;
6182                 // exclude the following for now, as they don't live in world coordinate space and can't be solid:
6183                 if (PRVM_gameedictedict(edict, tag_entity) != 0)
6184                         continue;
6185                 if (prog == SVVM_prog && PRVM_serveredictedict(edict, viewmodelforclient) != 0)
6186                         continue;
6187                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
6188                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)prog);
6189         }
6190 }
6191
6192 static const int nomodelelement3i[24] =
6193 {
6194         5, 2, 0,
6195         5, 1, 2,
6196         5, 0, 3,
6197         5, 3, 1,
6198         0, 2, 4,
6199         2, 1, 4,
6200         3, 0, 4,
6201         1, 3, 4
6202 };
6203
6204 static const unsigned short nomodelelement3s[24] =
6205 {
6206         5, 2, 0,
6207         5, 1, 2,
6208         5, 0, 3,
6209         5, 3, 1,
6210         0, 2, 4,
6211         2, 1, 4,
6212         3, 0, 4,
6213         1, 3, 4
6214 };
6215
6216 static const float nomodelvertex3f[6*3] =
6217 {
6218         -16,   0,   0,
6219          16,   0,   0,
6220           0, -16,   0,
6221           0,  16,   0,
6222           0,   0, -16,
6223           0,   0,  16
6224 };
6225
6226 static const float nomodelcolor4f[6*4] =
6227 {
6228         0.0f, 0.0f, 0.5f, 1.0f,
6229         0.0f, 0.0f, 0.5f, 1.0f,
6230         0.0f, 0.5f, 0.0f, 1.0f,
6231         0.0f, 0.5f, 0.0f, 1.0f,
6232         0.5f, 0.0f, 0.0f, 1.0f,
6233         0.5f, 0.0f, 0.0f, 1.0f
6234 };
6235
6236 static void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6237 {
6238         int i;
6239         float f1, f2, *c;
6240         float color4f[6*4];
6241
6242         RSurf_ActiveCustomEntity(&ent->matrix, &ent->inversematrix, ent->flags, ent->shadertime, ent->colormod[0], ent->colormod[1], ent->colormod[2], ent->alpha, 6, nomodelvertex3f, NULL, NULL, NULL, NULL, nomodelcolor4f, 8, nomodelelement3i, nomodelelement3s, false, false);
6243
6244         // this is only called once per entity so numsurfaces is always 1, and
6245         // surfacelist is always {0}, so this code does not handle batches
6246
6247         if (rsurface.ent_flags & RENDER_ADDITIVE)
6248         {
6249                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
6250                 GL_DepthMask(false);
6251         }
6252         else if (ent->alpha < 1)
6253         {
6254                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6255                 GL_DepthMask(false);
6256         }
6257         else
6258         {
6259                 GL_BlendFunc(GL_ONE, GL_ZERO);
6260                 GL_DepthMask(true);
6261         }
6262         GL_DepthRange(0, (rsurface.ent_flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
6263         GL_PolygonOffset(rsurface.basepolygonfactor, rsurface.basepolygonoffset);
6264         GL_DepthTest(!(rsurface.ent_flags & RENDER_NODEPTHTEST));
6265         GL_CullFace((rsurface.ent_flags & RENDER_DOUBLESIDED) ? GL_NONE : r_refdef.view.cullface_back);
6266         memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
6267         for (i = 0, c = color4f;i < 6;i++, c += 4)
6268         {
6269                 c[0] *= ent->render_fullbright[0] * r_refdef.view.colorscale;
6270                 c[1] *= ent->render_fullbright[1] * r_refdef.view.colorscale;
6271                 c[2] *= ent->render_fullbright[2] * r_refdef.view.colorscale;
6272                 c[3] *= ent->alpha;
6273         }
6274         if (r_refdef.fogenabled)
6275         {
6276                 for (i = 0, c = color4f;i < 6;i++, c += 4)
6277                 {
6278                         f1 = RSurf_FogVertex(nomodelvertex3f + 3*i);
6279                         f2 = 1 - f1;
6280                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
6281                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
6282                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
6283                 }
6284         }
6285 //      R_Mesh_ResetTextureState();
6286         R_SetupShader_Generic_NoTexture(false, false);
6287         R_Mesh_PrepareVertices_Generic_Arrays(6, nomodelvertex3f, color4f, NULL);
6288         R_Mesh_Draw(0, 6, 0, 8, nomodelelement3i, NULL, 0, nomodelelement3s, NULL, 0);
6289 }
6290
6291 void R_DrawNoModel(entity_render_t *ent)
6292 {
6293         vec3_t org;
6294         Matrix4x4_OriginFromMatrix(&ent->matrix, org);
6295         if ((ent->flags & RENDER_ADDITIVE) || (ent->alpha < 1))
6296                 R_MeshQueue_AddTransparent((ent->flags & RENDER_NODEPTHTEST) ? TRANSPARENTSORT_HUD : TRANSPARENTSORT_DISTANCE, org, R_DrawNoModel_TransparentCallback, ent, 0, rsurface.rtlight);
6297         else
6298                 R_DrawNoModel_TransparentCallback(ent, rsurface.rtlight, 0, NULL);
6299 }
6300
6301 void R_CalcBeam_Vertex3f (float *vert, const float *org1, const float *org2, float width)
6302 {
6303         vec3_t right1, right2, diff, normal;
6304
6305         VectorSubtract (org2, org1, normal);
6306
6307         // calculate 'right' vector for start
6308         VectorSubtract (r_refdef.view.origin, org1, diff);
6309         CrossProduct (normal, diff, right1);
6310         VectorNormalize (right1);
6311
6312         // calculate 'right' vector for end
6313         VectorSubtract (r_refdef.view.origin, org2, diff);
6314         CrossProduct (normal, diff, right2);
6315         VectorNormalize (right2);
6316
6317         vert[ 0] = org1[0] + width * right1[0];
6318         vert[ 1] = org1[1] + width * right1[1];
6319         vert[ 2] = org1[2] + width * right1[2];
6320         vert[ 3] = org1[0] - width * right1[0];
6321         vert[ 4] = org1[1] - width * right1[1];
6322         vert[ 5] = org1[2] - width * right1[2];
6323         vert[ 6] = org2[0] - width * right2[0];
6324         vert[ 7] = org2[1] - width * right2[1];
6325         vert[ 8] = org2[2] - width * right2[2];
6326         vert[ 9] = org2[0] + width * right2[0];
6327         vert[10] = org2[1] + width * right2[1];
6328         vert[11] = org2[2] + width * right2[2];
6329 }
6330
6331 void R_CalcSprite_Vertex3f(float *vertex3f, const vec3_t origin, const vec3_t left, const vec3_t up, float scalex1, float scalex2, float scaley1, float scaley2)
6332 {
6333         vertex3f[ 0] = origin[0] + left[0] * scalex2 + up[0] * scaley1;
6334         vertex3f[ 1] = origin[1] + left[1] * scalex2 + up[1] * scaley1;
6335         vertex3f[ 2] = origin[2] + left[2] * scalex2 + up[2] * scaley1;
6336         vertex3f[ 3] = origin[0] + left[0] * scalex2 + up[0] * scaley2;
6337         vertex3f[ 4] = origin[1] + left[1] * scalex2 + up[1] * scaley2;
6338         vertex3f[ 5] = origin[2] + left[2] * scalex2 + up[2] * scaley2;
6339         vertex3f[ 6] = origin[0] + left[0] * scalex1 + up[0] * scaley2;
6340         vertex3f[ 7] = origin[1] + left[1] * scalex1 + up[1] * scaley2;
6341         vertex3f[ 8] = origin[2] + left[2] * scalex1 + up[2] * scaley2;
6342         vertex3f[ 9] = origin[0] + left[0] * scalex1 + up[0] * scaley1;
6343         vertex3f[10] = origin[1] + left[1] * scalex1 + up[1] * scaley1;
6344         vertex3f[11] = origin[2] + left[2] * scalex1 + up[2] * scaley1;
6345 }
6346
6347 static int R_Mesh_AddVertex(rmesh_t *mesh, float x, float y, float z)
6348 {
6349         int i;
6350         float *vertex3f;
6351         float v[3];
6352         VectorSet(v, x, y, z);
6353         for (i = 0, vertex3f = mesh->vertex3f;i < mesh->numvertices;i++, vertex3f += 3)
6354                 if (VectorDistance2(v, vertex3f) < mesh->epsilon2)
6355                         break;
6356         if (i == mesh->numvertices)
6357         {
6358                 if (mesh->numvertices < mesh->maxvertices)
6359                 {
6360                         VectorCopy(v, vertex3f);
6361                         mesh->numvertices++;
6362                 }
6363                 return mesh->numvertices;
6364         }
6365         else
6366                 return i;
6367 }
6368
6369 void R_Mesh_AddPolygon3f(rmesh_t *mesh, int numvertices, float *vertex3f)
6370 {
6371         int i;
6372         int *e, element[3];
6373         element[0] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6374         element[1] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6375         e = mesh->element3i + mesh->numtriangles * 3;
6376         for (i = 0;i < numvertices - 2;i++, vertex3f += 3)
6377         {
6378                 element[2] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);
6379                 if (mesh->numtriangles < mesh->maxtriangles)
6380                 {
6381                         *e++ = element[0];
6382                         *e++ = element[1];
6383                         *e++ = element[2];
6384                         mesh->numtriangles++;
6385                 }
6386                 element[1] = element[2];
6387         }
6388 }
6389
6390 static void R_Mesh_AddPolygon3d(rmesh_t *mesh, int numvertices, double *vertex3d)
6391 {
6392         int i;
6393         int *e, element[3];
6394         element[0] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6395         element[1] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6396         e = mesh->element3i + mesh->numtriangles * 3;
6397         for (i = 0;i < numvertices - 2;i++, vertex3d += 3)
6398         {
6399                 element[2] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);
6400                 if (mesh->numtriangles < mesh->maxtriangles)
6401                 {
6402                         *e++ = element[0];
6403                         *e++ = element[1];
6404                         *e++ = element[2];
6405                         mesh->numtriangles++;
6406                 }
6407                 element[1] = element[2];
6408         }
6409 }
6410
6411 #define R_MESH_PLANE_DIST_EPSILON (1.0 / 32.0)
6412 void R_Mesh_AddBrushMeshFromPlanes(rmesh_t *mesh, int numplanes, mplane_t *planes)
6413 {
6414         int planenum, planenum2;
6415         int w;
6416         int tempnumpoints;
6417         mplane_t *plane, *plane2;
6418         double maxdist;
6419         double temppoints[2][256*3];
6420         // figure out how large a bounding box we need to properly compute this brush
6421         maxdist = 0;
6422         for (w = 0;w < numplanes;w++)
6423                 maxdist = max(maxdist, fabs(planes[w].dist));
6424         // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
6425         maxdist = floor(maxdist * (4.0 / 1024.0) + 1) * 1024.0;
6426         for (planenum = 0, plane = planes;planenum < numplanes;planenum++, plane++)
6427         {
6428                 w = 0;
6429                 tempnumpoints = 4;
6430                 PolygonD_QuadForPlane(temppoints[w], plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, maxdist);
6431                 for (planenum2 = 0, plane2 = planes;planenum2 < numplanes && tempnumpoints >= 3;planenum2++, plane2++)
6432                 {
6433                         if (planenum2 == planenum)
6434                                 continue;
6435                         PolygonD_Divide(tempnumpoints, temppoints[w], plane2->normal[0], plane2->normal[1], plane2->normal[2], plane2->dist, R_MESH_PLANE_DIST_EPSILON, 0, NULL, NULL, 256, temppoints[!w], &tempnumpoints, NULL);
6436                         w = !w;
6437                 }
6438                 if (tempnumpoints < 3)
6439                         continue;
6440                 // generate elements forming a triangle fan for this polygon
6441                 R_Mesh_AddPolygon3d(mesh, tempnumpoints, temppoints[w]);
6442         }
6443 }
6444
6445 static qbool R_TestQ3WaveFunc(q3wavefunc_t func, const float *parms)
6446 {
6447         if(parms[0] == 0 && parms[1] == 0)
6448                 return false;
6449         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6450                 if(rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)] == 0)
6451                         return false;
6452         return true;
6453 }
6454
6455 static float R_EvaluateQ3WaveFunc(q3wavefunc_t func, const float *parms)
6456 {
6457         double index, f;
6458         index = parms[2] + rsurface.shadertime * parms[3];
6459         index -= floor(index);
6460         switch (func & ((1 << Q3WAVEFUNC_USER_SHIFT) - 1))
6461         {
6462         default:
6463         case Q3WAVEFUNC_NONE:
6464         case Q3WAVEFUNC_NOISE:
6465         case Q3WAVEFUNC_COUNT:
6466                 f = 0;
6467                 break;
6468         case Q3WAVEFUNC_SIN: f = sin(index * M_PI * 2);break;
6469         case Q3WAVEFUNC_SQUARE: f = index < 0.5 ? 1 : -1;break;
6470         case Q3WAVEFUNC_SAWTOOTH: f = index;break;
6471         case Q3WAVEFUNC_INVERSESAWTOOTH: f = 1 - index;break;
6472         case Q3WAVEFUNC_TRIANGLE:
6473                 index *= 4;
6474                 f = index - floor(index);
6475                 if (index < 1)
6476                 {
6477                         // f = f;
6478                 }
6479                 else if (index < 2)
6480                         f = 1 - f;
6481                 else if (index < 3)
6482                         f = -f;
6483                 else
6484                         f = -(1 - f);
6485                 break;
6486         }
6487         f = parms[0] + parms[1] * f;
6488         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6489                 f *= rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)];
6490         return (float) f;
6491 }
6492
6493 static void R_tcMod_ApplyToMatrix(matrix4x4_t *texmatrix, q3shaderinfo_layer_tcmod_t *tcmod, int currentmaterialflags)
6494 {
6495         int w, h, idx;
6496         float shadertime;
6497         float f;
6498         float offsetd[2];
6499         float tcmat[12];
6500         matrix4x4_t matrix, temp;
6501         // if shadertime exceeds about 9 hours (32768 seconds), just wrap it,
6502         // it's better to have one huge fixup every 9 hours than gradual
6503         // degradation over time which looks consistently bad after many hours.
6504         //
6505         // tcmod scroll in particular suffers from this degradation which can't be
6506         // effectively worked around even with floor() tricks because we don't
6507         // know if tcmod scroll is the last tcmod being applied, and for clampmap
6508         // a workaround involving floor() would be incorrect anyway...
6509         shadertime = rsurface.shadertime;
6510         if (shadertime >= 32768.0f)
6511                 shadertime -= floor(rsurface.shadertime * (1.0f / 32768.0f)) * 32768.0f;
6512         switch(tcmod->tcmod)
6513         {
6514                 case Q3TCMOD_COUNT:
6515                 case Q3TCMOD_NONE:
6516                         if (currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6517                                 matrix = r_waterscrollmatrix;
6518                         else
6519                                 matrix = identitymatrix;
6520                         break;
6521                 case Q3TCMOD_ENTITYTRANSLATE:
6522                         // this is used in Q3 to allow the gamecode to control texcoord
6523                         // scrolling on the entity, which is not supported in darkplaces yet.
6524                         Matrix4x4_CreateTranslate(&matrix, 0, 0, 0);
6525                         break;
6526                 case Q3TCMOD_ROTATE:
6527                         Matrix4x4_CreateTranslate(&matrix, 0.5, 0.5, 0);
6528                         Matrix4x4_ConcatRotate(&matrix, tcmod->parms[0] * rsurface.shadertime, 0, 0, 1);
6529                         Matrix4x4_ConcatTranslate(&matrix, -0.5, -0.5, 0);
6530                         break;
6531                 case Q3TCMOD_SCALE:
6532                         Matrix4x4_CreateScale3(&matrix, tcmod->parms[0], tcmod->parms[1], 1);
6533                         break;
6534                 case Q3TCMOD_SCROLL:
6535                         // this particular tcmod is a "bug for bug" compatible one with regards to
6536                         // Quake3, the wrapping is unnecessary with our shadetime fix but quake3
6537                         // specifically did the wrapping and so we must mimic that...
6538                         offsetd[0] = tcmod->parms[0] * rsurface.shadertime;
6539                         offsetd[1] = tcmod->parms[1] * rsurface.shadertime;
6540                         Matrix4x4_CreateTranslate(&matrix, offsetd[0] - floor(offsetd[0]), offsetd[1] - floor(offsetd[1]), 0);
6541                         break;
6542                 case Q3TCMOD_PAGE: // poor man's animmap (to store animations into a single file, useful for HTTP downloaded textures)
6543                         w = (int) tcmod->parms[0];
6544                         h = (int) tcmod->parms[1];
6545                         f = rsurface.shadertime / (tcmod->parms[2] * w * h);
6546                         f = f - floor(f);
6547                         idx = (int) floor(f * w * h);
6548                         Matrix4x4_CreateTranslate(&matrix, (idx % w) / tcmod->parms[0], (idx / w) / tcmod->parms[1], 0);
6549                         break;
6550                 case Q3TCMOD_STRETCH:
6551                         f = 1.0f / R_EvaluateQ3WaveFunc(tcmod->wavefunc, tcmod->waveparms);
6552                         Matrix4x4_CreateFromQuakeEntity(&matrix, 0.5f * (1 - f), 0.5 * (1 - f), 0, 0, 0, 0, f);
6553                         break;
6554                 case Q3TCMOD_TRANSFORM:
6555                         VectorSet(tcmat +  0, tcmod->parms[0], tcmod->parms[1], 0);
6556                         VectorSet(tcmat +  3, tcmod->parms[2], tcmod->parms[3], 0);
6557                         VectorSet(tcmat +  6, 0                   , 0                , 1);
6558                         VectorSet(tcmat +  9, tcmod->parms[4], tcmod->parms[5], 0);
6559                         Matrix4x4_FromArray12FloatGL(&matrix, tcmat);
6560                         break;
6561                 case Q3TCMOD_TURBULENT:
6562                         // this is handled in the RSurf_PrepareVertices function
6563                         matrix = identitymatrix;
6564                         break;
6565         }
6566         temp = *texmatrix;
6567         Matrix4x4_Concat(texmatrix, &matrix, &temp);
6568 }
6569
6570 static void R_LoadQWSkin(r_qwskincache_t *cache, const char *skinname)
6571 {
6572         int textureflags = (r_mipskins.integer ? TEXF_MIPMAP : 0) | TEXF_PICMIP;
6573         char name[MAX_QPATH];
6574         skinframe_t *skinframe;
6575         unsigned char pixels[296*194];
6576         strlcpy(cache->name, skinname, sizeof(cache->name));
6577         dpsnprintf(name, sizeof(name), "skins/%s.pcx", cache->name);
6578         if (developer_loading.integer)
6579                 Con_Printf("loading %s\n", name);
6580         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
6581         if (!skinframe || !skinframe->base)
6582         {
6583                 unsigned char *f;
6584                 fs_offset_t filesize;
6585                 skinframe = NULL;
6586                 f = FS_LoadFile(name, tempmempool, true, &filesize);
6587                 if (f)
6588                 {
6589                         if (LoadPCX_QWSkin(f, (int)filesize, pixels, 296, 194))
6590                                 skinframe = R_SkinFrame_LoadInternalQuake(name, textureflags, true, r_fullbrights.integer, pixels, image_width, image_height);
6591                         Mem_Free(f);
6592                 }
6593         }
6594         cache->skinframe = skinframe;
6595 }
6596
6597 texture_t *R_GetCurrentTexture(texture_t *t)
6598 {
6599         int i, q;
6600         const entity_render_t *ent = rsurface.entity;
6601         dp_model_t *model = ent->model; // when calling this, ent must not be NULL
6602         q3shaderinfo_layer_tcmod_t *tcmod;
6603         float specularscale = 0.0f;
6604
6605         if (t->update_lastrenderframe == r_textureframe && t->update_lastrenderentity == (void *)ent && !rsurface.forcecurrenttextureupdate)
6606                 return t->currentframe;
6607         t->update_lastrenderframe = r_textureframe;
6608         t->update_lastrenderentity = (void *)ent;
6609
6610         if(ent->entitynumber >= MAX_EDICTS && ent->entitynumber < 2 * MAX_EDICTS)
6611                 t->camera_entity = ent->entitynumber;
6612         else
6613                 t->camera_entity = 0;
6614
6615         // switch to an alternate material if this is a q1bsp animated material
6616         {
6617                 texture_t *texture = t;
6618                 int s = rsurface.ent_skinnum;
6619                 if ((unsigned int)s >= (unsigned int)model->numskins)
6620                         s = 0;
6621                 if (model->skinscenes)
6622                 {
6623                         if (model->skinscenes[s].framecount > 1)
6624                                 s = model->skinscenes[s].firstframe + (unsigned int) (rsurface.shadertime * model->skinscenes[s].framerate) % model->skinscenes[s].framecount;
6625                         else
6626                                 s = model->skinscenes[s].firstframe;
6627                 }
6628                 if (s > 0)
6629                         t = t + s * model->num_surfaces;
6630                 if (t->animated)
6631                 {
6632                         // use an alternate animation if the entity's frame is not 0,
6633                         // and only if the texture has an alternate animation
6634                         if (t->animated == 2) // q2bsp
6635                                 t = t->anim_frames[0][ent->framegroupblend[0].frame % t->anim_total[0]];
6636                         else if (rsurface.ent_alttextures && t->anim_total[1])
6637                                 t = t->anim_frames[1][(t->anim_total[1] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[1]) : 0];
6638                         else
6639                                 t = t->anim_frames[0][(t->anim_total[0] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[0]) : 0];
6640                 }
6641                 texture->currentframe = t;
6642         }
6643
6644         // update currentskinframe to be a qw skin or animation frame
6645         if (rsurface.ent_qwskin >= 0)
6646         {
6647                 i = rsurface.ent_qwskin;
6648                 if (!r_qwskincache || r_qwskincache_size != cl.maxclients)
6649                 {
6650                         r_qwskincache_size = cl.maxclients;
6651                         if (r_qwskincache)
6652                                 Mem_Free(r_qwskincache);
6653                         r_qwskincache = (r_qwskincache_t *)Mem_Alloc(r_main_mempool, sizeof(*r_qwskincache) * r_qwskincache_size);
6654                 }
6655                 if (strcmp(r_qwskincache[i].name, cl.scores[i].qw_skin))
6656                         R_LoadQWSkin(&r_qwskincache[i], cl.scores[i].qw_skin);
6657                 t->currentskinframe = r_qwskincache[i].skinframe;
6658                 if (t->materialshaderpass && t->currentskinframe == NULL)
6659                         t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6660         }
6661         else if (t->materialshaderpass && t->materialshaderpass->numframes >= 2)
6662                 t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6663         if (t->backgroundshaderpass && t->backgroundshaderpass->numframes >= 2)
6664                 t->backgroundcurrentskinframe = t->backgroundshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->backgroundshaderpass->framerate, t->backgroundshaderpass->numframes)];
6665
6666         t->currentmaterialflags = t->basematerialflags;
6667         t->currentalpha = rsurface.entity->alpha * t->basealpha;
6668         if (t->basematerialflags & MATERIALFLAG_WATERALPHA && (model->brush.supportwateralpha || r_water.integer || r_novis.integer || r_trippy.integer))
6669                 t->currentalpha *= r_wateralpha.value;
6670         if(t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay)
6671                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; // we apply wateralpha later
6672         if(!r_fb.water.enabled || r_refdef.view.isoverlay)
6673                 t->currentmaterialflags &= ~(MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA);
6674
6675         // decide on which type of lighting to use for this surface
6676         if (rsurface.entity->render_modellight_forced)
6677                 t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT;
6678         if (rsurface.entity->render_rtlight_disabled)
6679                 t->currentmaterialflags |= MATERIALFLAG_NORTLIGHT;
6680         if (rsurface.entity->render_lightgrid)
6681                 t->currentmaterialflags |= MATERIALFLAG_LIGHTGRID;
6682         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND && !(R_BlendFuncFlags(t->customblendfunc[0], t->customblendfunc[1]) & BLENDFUNC_ALLOWS_COLORMOD))
6683         {
6684                 // some CUSTOMBLEND blendfuncs are too weird, we have to ignore colormod and view colorscale
6685                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NORTLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6686                 for (q = 0; q < 3; q++)
6687                 {
6688                         t->render_glowmod[q] = rsurface.entity->glowmod[q];
6689                         t->render_modellight_lightdir_world[q] = q == 2;
6690                         t->render_modellight_lightdir_local[q] = q == 2;
6691                         t->render_modellight_ambient[q] = 1;
6692                         t->render_modellight_diffuse[q] = 0;
6693                         t->render_modellight_specular[q] = 0;
6694                         t->render_lightmap_ambient[q] = 0;
6695                         t->render_lightmap_diffuse[q] = 0;
6696                         t->render_lightmap_specular[q] = 0;
6697                         t->render_rtlight_diffuse[q] = 0;
6698                         t->render_rtlight_specular[q] = 0;
6699                 }
6700         }
6701         else if ((t->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) || !(rsurface.ent_flags & RENDER_LIGHT))
6702         {
6703                 // fullbright is basically MATERIALFLAG_MODELLIGHT but with ambient locked to 1,1,1 and no shading
6704                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_NORTLIGHT | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6705                 for (q = 0; q < 3; q++)
6706                 {
6707                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6708                         t->render_modellight_ambient[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6709                         t->render_modellight_lightdir_world[q] = q == 2;
6710                         t->render_modellight_lightdir_local[q] = q == 2;
6711                         t->render_modellight_diffuse[q] = 0;
6712                         t->render_modellight_specular[q] = 0;
6713                         t->render_lightmap_ambient[q] = 0;
6714                         t->render_lightmap_diffuse[q] = 0;
6715                         t->render_lightmap_specular[q] = 0;
6716                         t->render_rtlight_diffuse[q] = 0;
6717                         t->render_rtlight_specular[q] = 0;
6718                 }
6719         }
6720         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
6721         {
6722                 t->currentmaterialflags &= ~MATERIALFLAG_MODELLIGHT;
6723                 for (q = 0; q < 3; q++)
6724                 {
6725                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6726                         t->render_modellight_lightdir_world[q] = q == 2;
6727                         t->render_modellight_lightdir_local[q] = q == 2;
6728                         t->render_modellight_ambient[q] = 0;
6729                         t->render_modellight_diffuse[q] = 0;
6730                         t->render_modellight_specular[q] = 0;
6731                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6732                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6733                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6734                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6735                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6736                 }
6737         }
6738         else if ((rsurface.ent_flags & (RENDER_DYNAMICMODELLIGHT | RENDER_CUSTOMIZEDMODELLIGHT)) || rsurface.modeltexcoordlightmap2f == NULL)
6739         {
6740                 // ambient + single direction light (modellight)
6741                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6742                 for (q = 0; q < 3; q++)
6743                 {
6744                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6745                         t->render_modellight_lightdir_world[q] = rsurface.entity->render_modellight_lightdir_world[q];
6746                         t->render_modellight_lightdir_local[q] = rsurface.entity->render_modellight_lightdir_local[q];
6747                         t->render_modellight_ambient[q] = rsurface.entity->render_modellight_ambient[q] * r_refdef.view.colorscale;
6748                         t->render_modellight_diffuse[q] = rsurface.entity->render_modellight_diffuse[q] * r_refdef.view.colorscale;
6749                         t->render_modellight_specular[q] = rsurface.entity->render_modellight_specular[q] * r_refdef.view.colorscale;
6750                         t->render_lightmap_ambient[q] = 0;
6751                         t->render_lightmap_diffuse[q] = 0;
6752                         t->render_lightmap_specular[q] = 0;
6753                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6754                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6755                 }
6756         }
6757         else
6758         {
6759                 // lightmap - 2x diffuse and specular brightness because bsp files have 0-2 colors as 0-1
6760                 for (q = 0; q < 3; q++)
6761                 {
6762                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6763                         t->render_modellight_lightdir_world[q] = q == 2;
6764                         t->render_modellight_lightdir_local[q] = q == 2;
6765                         t->render_modellight_ambient[q] = 0;
6766                         t->render_modellight_diffuse[q] = 0;
6767                         t->render_modellight_specular[q] = 0;
6768                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6769                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6770                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6771                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6772                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6773                 }
6774         }
6775
6776         if (t->currentmaterialflags & MATERIALFLAG_VERTEXCOLOR)
6777         {
6778                 // since MATERIALFLAG_VERTEXCOLOR uses the lightmapcolor4f vertex
6779                 // attribute, we punt it to the lightmap path and hope for the best,
6780                 // but lighting doesn't work.
6781                 //
6782                 // FIXME: this is fine for effects but CSQC polygons should be subject
6783                 // to lighting.
6784                 t->currentmaterialflags &= ~(MATERIALFLAG_MODELLIGHT | MATERIALFLAG_LIGHTGRID);
6785                 for (q = 0; q < 3; q++)
6786                 {
6787                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6788                         t->render_modellight_lightdir_world[q] = q == 2;
6789                         t->render_modellight_lightdir_local[q] = q == 2;
6790                         t->render_modellight_ambient[q] = 0;
6791                         t->render_modellight_diffuse[q] = 0;
6792                         t->render_modellight_specular[q] = 0;
6793                         t->render_lightmap_ambient[q] = 0;
6794                         t->render_lightmap_diffuse[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6795                         t->render_lightmap_specular[q] = 0;
6796                         t->render_rtlight_diffuse[q] = 0;
6797                         t->render_rtlight_specular[q] = 0;
6798                 }
6799         }
6800
6801         for (q = 0; q < 3; q++)
6802         {
6803                 t->render_colormap_pants[q] = rsurface.entity->colormap_pantscolor[q];
6804                 t->render_colormap_shirt[q] = rsurface.entity->colormap_shirtcolor[q];
6805         }
6806
6807         if (rsurface.ent_flags & RENDER_ADDITIVE)
6808                 t->currentmaterialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6809         else if (t->currentalpha < 1)
6810                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6811         // LadyHavoc: prevent bugs where code checks add or alpha at higher priority than customblend by clearing these flags
6812         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6813                 t->currentmaterialflags &= ~(MATERIALFLAG_ADD | MATERIALFLAG_ALPHA);
6814         if (rsurface.ent_flags & RENDER_DOUBLESIDED)
6815                 t->currentmaterialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_NOCULLFACE;
6816         if (rsurface.ent_flags & (RENDER_NODEPTHTEST | RENDER_VIEWMODEL))
6817                 t->currentmaterialflags |= MATERIALFLAG_SHORTDEPTHRANGE;
6818         if (t->backgroundshaderpass)
6819                 t->currentmaterialflags |= MATERIALFLAG_VERTEXTEXTUREBLEND;
6820         if (t->currentmaterialflags & MATERIALFLAG_BLENDED)
6821         {
6822                 if (t->currentmaterialflags & (MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA))
6823                         t->currentmaterialflags &= ~MATERIALFLAG_BLENDED;
6824         }
6825         else
6826                 t->currentmaterialflags &= ~(MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA);
6827         if (vid.allowalphatocoverage && r_transparent_alphatocoverage.integer >= 2 && ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA | MATERIALFLAG_ADD | MATERIALFLAG_CUSTOMBLEND)) == (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)))
6828         {
6829                 // promote alphablend to alphatocoverage (a type of alphatest) if antialiasing is on
6830                 t->currentmaterialflags = (t->currentmaterialflags & ~(MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)) | MATERIALFLAG_ALPHATEST;
6831         }
6832         if ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST)) == MATERIALFLAG_BLENDED && r_transparentdepthmasking.integer && !(t->basematerialflags & MATERIALFLAG_BLENDED))
6833                 t->currentmaterialflags |= MATERIALFLAG_TRANSDEPTH;
6834
6835         // there is no tcmod
6836         if (t->currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6837         {
6838                 t->currenttexmatrix = r_waterscrollmatrix;
6839                 t->currentbackgroundtexmatrix = r_waterscrollmatrix;
6840         }
6841         else if (!(t->currentmaterialflags & MATERIALFLAG_CUSTOMSURFACE))
6842         {
6843                 Matrix4x4_CreateIdentity(&t->currenttexmatrix);
6844                 Matrix4x4_CreateIdentity(&t->currentbackgroundtexmatrix);
6845         }
6846
6847         if (t->materialshaderpass)
6848                 for (i = 0, tcmod = t->materialshaderpass->tcmods;i < Q3MAXTCMODS && tcmod->tcmod;i++, tcmod++)
6849                         R_tcMod_ApplyToMatrix(&t->currenttexmatrix, tcmod, t->currentmaterialflags);
6850
6851         t->colormapping = VectorLength2(t->render_colormap_pants) + VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f);
6852         if (t->currentskinframe->qpixels)
6853                 R_SkinFrame_GenerateTexturesFromQPixels(t->currentskinframe, t->colormapping);
6854         t->basetexture = (!t->colormapping && t->currentskinframe->merged) ? t->currentskinframe->merged : t->currentskinframe->base;
6855         if (!t->basetexture)
6856                 t->basetexture = r_texture_notexture;
6857         t->pantstexture = t->colormapping ? t->currentskinframe->pants : NULL;
6858         t->shirttexture = t->colormapping ? t->currentskinframe->shirt : NULL;
6859         t->nmaptexture = t->currentskinframe->nmap;
6860         if (!t->nmaptexture)
6861                 t->nmaptexture = r_texture_blanknormalmap;
6862         t->glosstexture = r_texture_black;
6863         t->glowtexture = t->currentskinframe->glow;
6864         t->fogtexture = t->currentskinframe->fog;
6865         t->reflectmasktexture = t->currentskinframe->reflect;
6866         if (t->backgroundshaderpass)
6867         {
6868                 for (i = 0, tcmod = t->backgroundshaderpass->tcmods; i < Q3MAXTCMODS && tcmod->tcmod; i++, tcmod++)
6869                         R_tcMod_ApplyToMatrix(&t->currentbackgroundtexmatrix, tcmod, t->currentmaterialflags);
6870                 t->backgroundbasetexture = (!t->colormapping && t->backgroundcurrentskinframe->merged) ? t->backgroundcurrentskinframe->merged : t->backgroundcurrentskinframe->base;
6871                 t->backgroundnmaptexture = t->backgroundcurrentskinframe->nmap;
6872                 t->backgroundglosstexture = r_texture_black;
6873                 t->backgroundglowtexture = t->backgroundcurrentskinframe->glow;
6874                 if (!t->backgroundnmaptexture)
6875                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6876                 // make sure that if glow is going to be used, both textures are not NULL
6877                 if (!t->backgroundglowtexture && t->glowtexture)
6878                         t->backgroundglowtexture = r_texture_black;
6879                 if (!t->glowtexture && t->backgroundglowtexture)
6880                         t->glowtexture = r_texture_black;
6881         }
6882         else
6883         {
6884                 t->backgroundbasetexture = r_texture_white;
6885                 t->backgroundnmaptexture = r_texture_blanknormalmap;
6886                 t->backgroundglosstexture = r_texture_black;
6887                 t->backgroundglowtexture = NULL;
6888         }
6889         t->specularpower = r_shadow_glossexponent.value;
6890         // TODO: store reference values for these in the texture?
6891         if (r_shadow_gloss.integer > 0)
6892         {
6893                 if (t->currentskinframe->gloss || (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss))
6894                 {
6895                         if (r_shadow_glossintensity.value > 0)
6896                         {
6897                                 t->glosstexture = t->currentskinframe->gloss ? t->currentskinframe->gloss : r_texture_white;
6898                                 t->backgroundglosstexture = (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss) ? t->backgroundcurrentskinframe->gloss : r_texture_white;
6899                                 specularscale = r_shadow_glossintensity.value;
6900                         }
6901                 }
6902                 else if (r_shadow_gloss.integer >= 2 && r_shadow_gloss2intensity.value > 0)
6903                 {
6904                         t->glosstexture = r_texture_white;
6905                         t->backgroundglosstexture = r_texture_white;
6906                         specularscale = r_shadow_gloss2intensity.value;
6907                         t->specularpower = r_shadow_gloss2exponent.value;
6908                 }
6909         }
6910         specularscale *= t->specularscalemod;
6911         t->specularpower *= t->specularpowermod;
6912
6913         // lightmaps mode looks bad with dlights using actual texturing, so turn
6914         // off the colormap and glossmap, but leave the normalmap on as it still
6915         // accurately represents the shading involved
6916         if (gl_lightmaps.integer && ent != &cl_meshentities[MESH_UI].render)
6917         {
6918                 t->basetexture = r_texture_grey128;
6919                 t->pantstexture = r_texture_black;
6920                 t->shirttexture = r_texture_black;
6921                 if (gl_lightmaps.integer < 2)
6922                         t->nmaptexture = r_texture_blanknormalmap;
6923                 t->glosstexture = r_texture_black;
6924                 t->glowtexture = NULL;
6925                 t->fogtexture = NULL;
6926                 t->reflectmasktexture = NULL;
6927                 t->backgroundbasetexture = NULL;
6928                 if (gl_lightmaps.integer < 2)
6929                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6930                 t->backgroundglosstexture = r_texture_black;
6931                 t->backgroundglowtexture = NULL;
6932                 specularscale = 0;
6933                 t->currentmaterialflags = MATERIALFLAG_WALL | (t->currentmaterialflags & (MATERIALFLAG_NOCULLFACE | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SHORTDEPTHRANGE));
6934         }
6935
6936         if (specularscale != 1.0f)
6937         {
6938                 for (q = 0; q < 3; q++)
6939                 {
6940                         t->render_modellight_specular[q] *= specularscale;
6941                         t->render_lightmap_specular[q] *= specularscale;
6942                         t->render_rtlight_specular[q] *= specularscale;
6943                 }
6944         }
6945
6946         t->currentblendfunc[0] = GL_ONE;
6947         t->currentblendfunc[1] = GL_ZERO;
6948         if (t->currentmaterialflags & MATERIALFLAG_ADD)
6949         {
6950                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6951                 t->currentblendfunc[1] = GL_ONE;
6952         }
6953         else if (t->currentmaterialflags & MATERIALFLAG_ALPHA)
6954         {
6955                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6956                 t->currentblendfunc[1] = GL_ONE_MINUS_SRC_ALPHA;
6957         }
6958         else if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6959         {
6960                 t->currentblendfunc[0] = t->customblendfunc[0];
6961                 t->currentblendfunc[1] = t->customblendfunc[1];
6962         }
6963
6964         return t;
6965 }
6966
6967 rsurfacestate_t rsurface;
6968
6969 void RSurf_ActiveModelEntity(const entity_render_t *ent, qbool wantnormals, qbool wanttangents, qbool prepass)
6970 {
6971         dp_model_t *model = ent->model;
6972         //if (rsurface.entity == ent && (!model->surfmesh.isanimated || (!wantnormals && !wanttangents)))
6973         //      return;
6974         rsurface.entity = (entity_render_t *)ent;
6975         rsurface.skeleton = ent->skeleton;
6976         memcpy(rsurface.userwavefunc_param, ent->userwavefunc_param, sizeof(rsurface.userwavefunc_param));
6977         rsurface.ent_skinnum = ent->skinnum;
6978         rsurface.ent_qwskin = (ent->entitynumber <= cl.maxclients && ent->entitynumber >= 1 && cls.protocol == PROTOCOL_QUAKEWORLD && cl.scores[ent->entitynumber - 1].qw_skin[0] && !strcmp(ent->model->name, "progs/player.mdl")) ? (ent->entitynumber - 1) : -1;
6979         rsurface.ent_flags = ent->flags;
6980         if (r_fullbright_directed.integer && (r_fullbright.integer || !model->lit))
6981                 rsurface.ent_flags |= RENDER_LIGHT | RENDER_DYNAMICMODELLIGHT;
6982         rsurface.shadertime = r_refdef.scene.time - ent->shadertime;
6983         rsurface.matrix = ent->matrix;
6984         rsurface.inversematrix = ent->inversematrix;
6985         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
6986         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
6987         R_EntityMatrix(&rsurface.matrix);
6988         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
6989         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
6990         rsurface.fogplaneviewdist = r_refdef.fogplaneviewdist * rsurface.inversematrixscale;
6991         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
6992         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
6993         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
6994         memcpy(rsurface.frameblend, ent->frameblend, sizeof(ent->frameblend));
6995         rsurface.ent_alttextures = ent->framegroupblend[0].frame != 0;
6996         rsurface.basepolygonfactor = r_refdef.polygonfactor;
6997         rsurface.basepolygonoffset = r_refdef.polygonoffset;
6998         if (ent->model->brush.submodel && !prepass)
6999         {
7000                 rsurface.basepolygonfactor += r_polygonoffset_submodel_factor.value;
7001                 rsurface.basepolygonoffset += r_polygonoffset_submodel_offset.value;
7002         }
7003         // if the animcache code decided it should use the shader path, skip the deform step
7004         rsurface.entityskeletaltransform3x4 = ent->animcache_skeletaltransform3x4;
7005         rsurface.entityskeletaltransform3x4buffer = ent->animcache_skeletaltransform3x4buffer;
7006         rsurface.entityskeletaltransform3x4offset = ent->animcache_skeletaltransform3x4offset;
7007         rsurface.entityskeletaltransform3x4size = ent->animcache_skeletaltransform3x4size;
7008         rsurface.entityskeletalnumtransforms = rsurface.entityskeletaltransform3x4 ? model->num_bones : 0;
7009         if (model->surfmesh.isanimated && model->AnimateVertices && !rsurface.entityskeletaltransform3x4)
7010         {
7011                 if (ent->animcache_vertex3f)
7012                 {
7013                         r_refdef.stats[r_stat_batch_entitycache_count]++;
7014                         r_refdef.stats[r_stat_batch_entitycache_surfaces] += model->num_surfaces;
7015                         r_refdef.stats[r_stat_batch_entitycache_vertices] += model->surfmesh.num_vertices;
7016                         r_refdef.stats[r_stat_batch_entitycache_triangles] += model->surfmesh.num_triangles;
7017                         rsurface.modelvertex3f = ent->animcache_vertex3f;
7018                         rsurface.modelvertex3f_vertexbuffer = ent->animcache_vertex3f_vertexbuffer;
7019                         rsurface.modelvertex3f_bufferoffset = ent->animcache_vertex3f_bufferoffset;
7020                         rsurface.modelsvector3f = wanttangents ? ent->animcache_svector3f : NULL;
7021                         rsurface.modelsvector3f_vertexbuffer = wanttangents ? ent->animcache_svector3f_vertexbuffer : NULL;
7022                         rsurface.modelsvector3f_bufferoffset = wanttangents ? ent->animcache_svector3f_bufferoffset : 0;
7023                         rsurface.modeltvector3f = wanttangents ? ent->animcache_tvector3f : NULL;
7024                         rsurface.modeltvector3f_vertexbuffer = wanttangents ? ent->animcache_tvector3f_vertexbuffer : NULL;
7025                         rsurface.modeltvector3f_bufferoffset = wanttangents ? ent->animcache_tvector3f_bufferoffset : 0;
7026                         rsurface.modelnormal3f = wantnormals ? ent->animcache_normal3f : NULL;
7027                         rsurface.modelnormal3f_vertexbuffer = wantnormals ? ent->animcache_normal3f_vertexbuffer : NULL;
7028                         rsurface.modelnormal3f_bufferoffset = wantnormals ? ent->animcache_normal3f_bufferoffset : 0;
7029                 }
7030                 else if (wanttangents)
7031                 {
7032                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7033                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7034                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7035                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7036                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7037                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7038                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7039                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7040                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, rsurface.modelsvector3f, rsurface.modeltvector3f);
7041                         rsurface.modelvertex3f_vertexbuffer = NULL;
7042                         rsurface.modelvertex3f_bufferoffset = 0;
7043                         rsurface.modelvertex3f_vertexbuffer = 0;
7044                         rsurface.modelvertex3f_bufferoffset = 0;
7045                         rsurface.modelsvector3f_vertexbuffer = 0;
7046                         rsurface.modelsvector3f_bufferoffset = 0;
7047                         rsurface.modeltvector3f_vertexbuffer = 0;
7048                         rsurface.modeltvector3f_bufferoffset = 0;
7049                         rsurface.modelnormal3f_vertexbuffer = 0;
7050                         rsurface.modelnormal3f_bufferoffset = 0;
7051                 }
7052                 else if (wantnormals)
7053                 {
7054                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7055                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7056                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7057                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7058                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7059                         rsurface.modelsvector3f = NULL;
7060                         rsurface.modeltvector3f = NULL;
7061                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7062                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, NULL, NULL);
7063                         rsurface.modelvertex3f_vertexbuffer = NULL;
7064                         rsurface.modelvertex3f_bufferoffset = 0;
7065                         rsurface.modelvertex3f_vertexbuffer = 0;
7066                         rsurface.modelvertex3f_bufferoffset = 0;
7067                         rsurface.modelsvector3f_vertexbuffer = 0;
7068                         rsurface.modelsvector3f_bufferoffset = 0;
7069                         rsurface.modeltvector3f_vertexbuffer = 0;
7070                         rsurface.modeltvector3f_bufferoffset = 0;
7071                         rsurface.modelnormal3f_vertexbuffer = 0;
7072                         rsurface.modelnormal3f_bufferoffset = 0;
7073                 }
7074                 else
7075                 {
7076                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7077                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7078                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7079                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7080                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7081                         rsurface.modelsvector3f = NULL;
7082                         rsurface.modeltvector3f = NULL;
7083                         rsurface.modelnormal3f = NULL;
7084                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, NULL, NULL, NULL);
7085                         rsurface.modelvertex3f_vertexbuffer = NULL;
7086                         rsurface.modelvertex3f_bufferoffset = 0;
7087                         rsurface.modelvertex3f_vertexbuffer = 0;
7088                         rsurface.modelvertex3f_bufferoffset = 0;
7089                         rsurface.modelsvector3f_vertexbuffer = 0;
7090                         rsurface.modelsvector3f_bufferoffset = 0;
7091                         rsurface.modeltvector3f_vertexbuffer = 0;
7092                         rsurface.modeltvector3f_bufferoffset = 0;
7093                         rsurface.modelnormal3f_vertexbuffer = 0;
7094                         rsurface.modelnormal3f_bufferoffset = 0;
7095                 }
7096                 rsurface.modelgeneratedvertex = true;
7097         }
7098         else
7099         {
7100                 if (rsurface.entityskeletaltransform3x4)
7101                 {
7102                         r_refdef.stats[r_stat_batch_entityskeletal_count]++;
7103                         r_refdef.stats[r_stat_batch_entityskeletal_surfaces] += model->num_surfaces;
7104                         r_refdef.stats[r_stat_batch_entityskeletal_vertices] += model->surfmesh.num_vertices;
7105                         r_refdef.stats[r_stat_batch_entityskeletal_triangles] += model->surfmesh.num_triangles;
7106                 }
7107                 else
7108                 {
7109                         r_refdef.stats[r_stat_batch_entitystatic_count]++;
7110                         r_refdef.stats[r_stat_batch_entitystatic_surfaces] += model->num_surfaces;
7111                         r_refdef.stats[r_stat_batch_entitystatic_vertices] += model->surfmesh.num_vertices;
7112                         r_refdef.stats[r_stat_batch_entitystatic_triangles] += model->surfmesh.num_triangles;
7113                 }
7114                 rsurface.modelvertex3f  = model->surfmesh.data_vertex3f;
7115                 rsurface.modelvertex3f_vertexbuffer = model->surfmesh.data_vertex3f_vertexbuffer;
7116                 rsurface.modelvertex3f_bufferoffset = model->surfmesh.data_vertex3f_bufferoffset;
7117                 rsurface.modelsvector3f = model->surfmesh.data_svector3f;
7118                 rsurface.modelsvector3f_vertexbuffer = model->surfmesh.data_svector3f_vertexbuffer;
7119                 rsurface.modelsvector3f_bufferoffset = model->surfmesh.data_svector3f_bufferoffset;
7120                 rsurface.modeltvector3f = model->surfmesh.data_tvector3f;
7121                 rsurface.modeltvector3f_vertexbuffer = model->surfmesh.data_tvector3f_vertexbuffer;
7122                 rsurface.modeltvector3f_bufferoffset = model->surfmesh.data_tvector3f_bufferoffset;
7123                 rsurface.modelnormal3f  = model->surfmesh.data_normal3f;
7124                 rsurface.modelnormal3f_vertexbuffer = model->surfmesh.data_normal3f_vertexbuffer;
7125                 rsurface.modelnormal3f_bufferoffset = model->surfmesh.data_normal3f_bufferoffset;
7126                 rsurface.modelgeneratedvertex = false;
7127         }
7128         rsurface.modellightmapcolor4f  = model->surfmesh.data_lightmapcolor4f;
7129         rsurface.modellightmapcolor4f_vertexbuffer = model->surfmesh.data_lightmapcolor4f_vertexbuffer;
7130         rsurface.modellightmapcolor4f_bufferoffset = model->surfmesh.data_lightmapcolor4f_bufferoffset;
7131         rsurface.modeltexcoordtexture2f  = model->surfmesh.data_texcoordtexture2f;
7132         rsurface.modeltexcoordtexture2f_vertexbuffer = model->surfmesh.data_texcoordtexture2f_vertexbuffer;
7133         rsurface.modeltexcoordtexture2f_bufferoffset = model->surfmesh.data_texcoordtexture2f_bufferoffset;
7134         rsurface.modeltexcoordlightmap2f  = model->surfmesh.data_texcoordlightmap2f;
7135         rsurface.modeltexcoordlightmap2f_vertexbuffer = model->surfmesh.data_texcoordlightmap2f_vertexbuffer;
7136         rsurface.modeltexcoordlightmap2f_bufferoffset = model->surfmesh.data_texcoordlightmap2f_bufferoffset;
7137         rsurface.modelskeletalindex4ub = model->surfmesh.data_skeletalindex4ub;
7138         rsurface.modelskeletalindex4ub_vertexbuffer = model->surfmesh.data_skeletalindex4ub_vertexbuffer;
7139         rsurface.modelskeletalindex4ub_bufferoffset = model->surfmesh.data_skeletalindex4ub_bufferoffset;
7140         rsurface.modelskeletalweight4ub = model->surfmesh.data_skeletalweight4ub;
7141         rsurface.modelskeletalweight4ub_vertexbuffer = model->surfmesh.data_skeletalweight4ub_vertexbuffer;
7142         rsurface.modelskeletalweight4ub_bufferoffset = model->surfmesh.data_skeletalweight4ub_bufferoffset;
7143         rsurface.modelelement3i = model->surfmesh.data_element3i;
7144         rsurface.modelelement3i_indexbuffer = model->surfmesh.data_element3i_indexbuffer;
7145         rsurface.modelelement3i_bufferoffset = model->surfmesh.data_element3i_bufferoffset;
7146         rsurface.modelelement3s = model->surfmesh.data_element3s;
7147         rsurface.modelelement3s_indexbuffer = model->surfmesh.data_element3s_indexbuffer;
7148         rsurface.modelelement3s_bufferoffset = model->surfmesh.data_element3s_bufferoffset;
7149         rsurface.modellightmapoffsets = model->surfmesh.data_lightmapoffsets;
7150         rsurface.modelnumvertices = model->surfmesh.num_vertices;
7151         rsurface.modelnumtriangles = model->surfmesh.num_triangles;
7152         rsurface.modelsurfaces = model->data_surfaces;
7153         rsurface.batchgeneratedvertex = false;
7154         rsurface.batchfirstvertex = 0;
7155         rsurface.batchnumvertices = 0;
7156         rsurface.batchfirsttriangle = 0;
7157         rsurface.batchnumtriangles = 0;
7158         rsurface.batchvertex3f  = NULL;
7159         rsurface.batchvertex3f_vertexbuffer = NULL;
7160         rsurface.batchvertex3f_bufferoffset = 0;
7161         rsurface.batchsvector3f = NULL;
7162         rsurface.batchsvector3f_vertexbuffer = NULL;
7163         rsurface.batchsvector3f_bufferoffset = 0;
7164         rsurface.batchtvector3f = NULL;
7165         rsurface.batchtvector3f_vertexbuffer = NULL;
7166         rsurface.batchtvector3f_bufferoffset = 0;
7167         rsurface.batchnormal3f  = NULL;
7168         rsurface.batchnormal3f_vertexbuffer = NULL;
7169         rsurface.batchnormal3f_bufferoffset = 0;
7170         rsurface.batchlightmapcolor4f = NULL;
7171         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7172         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7173         rsurface.batchtexcoordtexture2f = NULL;
7174         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7175         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7176         rsurface.batchtexcoordlightmap2f = NULL;
7177         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7178         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7179         rsurface.batchskeletalindex4ub = NULL;
7180         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7181         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7182         rsurface.batchskeletalweight4ub = NULL;
7183         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7184         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7185         rsurface.batchelement3i = NULL;
7186         rsurface.batchelement3i_indexbuffer = NULL;
7187         rsurface.batchelement3i_bufferoffset = 0;
7188         rsurface.batchelement3s = NULL;
7189         rsurface.batchelement3s_indexbuffer = NULL;
7190         rsurface.batchelement3s_bufferoffset = 0;
7191         rsurface.forcecurrenttextureupdate = false;
7192 }
7193
7194 void RSurf_ActiveCustomEntity(const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, int entflags, double shadertime, float r, float g, float b, float a, int numvertices, const float *vertex3f, const float *texcoord2f, const float *normal3f, const float *svector3f, const float *tvector3f, const float *color4f, int numtriangles, const int *element3i, const unsigned short *element3s, qbool wantnormals, qbool wanttangents)
7195 {
7196         rsurface.entity = r_refdef.scene.worldentity;
7197         if (r != 1.0f || g != 1.0f || b != 1.0f || a != 1.0f) {
7198                 // HACK to provide a valid entity with modded colors to R_GetCurrentTexture.
7199                 // A better approach could be making this copy only once per frame.
7200                 static entity_render_t custom_entity;
7201                 int q;
7202                 custom_entity = *rsurface.entity;
7203                 for (q = 0; q < 3; ++q) {
7204                         float colormod = q == 0 ? r : q == 1 ? g : b;
7205                         custom_entity.render_fullbright[q] *= colormod;
7206                         custom_entity.render_modellight_ambient[q] *= colormod;
7207                         custom_entity.render_modellight_diffuse[q] *= colormod;
7208                         custom_entity.render_lightmap_ambient[q] *= colormod;
7209                         custom_entity.render_lightmap_diffuse[q] *= colormod;
7210                         custom_entity.render_rtlight_diffuse[q] *= colormod;
7211                 }
7212                 custom_entity.alpha *= a;
7213                 rsurface.entity = &custom_entity;
7214         }
7215         rsurface.skeleton = NULL;
7216         rsurface.ent_skinnum = 0;
7217         rsurface.ent_qwskin = -1;
7218         rsurface.ent_flags = entflags;
7219         rsurface.shadertime = r_refdef.scene.time - shadertime;
7220         rsurface.modelnumvertices = numvertices;
7221         rsurface.modelnumtriangles = numtriangles;
7222         rsurface.matrix = *matrix;
7223         rsurface.inversematrix = *inversematrix;
7224         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
7225         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
7226         R_EntityMatrix(&rsurface.matrix);
7227         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
7228         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
7229         rsurface.fogplaneviewdist *= rsurface.inversematrixscale;
7230         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
7231         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
7232         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
7233         memset(rsurface.frameblend, 0, sizeof(rsurface.frameblend));
7234         rsurface.frameblend[0].lerp = 1;
7235         rsurface.ent_alttextures = false;
7236         rsurface.basepolygonfactor = r_refdef.polygonfactor;
7237         rsurface.basepolygonoffset = r_refdef.polygonoffset;
7238         rsurface.entityskeletaltransform3x4 = NULL;
7239         rsurface.entityskeletaltransform3x4buffer = NULL;
7240         rsurface.entityskeletaltransform3x4offset = 0;
7241         rsurface.entityskeletaltransform3x4size = 0;
7242         rsurface.entityskeletalnumtransforms = 0;
7243         r_refdef.stats[r_stat_batch_entitycustom_count]++;
7244         r_refdef.stats[r_stat_batch_entitycustom_surfaces] += 1;
7245         r_refdef.stats[r_stat_batch_entitycustom_vertices] += rsurface.modelnumvertices;
7246         r_refdef.stats[r_stat_batch_entitycustom_triangles] += rsurface.modelnumtriangles;
7247         if (wanttangents)
7248         {
7249                 rsurface.modelvertex3f = (float *)vertex3f;
7250                 rsurface.modelsvector3f = svector3f ? (float *)svector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7251                 rsurface.modeltvector3f = tvector3f ? (float *)tvector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7252                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7253         }
7254         else if (wantnormals)
7255         {
7256                 rsurface.modelvertex3f = (float *)vertex3f;
7257                 rsurface.modelsvector3f = NULL;
7258                 rsurface.modeltvector3f = NULL;
7259                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7260         }
7261         else
7262         {
7263                 rsurface.modelvertex3f = (float *)vertex3f;
7264                 rsurface.modelsvector3f = NULL;
7265                 rsurface.modeltvector3f = NULL;
7266                 rsurface.modelnormal3f = NULL;
7267         }
7268         rsurface.modelvertex3f_vertexbuffer = 0;
7269         rsurface.modelvertex3f_bufferoffset = 0;
7270         rsurface.modelsvector3f_vertexbuffer = 0;
7271         rsurface.modelsvector3f_bufferoffset = 0;
7272         rsurface.modeltvector3f_vertexbuffer = 0;
7273         rsurface.modeltvector3f_bufferoffset = 0;
7274         rsurface.modelnormal3f_vertexbuffer = 0;
7275         rsurface.modelnormal3f_bufferoffset = 0;
7276         rsurface.modelgeneratedvertex = true;
7277         rsurface.modellightmapcolor4f  = (float *)color4f;
7278         rsurface.modellightmapcolor4f_vertexbuffer = 0;
7279         rsurface.modellightmapcolor4f_bufferoffset = 0;
7280         rsurface.modeltexcoordtexture2f  = (float *)texcoord2f;
7281         rsurface.modeltexcoordtexture2f_vertexbuffer = 0;
7282         rsurface.modeltexcoordtexture2f_bufferoffset = 0;
7283         rsurface.modeltexcoordlightmap2f  = NULL;
7284         rsurface.modeltexcoordlightmap2f_vertexbuffer = 0;
7285         rsurface.modeltexcoordlightmap2f_bufferoffset = 0;
7286         rsurface.modelskeletalindex4ub = NULL;
7287         rsurface.modelskeletalindex4ub_vertexbuffer = NULL;
7288         rsurface.modelskeletalindex4ub_bufferoffset = 0;
7289         rsurface.modelskeletalweight4ub = NULL;
7290         rsurface.modelskeletalweight4ub_vertexbuffer = NULL;
7291         rsurface.modelskeletalweight4ub_bufferoffset = 0;
7292         rsurface.modelelement3i = (int *)element3i;
7293         rsurface.modelelement3i_indexbuffer = NULL;
7294         rsurface.modelelement3i_bufferoffset = 0;
7295         rsurface.modelelement3s = (unsigned short *)element3s;
7296         rsurface.modelelement3s_indexbuffer = NULL;
7297         rsurface.modelelement3s_bufferoffset = 0;
7298         rsurface.modellightmapoffsets = NULL;
7299         rsurface.modelsurfaces = NULL;
7300         rsurface.batchgeneratedvertex = false;
7301         rsurface.batchfirstvertex = 0;
7302         rsurface.batchnumvertices = 0;
7303         rsurface.batchfirsttriangle = 0;
7304         rsurface.batchnumtriangles = 0;
7305         rsurface.batchvertex3f  = NULL;
7306         rsurface.batchvertex3f_vertexbuffer = NULL;
7307         rsurface.batchvertex3f_bufferoffset = 0;
7308         rsurface.batchsvector3f = NULL;
7309         rsurface.batchsvector3f_vertexbuffer = NULL;
7310         rsurface.batchsvector3f_bufferoffset = 0;
7311         rsurface.batchtvector3f = NULL;
7312         rsurface.batchtvector3f_vertexbuffer = NULL;
7313         rsurface.batchtvector3f_bufferoffset = 0;
7314         rsurface.batchnormal3f  = NULL;
7315         rsurface.batchnormal3f_vertexbuffer = NULL;
7316         rsurface.batchnormal3f_bufferoffset = 0;
7317         rsurface.batchlightmapcolor4f = NULL;
7318         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7319         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7320         rsurface.batchtexcoordtexture2f = NULL;
7321         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7322         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7323         rsurface.batchtexcoordlightmap2f = NULL;
7324         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7325         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7326         rsurface.batchskeletalindex4ub = NULL;
7327         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7328         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7329         rsurface.batchskeletalweight4ub = NULL;
7330         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7331         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7332         rsurface.batchelement3i = NULL;
7333         rsurface.batchelement3i_indexbuffer = NULL;
7334         rsurface.batchelement3i_bufferoffset = 0;
7335         rsurface.batchelement3s = NULL;
7336         rsurface.batchelement3s_indexbuffer = NULL;
7337         rsurface.batchelement3s_bufferoffset = 0;
7338         rsurface.forcecurrenttextureupdate = true;
7339
7340         if (rsurface.modelnumvertices && rsurface.modelelement3i)
7341         {
7342                 if ((wantnormals || wanttangents) && !normal3f)
7343                 {
7344                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7345                         Mod_BuildNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modelelement3i, rsurface.modelnormal3f, r_smoothnormals_areaweighting.integer != 0);
7346                 }
7347                 if (wanttangents && !svector3f)
7348                 {
7349                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7350                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7351                         Mod_BuildTextureVectorsFromNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modeltexcoordtexture2f, rsurface.modelnormal3f, rsurface.modelelement3i, rsurface.modelsvector3f, rsurface.modeltvector3f, r_smoothnormals_areaweighting.integer != 0);
7352                 }
7353         }
7354 }
7355
7356 float RSurf_FogPoint(const float *v)
7357 {
7358         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7359         float FogPlaneViewDist = r_refdef.fogplaneviewdist;
7360         float FogPlaneVertexDist = DotProduct(r_refdef.fogplane, v) + r_refdef.fogplane[3];
7361         float FogHeightFade = r_refdef.fogheightfade;
7362         float fogfrac;
7363         unsigned int fogmasktableindex;
7364         if (r_refdef.fogplaneviewabove)
7365                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7366         else
7367                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7368         fogmasktableindex = (unsigned int)(VectorDistance(r_refdef.view.origin, v) * fogfrac * r_refdef.fogmasktabledistmultiplier);
7369         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7370 }
7371
7372 float RSurf_FogVertex(const float *v)
7373 {
7374         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7375         float FogPlaneViewDist = rsurface.fogplaneviewdist;
7376         float FogPlaneVertexDist = DotProduct(rsurface.fogplane, v) + rsurface.fogplane[3];
7377         float FogHeightFade = rsurface.fogheightfade;
7378         float fogfrac;
7379         unsigned int fogmasktableindex;
7380         if (r_refdef.fogplaneviewabove)
7381                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7382         else
7383                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7384         fogmasktableindex = (unsigned int)(VectorDistance(rsurface.localvieworigin, v) * fogfrac * rsurface.fogmasktabledistmultiplier);
7385         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7386 }
7387
7388 void RSurf_UploadBuffersForBatch(void)
7389 {
7390         // upload buffer data for generated vertex data (dynamicvertex case) or index data (copytriangles case) and models that lack it to begin with (e.g. DrawQ_FlushUI)
7391         // note that if rsurface.batchvertex3f_vertexbuffer is NULL, dynamicvertex is forced as we don't account for the proper base vertex here.
7392         if (rsurface.batchvertex3f && !rsurface.batchvertex3f_vertexbuffer)
7393                 rsurface.batchvertex3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f, R_BUFFERDATA_VERTEX, &rsurface.batchvertex3f_bufferoffset);
7394         if (rsurface.batchsvector3f && !rsurface.batchsvector3f_vertexbuffer)
7395                 rsurface.batchsvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchsvector3f_bufferoffset);
7396         if (rsurface.batchtvector3f && !rsurface.batchtvector3f_vertexbuffer)
7397                 rsurface.batchtvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchtvector3f_bufferoffset);
7398         if (rsurface.batchnormal3f && !rsurface.batchnormal3f_vertexbuffer)
7399                 rsurface.batchnormal3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f, R_BUFFERDATA_VERTEX, &rsurface.batchnormal3f_bufferoffset);
7400         if (rsurface.batchlightmapcolor4f && !rsurface.batchlightmapcolor4f_vertexbuffer)
7401                 rsurface.batchlightmapcolor4f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[4]), rsurface.batchlightmapcolor4f, R_BUFFERDATA_VERTEX, &rsurface.batchlightmapcolor4f_bufferoffset);
7402         if (rsurface.batchtexcoordtexture2f && !rsurface.batchtexcoordtexture2f_vertexbuffer)
7403                 rsurface.batchtexcoordtexture2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordtexture2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordtexture2f_bufferoffset);
7404         if (rsurface.batchtexcoordlightmap2f && !rsurface.batchtexcoordlightmap2f_vertexbuffer)
7405                 rsurface.batchtexcoordlightmap2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordlightmap2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordlightmap2f_bufferoffset);
7406         if (rsurface.batchskeletalindex4ub && !rsurface.batchskeletalindex4ub_vertexbuffer)
7407                 rsurface.batchskeletalindex4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalindex4ub_bufferoffset);
7408         if (rsurface.batchskeletalweight4ub && !rsurface.batchskeletalweight4ub_vertexbuffer)
7409                 rsurface.batchskeletalweight4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalweight4ub_bufferoffset);
7410
7411         if (rsurface.batchelement3s && !rsurface.batchelement3s_indexbuffer)
7412                 rsurface.batchelement3s_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(short[3]), rsurface.batchelement3s, R_BUFFERDATA_INDEX16, &rsurface.batchelement3s_bufferoffset);
7413         else if (rsurface.batchelement3i && !rsurface.batchelement3i_indexbuffer)
7414                 rsurface.batchelement3i_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(int[3]), rsurface.batchelement3i, R_BUFFERDATA_INDEX32, &rsurface.batchelement3i_bufferoffset);
7415
7416         R_Mesh_VertexPointer(     3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
7417         R_Mesh_ColorPointer(      4, GL_FLOAT, sizeof(float[4]), rsurface.batchlightmapcolor4f, rsurface.batchlightmapcolor4f_vertexbuffer, rsurface.batchlightmapcolor4f_bufferoffset);
7418         R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
7419         R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchsvector3f, rsurface.batchsvector3f_vertexbuffer, rsurface.batchsvector3f_bufferoffset);
7420         R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchtvector3f, rsurface.batchtvector3f_vertexbuffer, rsurface.batchtvector3f_bufferoffset);
7421         R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchnormal3f, rsurface.batchnormal3f_vertexbuffer, rsurface.batchnormal3f_bufferoffset);
7422         R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset);
7423         R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
7424         R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, rsurface.batchskeletalindex4ub_vertexbuffer, rsurface.batchskeletalindex4ub_bufferoffset);
7425         R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, rsurface.batchskeletalweight4ub_vertexbuffer, rsurface.batchskeletalweight4ub_bufferoffset);
7426 }
7427
7428 static void RSurf_RenumberElements(const int *inelement3i, int *outelement3i, int numelements, int adjust)
7429 {
7430         int i;
7431         for (i = 0;i < numelements;i++)
7432                 outelement3i[i] = inelement3i[i] + adjust;
7433 }
7434
7435 static const int quadedges[6][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}};
7436 void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const msurface_t **texturesurfacelist)
7437 {
7438         int deformindex;
7439         int firsttriangle;
7440         int numtriangles;
7441         int firstvertex;
7442         int endvertex;
7443         int numvertices;
7444         int surfacefirsttriangle;
7445         int surfacenumtriangles;
7446         int surfacefirstvertex;
7447         int surfaceendvertex;
7448         int surfacenumvertices;
7449         int batchnumsurfaces = texturenumsurfaces;
7450         int batchnumvertices;
7451         int batchnumtriangles;
7452         int i, j;
7453         qbool gaps;
7454         qbool dynamicvertex;
7455         float amplitude;
7456         float animpos;
7457         float center[3], forward[3], right[3], up[3], v[3], newforward[3], newright[3], newup[3];
7458         float waveparms[4];
7459         unsigned char *ub;
7460         q3shaderinfo_deform_t *deform;
7461         const msurface_t *surface, *firstsurface;
7462         if (!texturenumsurfaces)
7463                 return;
7464         // find vertex range of this surface batch
7465         gaps = false;
7466         firstsurface = texturesurfacelist[0];
7467         firsttriangle = firstsurface->num_firsttriangle;
7468         batchnumvertices = 0;
7469         batchnumtriangles = 0;
7470         firstvertex = endvertex = firstsurface->num_firstvertex;
7471         for (i = 0;i < texturenumsurfaces;i++)
7472         {
7473                 surface = texturesurfacelist[i];
7474                 if (surface != firstsurface + i)
7475                         gaps = true;
7476                 surfacefirstvertex = surface->num_firstvertex;
7477                 surfaceendvertex = surfacefirstvertex + surface->num_vertices;
7478                 surfacenumvertices = surface->num_vertices;
7479                 surfacenumtriangles = surface->num_triangles;
7480                 if (firstvertex > surfacefirstvertex)
7481                         firstvertex = surfacefirstvertex;
7482                 if (endvertex < surfaceendvertex)
7483                         endvertex = surfaceendvertex;
7484                 batchnumvertices += surfacenumvertices;
7485                 batchnumtriangles += surfacenumtriangles;
7486         }
7487
7488         r_refdef.stats[r_stat_batch_batches]++;
7489         if (gaps)
7490                 r_refdef.stats[r_stat_batch_withgaps]++;
7491         r_refdef.stats[r_stat_batch_surfaces] += batchnumsurfaces;
7492         r_refdef.stats[r_stat_batch_vertices] += batchnumvertices;
7493         r_refdef.stats[r_stat_batch_triangles] += batchnumtriangles;
7494
7495         // we now know the vertex range used, and if there are any gaps in it
7496         rsurface.batchfirstvertex = firstvertex;
7497         rsurface.batchnumvertices = endvertex - firstvertex;
7498         rsurface.batchfirsttriangle = firsttriangle;
7499         rsurface.batchnumtriangles = batchnumtriangles;
7500
7501         // check if any dynamic vertex processing must occur
7502         dynamicvertex = false;
7503
7504         // we must use vertexbuffers for rendering, we can upload vertex buffers
7505         // easily enough but if the basevertex is non-zero it becomes more
7506         // difficult, so force dynamicvertex path in that case - it's suboptimal
7507         // but the most optimal case is to have the geometry sources provide their
7508         // own anyway.
7509         if (!rsurface.modelvertex3f_vertexbuffer && firstvertex != 0)
7510                 dynamicvertex = true;
7511
7512         // a cvar to force the dynamic vertex path to be taken, for debugging
7513         if (r_batch_debugdynamicvertexpath.integer)
7514         {
7515                 if (!dynamicvertex)
7516                 {
7517                         r_refdef.stats[r_stat_batch_dynamic_batches_because_cvar] += 1;
7518                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_cvar] += batchnumsurfaces;
7519                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_cvar] += batchnumvertices;
7520                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_cvar] += batchnumtriangles;
7521                 }
7522                 dynamicvertex = true;
7523         }
7524
7525         // if there is a chance of animated vertex colors, it's a dynamic batch
7526         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
7527         {
7528                 if (!dynamicvertex)
7529                 {
7530                         r_refdef.stats[r_stat_batch_dynamic_batches_because_lightmapvertex] += 1;
7531                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_lightmapvertex] += batchnumsurfaces;
7532                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_lightmapvertex] += batchnumvertices;
7533                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_lightmapvertex] += batchnumtriangles;
7534                 }
7535                 dynamicvertex = true;
7536         }
7537
7538         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
7539         {
7540                 switch (deform->deform)
7541                 {
7542                 default:
7543                 case Q3DEFORM_PROJECTIONSHADOW:
7544                 case Q3DEFORM_TEXT0:
7545                 case Q3DEFORM_TEXT1:
7546                 case Q3DEFORM_TEXT2:
7547                 case Q3DEFORM_TEXT3:
7548                 case Q3DEFORM_TEXT4:
7549                 case Q3DEFORM_TEXT5:
7550                 case Q3DEFORM_TEXT6:
7551                 case Q3DEFORM_TEXT7:
7552                 case Q3DEFORM_NONE:
7553                         break;
7554                 case Q3DEFORM_AUTOSPRITE:
7555                         if (!dynamicvertex)
7556                         {
7557                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite] += 1;
7558                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite] += batchnumsurfaces;
7559                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite] += batchnumvertices;
7560                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite] += batchnumtriangles;
7561                         }
7562                         dynamicvertex = true;
7563                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_TEXCOORD;
7564                         break;
7565                 case Q3DEFORM_AUTOSPRITE2:
7566                         if (!dynamicvertex)
7567                         {
7568                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite2] += 1;
7569                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite2] += batchnumsurfaces;
7570                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite2] += batchnumvertices;
7571                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite2] += batchnumtriangles;
7572                         }
7573                         dynamicvertex = true;
7574                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7575                         break;
7576                 case Q3DEFORM_NORMAL:
7577                         if (!dynamicvertex)
7578                         {
7579                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_normal] += 1;
7580                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_normal] += batchnumsurfaces;
7581                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_normal] += batchnumvertices;
7582                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_normal] += batchnumtriangles;
7583                         }
7584                         dynamicvertex = true;
7585                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7586                         break;
7587                 case Q3DEFORM_WAVE:
7588                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7589                                 break; // if wavefunc is a nop, ignore this transform
7590                         if (!dynamicvertex)
7591                         {
7592                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_wave] += 1;
7593                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_wave] += batchnumsurfaces;
7594                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_wave] += batchnumvertices;
7595                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_wave] += batchnumtriangles;
7596                         }
7597                         dynamicvertex = true;
7598                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7599                         break;
7600                 case Q3DEFORM_BULGE:
7601                         if (!dynamicvertex)
7602                         {
7603                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_bulge] += 1;
7604                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_bulge] += batchnumsurfaces;
7605                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_bulge] += batchnumvertices;
7606                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_bulge] += batchnumtriangles;
7607                         }
7608                         dynamicvertex = true;
7609                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7610                         break;
7611                 case Q3DEFORM_MOVE:
7612                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7613                                 break; // if wavefunc is a nop, ignore this transform
7614                         if (!dynamicvertex)
7615                         {
7616                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_move] += 1;
7617                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_move] += batchnumsurfaces;
7618                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_move] += batchnumvertices;
7619                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_move] += batchnumtriangles;
7620                         }
7621                         dynamicvertex = true;
7622                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7623                         break;
7624                 }
7625         }
7626         if (rsurface.texture->materialshaderpass)
7627         {
7628                 switch (rsurface.texture->materialshaderpass->tcgen.tcgen)
7629                 {
7630                 default:
7631                 case Q3TCGEN_TEXTURE:
7632                         break;
7633                 case Q3TCGEN_LIGHTMAP:
7634                         if (!dynamicvertex)
7635                         {
7636                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_lightmap] += 1;
7637                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_lightmap] += batchnumsurfaces;
7638                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_lightmap] += batchnumvertices;
7639                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_lightmap] += batchnumtriangles;
7640                         }
7641                         dynamicvertex = true;
7642                         batchneed |= BATCHNEED_ARRAY_LIGHTMAP;
7643                         break;
7644                 case Q3TCGEN_VECTOR:
7645                         if (!dynamicvertex)
7646                         {
7647                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_vector] += 1;
7648                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_vector] += batchnumsurfaces;
7649                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_vector] += batchnumvertices;
7650                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_vector] += batchnumtriangles;
7651                         }
7652                         dynamicvertex = true;
7653                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7654                         break;
7655                 case Q3TCGEN_ENVIRONMENT:
7656                         if (!dynamicvertex)
7657                         {
7658                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_environment] += 1;
7659                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_environment] += batchnumsurfaces;
7660                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_environment] += batchnumvertices;
7661                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_environment] += batchnumtriangles;
7662                         }
7663                         dynamicvertex = true;
7664                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL;
7665                         break;
7666                 }
7667                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
7668                 {
7669                         if (!dynamicvertex)
7670                         {
7671                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcmod_turbulent] += 1;
7672                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcmod_turbulent] += batchnumsurfaces;
7673                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcmod_turbulent] += batchnumvertices;
7674                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcmod_turbulent] += batchnumtriangles;
7675                         }
7676                         dynamicvertex = true;
7677                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7678                 }
7679         }
7680
7681         // the caller can specify BATCHNEED_NOGAPS to force a batch with
7682         // firstvertex = 0 and endvertex = numvertices (no gaps, no firstvertex),
7683         // we ensure this by treating the vertex batch as dynamic...
7684         if ((batchneed & BATCHNEED_ALWAYSCOPY) || ((batchneed & BATCHNEED_NOGAPS) && (gaps || firstvertex > 0)))
7685         {
7686                 if (!dynamicvertex)
7687                 {
7688                         r_refdef.stats[r_stat_batch_dynamic_batches_because_nogaps] += 1;
7689                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_nogaps] += batchnumsurfaces;
7690                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_nogaps] += batchnumvertices;
7691                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_nogaps] += batchnumtriangles;
7692                 }
7693                 dynamicvertex = true;
7694         }
7695
7696         // if we're going to have to apply the skeletal transform manually, we need to batch the skeletal data
7697         if (dynamicvertex && rsurface.entityskeletaltransform3x4)
7698                 batchneed |= BATCHNEED_ARRAY_SKELETAL;
7699
7700         rsurface.batchvertex3f = rsurface.modelvertex3f;
7701         rsurface.batchvertex3f_vertexbuffer = rsurface.modelvertex3f_vertexbuffer;
7702         rsurface.batchvertex3f_bufferoffset = rsurface.modelvertex3f_bufferoffset;
7703         rsurface.batchsvector3f = rsurface.modelsvector3f;
7704         rsurface.batchsvector3f_vertexbuffer = rsurface.modelsvector3f_vertexbuffer;
7705         rsurface.batchsvector3f_bufferoffset = rsurface.modelsvector3f_bufferoffset;
7706         rsurface.batchtvector3f = rsurface.modeltvector3f;
7707         rsurface.batchtvector3f_vertexbuffer = rsurface.modeltvector3f_vertexbuffer;
7708         rsurface.batchtvector3f_bufferoffset = rsurface.modeltvector3f_bufferoffset;
7709         rsurface.batchnormal3f = rsurface.modelnormal3f;
7710         rsurface.batchnormal3f_vertexbuffer = rsurface.modelnormal3f_vertexbuffer;
7711         rsurface.batchnormal3f_bufferoffset = rsurface.modelnormal3f_bufferoffset;
7712         rsurface.batchlightmapcolor4f = rsurface.modellightmapcolor4f;
7713         rsurface.batchlightmapcolor4f_vertexbuffer  = rsurface.modellightmapcolor4f_vertexbuffer;
7714         rsurface.batchlightmapcolor4f_bufferoffset  = rsurface.modellightmapcolor4f_bufferoffset;
7715         rsurface.batchtexcoordtexture2f = rsurface.modeltexcoordtexture2f;
7716         rsurface.batchtexcoordtexture2f_vertexbuffer  = rsurface.modeltexcoordtexture2f_vertexbuffer;
7717         rsurface.batchtexcoordtexture2f_bufferoffset  = rsurface.modeltexcoordtexture2f_bufferoffset;
7718         rsurface.batchtexcoordlightmap2f = rsurface.modeltexcoordlightmap2f;
7719         rsurface.batchtexcoordlightmap2f_vertexbuffer = rsurface.modeltexcoordlightmap2f_vertexbuffer;
7720         rsurface.batchtexcoordlightmap2f_bufferoffset = rsurface.modeltexcoordlightmap2f_bufferoffset;
7721         rsurface.batchskeletalindex4ub = rsurface.modelskeletalindex4ub;
7722         rsurface.batchskeletalindex4ub_vertexbuffer = rsurface.modelskeletalindex4ub_vertexbuffer;
7723         rsurface.batchskeletalindex4ub_bufferoffset = rsurface.modelskeletalindex4ub_bufferoffset;
7724         rsurface.batchskeletalweight4ub = rsurface.modelskeletalweight4ub;
7725         rsurface.batchskeletalweight4ub_vertexbuffer = rsurface.modelskeletalweight4ub_vertexbuffer;
7726         rsurface.batchskeletalweight4ub_bufferoffset = rsurface.modelskeletalweight4ub_bufferoffset;
7727         rsurface.batchelement3i = rsurface.modelelement3i;
7728         rsurface.batchelement3i_indexbuffer = rsurface.modelelement3i_indexbuffer;
7729         rsurface.batchelement3i_bufferoffset = rsurface.modelelement3i_bufferoffset;
7730         rsurface.batchelement3s = rsurface.modelelement3s;
7731         rsurface.batchelement3s_indexbuffer = rsurface.modelelement3s_indexbuffer;
7732         rsurface.batchelement3s_bufferoffset = rsurface.modelelement3s_bufferoffset;
7733         rsurface.batchskeletaltransform3x4 = rsurface.entityskeletaltransform3x4;
7734         rsurface.batchskeletaltransform3x4buffer = rsurface.entityskeletaltransform3x4buffer;
7735         rsurface.batchskeletaltransform3x4offset = rsurface.entityskeletaltransform3x4offset;
7736         rsurface.batchskeletaltransform3x4size = rsurface.entityskeletaltransform3x4size;
7737         rsurface.batchskeletalnumtransforms = rsurface.entityskeletalnumtransforms;
7738
7739         // if any dynamic vertex processing has to occur in software, we copy the
7740         // entire surface list together before processing to rebase the vertices
7741         // to start at 0 (otherwise we waste a lot of room in a vertex buffer).
7742         //
7743         // if any gaps exist and we do not have a static vertex buffer, we have to
7744         // copy the surface list together to avoid wasting upload bandwidth on the
7745         // vertices in the gaps.
7746         //
7747         // if gaps exist and we have a static vertex buffer, we can choose whether
7748         // to combine the index buffer ranges into one dynamic index buffer or
7749         // simply issue multiple glDrawElements calls (BATCHNEED_ALLOWMULTIDRAW).
7750         //
7751         // in many cases the batch is reduced to one draw call.
7752
7753         rsurface.batchmultidraw = false;
7754         rsurface.batchmultidrawnumsurfaces = 0;
7755         rsurface.batchmultidrawsurfacelist = NULL;
7756
7757         if (!dynamicvertex)
7758         {
7759                 // static vertex data, just set pointers...
7760                 rsurface.batchgeneratedvertex = false;
7761                 // if there are gaps, we want to build a combined index buffer,
7762                 // otherwise use the original static buffer with an appropriate offset
7763                 if (gaps)
7764                 {
7765                         r_refdef.stats[r_stat_batch_copytriangles_batches] += 1;
7766                         r_refdef.stats[r_stat_batch_copytriangles_surfaces] += batchnumsurfaces;
7767                         r_refdef.stats[r_stat_batch_copytriangles_vertices] += batchnumvertices;
7768                         r_refdef.stats[r_stat_batch_copytriangles_triangles] += batchnumtriangles;
7769                         if ((batchneed & BATCHNEED_ALLOWMULTIDRAW) && r_batch_multidraw.integer && batchnumtriangles >= r_batch_multidraw_mintriangles.integer)
7770                         {
7771                                 rsurface.batchmultidraw = true;
7772                                 rsurface.batchmultidrawnumsurfaces = texturenumsurfaces;
7773                                 rsurface.batchmultidrawsurfacelist = texturesurfacelist;
7774                                 return;
7775                         }
7776                         // build a new triangle elements array for this batch
7777                         rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7778                         rsurface.batchfirsttriangle = 0;
7779                         numtriangles = 0;
7780                         for (i = 0;i < texturenumsurfaces;i++)
7781                         {
7782                                 surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7783                                 surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7784                                 memcpy(rsurface.batchelement3i + 3*numtriangles, rsurface.modelelement3i + 3*surfacefirsttriangle, surfacenumtriangles*sizeof(int[3]));
7785                                 numtriangles += surfacenumtriangles;
7786                         }
7787                         rsurface.batchelement3i_indexbuffer = NULL;
7788                         rsurface.batchelement3i_bufferoffset = 0;
7789                         rsurface.batchelement3s = NULL;
7790                         rsurface.batchelement3s_indexbuffer = NULL;
7791                         rsurface.batchelement3s_bufferoffset = 0;
7792                         if (endvertex <= 65536)
7793                         {
7794                                 // make a 16bit (unsigned short) index array if possible
7795                                 rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7796                                 for (i = 0;i < numtriangles*3;i++)
7797                                         rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7798                         }
7799                 }
7800                 else
7801                 {
7802                         r_refdef.stats[r_stat_batch_fast_batches] += 1;
7803                         r_refdef.stats[r_stat_batch_fast_surfaces] += batchnumsurfaces;
7804                         r_refdef.stats[r_stat_batch_fast_vertices] += batchnumvertices;
7805                         r_refdef.stats[r_stat_batch_fast_triangles] += batchnumtriangles;
7806                 }
7807                 return;
7808         }
7809
7810         // something needs software processing, do it for real...
7811         // we only directly handle separate array data in this case and then
7812         // generate interleaved data if needed...
7813         rsurface.batchgeneratedvertex = true;
7814         r_refdef.stats[r_stat_batch_dynamic_batches] += 1;
7815         r_refdef.stats[r_stat_batch_dynamic_surfaces] += batchnumsurfaces;
7816         r_refdef.stats[r_stat_batch_dynamic_vertices] += batchnumvertices;
7817         r_refdef.stats[r_stat_batch_dynamic_triangles] += batchnumtriangles;
7818
7819         // now copy the vertex data into a combined array and make an index array
7820         // (this is what Quake3 does all the time)
7821         // we also apply any skeletal animation here that would have been done in
7822         // the vertex shader, because most of the dynamic vertex animation cases
7823         // need actual vertex positions and normals
7824         //if (dynamicvertex)
7825         {
7826                 rsurface.batchvertex3f = NULL;
7827                 rsurface.batchvertex3f_vertexbuffer = NULL;
7828                 rsurface.batchvertex3f_bufferoffset = 0;
7829                 rsurface.batchsvector3f = NULL;
7830                 rsurface.batchsvector3f_vertexbuffer = NULL;
7831                 rsurface.batchsvector3f_bufferoffset = 0;
7832                 rsurface.batchtvector3f = NULL;
7833                 rsurface.batchtvector3f_vertexbuffer = NULL;
7834                 rsurface.batchtvector3f_bufferoffset = 0;
7835                 rsurface.batchnormal3f = NULL;
7836                 rsurface.batchnormal3f_vertexbuffer = NULL;
7837                 rsurface.batchnormal3f_bufferoffset = 0;
7838                 rsurface.batchlightmapcolor4f = NULL;
7839                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7840                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
7841                 rsurface.batchtexcoordtexture2f = NULL;
7842                 rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7843                 rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7844                 rsurface.batchtexcoordlightmap2f = NULL;
7845                 rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7846                 rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7847                 rsurface.batchskeletalindex4ub = NULL;
7848                 rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7849                 rsurface.batchskeletalindex4ub_bufferoffset = 0;
7850                 rsurface.batchskeletalweight4ub = NULL;
7851                 rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7852                 rsurface.batchskeletalweight4ub_bufferoffset = 0;
7853                 rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7854                 rsurface.batchelement3i_indexbuffer = NULL;
7855                 rsurface.batchelement3i_bufferoffset = 0;
7856                 rsurface.batchelement3s = NULL;
7857                 rsurface.batchelement3s_indexbuffer = NULL;
7858                 rsurface.batchelement3s_bufferoffset = 0;
7859                 rsurface.batchskeletaltransform3x4buffer = NULL;
7860                 rsurface.batchskeletaltransform3x4offset = 0;
7861                 rsurface.batchskeletaltransform3x4size = 0;
7862                 // we'll only be setting up certain arrays as needed
7863                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7864                         rsurface.batchvertex3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7865                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7866                         rsurface.batchnormal3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7867                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7868                 {
7869                         rsurface.batchsvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7870                         rsurface.batchtvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7871                 }
7872                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7873                         rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
7874                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7875                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7876                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7877                         rsurface.batchtexcoordlightmap2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7878                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7879                 {
7880                         rsurface.batchskeletalindex4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7881                         rsurface.batchskeletalweight4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7882                 }
7883                 numvertices = 0;
7884                 numtriangles = 0;
7885                 for (i = 0;i < texturenumsurfaces;i++)
7886                 {
7887                         surfacefirstvertex = texturesurfacelist[i]->num_firstvertex;
7888                         surfacenumvertices = texturesurfacelist[i]->num_vertices;
7889                         surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7890                         surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7891                         // copy only the data requested
7892                         if (batchneed & (BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ARRAY_LIGHTMAP))
7893                         {
7894                                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7895                                 {
7896                                         if (rsurface.batchvertex3f)
7897                                                 memcpy(rsurface.batchvertex3f + 3*numvertices, rsurface.modelvertex3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7898                                         else
7899                                                 memset(rsurface.batchvertex3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7900                                 }
7901                                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7902                                 {
7903                                         if (rsurface.modelnormal3f)
7904                                                 memcpy(rsurface.batchnormal3f + 3*numvertices, rsurface.modelnormal3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7905                                         else
7906                                                 memset(rsurface.batchnormal3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7907                                 }
7908                                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7909                                 {
7910                                         if (rsurface.modelsvector3f)
7911                                         {
7912                                                 memcpy(rsurface.batchsvector3f + 3*numvertices, rsurface.modelsvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7913                                                 memcpy(rsurface.batchtvector3f + 3*numvertices, rsurface.modeltvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7914                                         }
7915                                         else
7916                                         {
7917                                                 memset(rsurface.batchsvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7918                                                 memset(rsurface.batchtvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7919                                         }
7920                                 }
7921                                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7922                                 {
7923                                         if (rsurface.modellightmapcolor4f)
7924                                                 memcpy(rsurface.batchlightmapcolor4f + 4*numvertices, rsurface.modellightmapcolor4f + 4*surfacefirstvertex, surfacenumvertices * sizeof(float[4]));
7925                                         else
7926                                                 memset(rsurface.batchlightmapcolor4f + 4*numvertices, 0, surfacenumvertices * sizeof(float[4]));
7927                                 }
7928                                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7929                                 {
7930                                         if (rsurface.modeltexcoordtexture2f)
7931                                                 memcpy(rsurface.batchtexcoordtexture2f + 2*numvertices, rsurface.modeltexcoordtexture2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7932                                         else
7933                                                 memset(rsurface.batchtexcoordtexture2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7934                                 }
7935                                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7936                                 {
7937                                         if (rsurface.modeltexcoordlightmap2f)
7938                                                 memcpy(rsurface.batchtexcoordlightmap2f + 2*numvertices, rsurface.modeltexcoordlightmap2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7939                                         else
7940                                                 memset(rsurface.batchtexcoordlightmap2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7941                                 }
7942                                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7943                                 {
7944                                         if (rsurface.modelskeletalindex4ub)
7945                                         {
7946                                                 memcpy(rsurface.batchskeletalindex4ub + 4*numvertices, rsurface.modelskeletalindex4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7947                                                 memcpy(rsurface.batchskeletalweight4ub + 4*numvertices, rsurface.modelskeletalweight4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7948                                         }
7949                                         else
7950                                         {
7951                                                 memset(rsurface.batchskeletalindex4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7952                                                 memset(rsurface.batchskeletalweight4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7953                                                 ub = rsurface.batchskeletalweight4ub + 4*numvertices;
7954                                                 for (j = 0;j < surfacenumvertices;j++)
7955                                                         ub[j*4] = 255;
7956                                         }
7957                                 }
7958                         }
7959                         RSurf_RenumberElements(rsurface.modelelement3i + 3*surfacefirsttriangle, rsurface.batchelement3i + 3*numtriangles, 3*surfacenumtriangles, numvertices - surfacefirstvertex);
7960                         numvertices += surfacenumvertices;
7961                         numtriangles += surfacenumtriangles;
7962                 }
7963
7964                 // generate a 16bit index array as well if possible
7965                 // (in general, dynamic batches fit)
7966                 if (numvertices <= 65536)
7967                 {
7968                         rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7969                         for (i = 0;i < numtriangles*3;i++)
7970                                 rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7971                 }
7972
7973                 // since we've copied everything, the batch now starts at 0
7974                 rsurface.batchfirstvertex = 0;
7975                 rsurface.batchnumvertices = batchnumvertices;
7976                 rsurface.batchfirsttriangle = 0;
7977                 rsurface.batchnumtriangles = batchnumtriangles;
7978         }
7979
7980         // apply skeletal animation that would have been done in the vertex shader
7981         if (rsurface.batchskeletaltransform3x4)
7982         {
7983                 const unsigned char *si;
7984                 const unsigned char *sw;
7985                 const float *t[4];
7986                 const float *b = rsurface.batchskeletaltransform3x4;
7987                 float *vp, *vs, *vt, *vn;
7988                 float w[4];
7989                 float m[3][4], n[3][4];
7990                 float tp[3], ts[3], tt[3], tn[3];
7991                 r_refdef.stats[r_stat_batch_dynamicskeletal_batches] += 1;
7992                 r_refdef.stats[r_stat_batch_dynamicskeletal_surfaces] += batchnumsurfaces;
7993                 r_refdef.stats[r_stat_batch_dynamicskeletal_vertices] += batchnumvertices;
7994                 r_refdef.stats[r_stat_batch_dynamicskeletal_triangles] += batchnumtriangles;
7995                 si = rsurface.batchskeletalindex4ub;
7996                 sw = rsurface.batchskeletalweight4ub;
7997                 vp = rsurface.batchvertex3f;
7998                 vs = rsurface.batchsvector3f;
7999                 vt = rsurface.batchtvector3f;
8000                 vn = rsurface.batchnormal3f;
8001                 memset(m[0], 0, sizeof(m));
8002                 memset(n[0], 0, sizeof(n));
8003                 for (i = 0;i < batchnumvertices;i++)
8004                 {
8005                         t[0] = b + si[0]*12;
8006                         if (sw[0] == 255)
8007                         {
8008                                 // common case - only one matrix
8009                                 m[0][0] = t[0][ 0];
8010                                 m[0][1] = t[0][ 1];
8011                                 m[0][2] = t[0][ 2];
8012                                 m[0][3] = t[0][ 3];
8013                                 m[1][0] = t[0][ 4];
8014                                 m[1][1] = t[0][ 5];
8015                                 m[1][2] = t[0][ 6];
8016                                 m[1][3] = t[0][ 7];
8017                                 m[2][0] = t[0][ 8];
8018                                 m[2][1] = t[0][ 9];
8019                                 m[2][2] = t[0][10];
8020                                 m[2][3] = t[0][11];
8021                         }
8022                         else if (sw[2] + sw[3])
8023                         {
8024                                 // blend 4 matrices
8025                                 t[1] = b + si[1]*12;
8026                                 t[2] = b + si[2]*12;
8027                                 t[3] = b + si[3]*12;
8028                                 w[0] = sw[0] * (1.0f / 255.0f);
8029                                 w[1] = sw[1] * (1.0f / 255.0f);
8030                                 w[2] = sw[2] * (1.0f / 255.0f);
8031                                 w[3] = sw[3] * (1.0f / 255.0f);
8032                                 // blend the matrices
8033                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1] + t[2][ 0] * w[2] + t[3][ 0] * w[3];
8034                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1] + t[2][ 1] * w[2] + t[3][ 1] * w[3];
8035                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1] + t[2][ 2] * w[2] + t[3][ 2] * w[3];
8036                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1] + t[2][ 3] * w[2] + t[3][ 3] * w[3];
8037                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1] + t[2][ 4] * w[2] + t[3][ 4] * w[3];
8038                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1] + t[2][ 5] * w[2] + t[3][ 5] * w[3];
8039                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1] + t[2][ 6] * w[2] + t[3][ 6] * w[3];
8040                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1] + t[2][ 7] * w[2] + t[3][ 7] * w[3];
8041                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1] + t[2][ 8] * w[2] + t[3][ 8] * w[3];
8042                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1] + t[2][ 9] * w[2] + t[3][ 9] * w[3];
8043                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1] + t[2][10] * w[2] + t[3][10] * w[3];
8044                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1] + t[2][11] * w[2] + t[3][11] * w[3];
8045                         }
8046                         else
8047                         {
8048                                 // blend 2 matrices
8049                                 t[1] = b + si[1]*12;
8050                                 w[0] = sw[0] * (1.0f / 255.0f);
8051                                 w[1] = sw[1] * (1.0f / 255.0f);
8052                                 // blend the matrices
8053                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1];
8054                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1];
8055                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1];
8056                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1];
8057                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1];
8058                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1];
8059                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1];
8060                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1];
8061                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1];
8062                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1];
8063                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1];
8064                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1];
8065                         }
8066                         si += 4;
8067                         sw += 4;
8068                         // modify the vertex
8069                         VectorCopy(vp, tp);
8070                         vp[0] = tp[0] * m[0][0] + tp[1] * m[0][1] + tp[2] * m[0][2] + m[0][3];
8071                         vp[1] = tp[0] * m[1][0] + tp[1] * m[1][1] + tp[2] * m[1][2] + m[1][3];
8072                         vp[2] = tp[0] * m[2][0] + tp[1] * m[2][1] + tp[2] * m[2][2] + m[2][3];
8073                         vp += 3;
8074                         if (vn)
8075                         {
8076                                 // the normal transformation matrix is a set of cross products...
8077                                 CrossProduct(m[1], m[2], n[0]);
8078                                 CrossProduct(m[2], m[0], n[1]);
8079                                 CrossProduct(m[0], m[1], n[2]); // is actually transpose(inverse(m)) * det(m)
8080                                 VectorCopy(vn, tn);
8081                                 vn[0] = tn[0] * n[0][0] + tn[1] * n[0][1] + tn[2] * n[0][2];
8082                                 vn[1] = tn[0] * n[1][0] + tn[1] * n[1][1] + tn[2] * n[1][2];
8083                                 vn[2] = tn[0] * n[2][0] + tn[1] * n[2][1] + tn[2] * n[2][2];
8084                                 VectorNormalize(vn);
8085                                 vn += 3;
8086                                 if (vs)
8087                                 {
8088                                         VectorCopy(vs, ts);
8089                                         vs[0] = ts[0] * n[0][0] + ts[1] * n[0][1] + ts[2] * n[0][2];
8090                                         vs[1] = ts[0] * n[1][0] + ts[1] * n[1][1] + ts[2] * n[1][2];
8091                                         vs[2] = ts[0] * n[2][0] + ts[1] * n[2][1] + ts[2] * n[2][2];
8092                                         VectorNormalize(vs);
8093                                         vs += 3;
8094                                         VectorCopy(vt, tt);
8095                                         vt[0] = tt[0] * n[0][0] + tt[1] * n[0][1] + tt[2] * n[0][2];
8096                                         vt[1] = tt[0] * n[1][0] + tt[1] * n[1][1] + tt[2] * n[1][2];
8097                                         vt[2] = tt[0] * n[2][0] + tt[1] * n[2][1] + tt[2] * n[2][2];
8098                                         VectorNormalize(vt);
8099                                         vt += 3;
8100                                 }
8101                         }
8102                 }
8103                 rsurface.batchskeletaltransform3x4 = NULL;
8104                 rsurface.batchskeletalnumtransforms = 0;
8105         }
8106
8107         // q1bsp surfaces rendered in vertex color mode have to have colors
8108         // calculated based on lightstyles
8109         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
8110         {
8111                 // generate color arrays for the surfaces in this list
8112                 int c[4];
8113                 int scale;
8114                 int size3;
8115                 const int *offsets;
8116                 const unsigned char *lm;
8117                 rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
8118                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
8119                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
8120                 numvertices = 0;
8121                 for (i = 0;i < texturenumsurfaces;i++)
8122                 {
8123                         surface = texturesurfacelist[i];
8124                         offsets = rsurface.modellightmapoffsets + surface->num_firstvertex;
8125                         surfacenumvertices = surface->num_vertices;
8126                         if (surface->lightmapinfo->samples)
8127                         {
8128                                 for (j = 0;j < surfacenumvertices;j++)
8129                                 {
8130                                         lm = surface->lightmapinfo->samples + offsets[j];
8131                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[0]];
8132                                         VectorScale(lm, scale, c);
8133                                         if (surface->lightmapinfo->styles[1] != 255)
8134                                         {
8135                                                 size3 = ((surface->lightmapinfo->extents[0]>>4)+1)*((surface->lightmapinfo->extents[1]>>4)+1)*3;
8136                                                 lm += size3;
8137                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[1]];
8138                                                 VectorMA(c, scale, lm, c);
8139                                                 if (surface->lightmapinfo->styles[2] != 255)
8140                                                 {
8141                                                         lm += size3;
8142                                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[2]];
8143                                                         VectorMA(c, scale, lm, c);
8144                                                         if (surface->lightmapinfo->styles[3] != 255)
8145                                                         {
8146                                                                 lm += size3;
8147                                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[3]];
8148                                                                 VectorMA(c, scale, lm, c);
8149                                                         }
8150                                                 }
8151                                         }
8152                                         c[0] >>= 7;
8153                                         c[1] >>= 7;
8154                                         c[2] >>= 7;
8155                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, min(c[0], 255) * (1.0f / 255.0f), min(c[1], 255) * (1.0f / 255.0f), min(c[2], 255) * (1.0f / 255.0f), 1);
8156                                         numvertices++;
8157                                 }
8158                         }
8159                         else
8160                         {
8161                                 for (j = 0;j < surfacenumvertices;j++)
8162                                 {
8163                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, 0, 0, 0, 1);
8164                                         numvertices++;
8165                                 }
8166                         }
8167                 }
8168         }
8169
8170         // if vertices are deformed (sprite flares and things in maps, possibly
8171         // water waves, bulges and other deformations), modify the copied vertices
8172         // in place
8173         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
8174         {
8175                 float scale;
8176                 switch (deform->deform)
8177                 {
8178                 default:
8179                 case Q3DEFORM_PROJECTIONSHADOW:
8180                 case Q3DEFORM_TEXT0:
8181                 case Q3DEFORM_TEXT1:
8182                 case Q3DEFORM_TEXT2:
8183                 case Q3DEFORM_TEXT3:
8184                 case Q3DEFORM_TEXT4:
8185                 case Q3DEFORM_TEXT5:
8186                 case Q3DEFORM_TEXT6:
8187                 case Q3DEFORM_TEXT7:
8188                 case Q3DEFORM_NONE:
8189                         break;
8190                 case Q3DEFORM_AUTOSPRITE:
8191                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8192                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8193                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8194                         VectorNormalize(newforward);
8195                         VectorNormalize(newright);
8196                         VectorNormalize(newup);
8197 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8198 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8199 //                      rsurface.batchvertex3f_bufferoffset = 0;
8200 //                      rsurface.batchsvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f);
8201 //                      rsurface.batchsvector3f_vertexbuffer = NULL;
8202 //                      rsurface.batchsvector3f_bufferoffset = 0;
8203 //                      rsurface.batchtvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f);
8204 //                      rsurface.batchtvector3f_vertexbuffer = NULL;
8205 //                      rsurface.batchtvector3f_bufferoffset = 0;
8206 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8207 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8208 //                      rsurface.batchnormal3f_bufferoffset = 0;
8209                         // sometimes we're on a renderpath that does not use vectors (GL11/GL13/GLES1)
8210                         if (!VectorLength2(rsurface.batchnormal3f + 3*rsurface.batchfirstvertex))
8211                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8212                         if (!VectorLength2(rsurface.batchsvector3f + 3*rsurface.batchfirstvertex))
8213                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8214                         // a single autosprite surface can contain multiple sprites...
8215                         for (j = 0;j < batchnumvertices - 3;j += 4)
8216                         {
8217                                 VectorClear(center);
8218                                 for (i = 0;i < 4;i++)
8219                                         VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8220                                 VectorScale(center, 0.25f, center);
8221                                 VectorCopy(rsurface.batchnormal3f + 3*j, forward);
8222                                 VectorCopy(rsurface.batchsvector3f + 3*j, right);
8223                                 VectorCopy(rsurface.batchtvector3f + 3*j, up);
8224                                 for (i = 0;i < 4;i++)
8225                                 {
8226                                         VectorSubtract(rsurface.batchvertex3f + 3*(j+i), center, v);
8227                                         VectorMAMAMAM(1, center, DotProduct(forward, v), newforward, DotProduct(right, v), newright, DotProduct(up, v), newup, rsurface.batchvertex3f + 3*(j+i));
8228                                 }
8229                         }
8230                         // if we get here, BATCHNEED_ARRAY_NORMAL and BATCHNEED_ARRAY_VECTOR are in batchneed, so no need to check
8231                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8232                         Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8233                         break;
8234                 case Q3DEFORM_AUTOSPRITE2:
8235                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8236                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8237                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8238                         VectorNormalize(newforward);
8239                         VectorNormalize(newright);
8240                         VectorNormalize(newup);
8241 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8242 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8243 //                      rsurface.batchvertex3f_bufferoffset = 0;
8244                         {
8245                                 const float *v1, *v2;
8246                                 vec3_t start, end;
8247                                 float f, l;
8248                                 struct
8249                                 {
8250                                         float length2;
8251                                         const float *v1;
8252                                         const float *v2;
8253                                 }
8254                                 shortest[2];
8255                                 memset(shortest, 0, sizeof(shortest));
8256                                 // a single autosprite surface can contain multiple sprites...
8257                                 for (j = 0;j < batchnumvertices - 3;j += 4)
8258                                 {
8259                                         VectorClear(center);
8260                                         for (i = 0;i < 4;i++)
8261                                                 VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8262                                         VectorScale(center, 0.25f, center);
8263                                         // find the two shortest edges, then use them to define the
8264                                         // axis vectors for rotating around the central axis
8265                                         for (i = 0;i < 6;i++)
8266                                         {
8267                                                 v1 = rsurface.batchvertex3f + 3*(j+quadedges[i][0]);
8268                                                 v2 = rsurface.batchvertex3f + 3*(j+quadedges[i][1]);
8269                                                 l = VectorDistance2(v1, v2);
8270                                                 // this length bias tries to make sense of square polygons, assuming they are meant to be upright
8271                                                 if (v1[2] != v2[2])
8272                                                         l += (1.0f / 1024.0f);
8273                                                 if (shortest[0].length2 > l || i == 0)
8274                                                 {
8275                                                         shortest[1] = shortest[0];
8276                                                         shortest[0].length2 = l;
8277                                                         shortest[0].v1 = v1;
8278                                                         shortest[0].v2 = v2;
8279                                                 }
8280                                                 else if (shortest[1].length2 > l || i == 1)
8281                                                 {
8282                                                         shortest[1].length2 = l;
8283                                                         shortest[1].v1 = v1;
8284                                                         shortest[1].v2 = v2;
8285                                                 }
8286                                         }
8287                                         VectorLerp(shortest[0].v1, 0.5f, shortest[0].v2, start);
8288                                         VectorLerp(shortest[1].v1, 0.5f, shortest[1].v2, end);
8289                                         // this calculates the right vector from the shortest edge
8290                                         // and the up vector from the edge midpoints
8291                                         VectorSubtract(shortest[0].v1, shortest[0].v2, right);
8292                                         VectorNormalize(right);
8293                                         VectorSubtract(end, start, up);
8294                                         VectorNormalize(up);
8295                                         // calculate a forward vector to use instead of the original plane normal (this is how we get a new right vector)
8296                                         VectorSubtract(rsurface.localvieworigin, center, forward);
8297                                         //Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, forward);
8298                                         VectorNegate(forward, forward);
8299                                         VectorReflect(forward, 0, up, forward);
8300                                         VectorNormalize(forward);
8301                                         CrossProduct(up, forward, newright);
8302                                         VectorNormalize(newright);
8303                                         // rotate the quad around the up axis vector, this is made
8304                                         // especially easy by the fact we know the quad is flat,
8305                                         // so we only have to subtract the center position and
8306                                         // measure distance along the right vector, and then
8307                                         // multiply that by the newright vector and add back the
8308                                         // center position
8309                                         // we also need to subtract the old position to undo the
8310                                         // displacement from the center, which we do with a
8311                                         // DotProduct, the subtraction/addition of center is also
8312                                         // optimized into DotProducts here
8313                                         l = DotProduct(right, center);
8314                                         for (i = 0;i < 4;i++)
8315                                         {
8316                                                 v1 = rsurface.batchvertex3f + 3*(j+i);
8317                                                 f = DotProduct(right, v1) - l;
8318                                                 VectorMAMAM(1, v1, -f, right, f, newright, rsurface.batchvertex3f + 3*(j+i));
8319                                         }
8320                                 }
8321                         }
8322                         if(batchneed & (BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR)) // otherwise these can stay NULL
8323                         {
8324 //                              rsurface.batchnormal3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8325 //                              rsurface.batchnormal3f_vertexbuffer = NULL;
8326 //                              rsurface.batchnormal3f_bufferoffset = 0;
8327                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8328                         }
8329                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8330                         {
8331 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8332 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8333 //                              rsurface.batchsvector3f_bufferoffset = 0;
8334 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8335 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8336 //                              rsurface.batchtvector3f_bufferoffset = 0;
8337                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8338                         }
8339                         break;
8340                 case Q3DEFORM_NORMAL:
8341                         // deform the normals to make reflections wavey
8342                         rsurface.batchnormal3f = (float *)R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8343                         rsurface.batchnormal3f_vertexbuffer = NULL;
8344                         rsurface.batchnormal3f_bufferoffset = 0;
8345                         for (j = 0;j < batchnumvertices;j++)
8346                         {
8347                                 float vertex[3];
8348                                 float *normal = rsurface.batchnormal3f + 3*j;
8349                                 VectorScale(rsurface.batchvertex3f + 3*j, 0.98f, vertex);
8350                                 normal[0] = rsurface.batchnormal3f[j*3+0] + deform->parms[0] * noise4f(      vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8351                                 normal[1] = rsurface.batchnormal3f[j*3+1] + deform->parms[0] * noise4f( 98 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8352                                 normal[2] = rsurface.batchnormal3f[j*3+2] + deform->parms[0] * noise4f(196 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8353                                 VectorNormalize(normal);
8354                         }
8355                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8356                         {
8357 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8358 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8359 //                              rsurface.batchsvector3f_bufferoffset = 0;
8360 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8361 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8362 //                              rsurface.batchtvector3f_bufferoffset = 0;
8363                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8364                         }
8365                         break;
8366                 case Q3DEFORM_WAVE:
8367                         // deform vertex array to make wavey water and flags and such
8368                         waveparms[0] = deform->waveparms[0];
8369                         waveparms[1] = deform->waveparms[1];
8370                         waveparms[2] = deform->waveparms[2];
8371                         waveparms[3] = deform->waveparms[3];
8372                         if(!R_TestQ3WaveFunc(deform->wavefunc, waveparms))
8373                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8374                         // this is how a divisor of vertex influence on deformation
8375                         animpos = deform->parms[0] ? 1.0f / deform->parms[0] : 100.0f;
8376                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8377 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8378 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8379 //                      rsurface.batchvertex3f_bufferoffset = 0;
8380 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8381 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8382 //                      rsurface.batchnormal3f_bufferoffset = 0;
8383                         for (j = 0;j < batchnumvertices;j++)
8384                         {
8385                                 // if the wavefunc depends on time, evaluate it per-vertex
8386                                 if (waveparms[3])
8387                                 {
8388                                         waveparms[2] = deform->waveparms[2] + (rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+1] + rsurface.batchvertex3f[j*3+2]) * animpos;
8389                                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8390                                 }
8391                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8392                         }
8393                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8394                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8395                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8396                         {
8397 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8398 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8399 //                              rsurface.batchsvector3f_bufferoffset = 0;
8400 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8401 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8402 //                              rsurface.batchtvector3f_bufferoffset = 0;
8403                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8404                         }
8405                         break;
8406                 case Q3DEFORM_BULGE:
8407                         // deform vertex array to make the surface have moving bulges
8408 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8409 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8410 //                      rsurface.batchvertex3f_bufferoffset = 0;
8411 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8412 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8413 //                      rsurface.batchnormal3f_bufferoffset = 0;
8414                         for (j = 0;j < batchnumvertices;j++)
8415                         {
8416                                 scale = sin(rsurface.batchtexcoordtexture2f[j*2+0] * deform->parms[0] + rsurface.shadertime * deform->parms[2]) * deform->parms[1];
8417                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8418                         }
8419                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8420                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8421                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8422                         {
8423 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8424 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8425 //                              rsurface.batchsvector3f_bufferoffset = 0;
8426 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8427 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8428 //                              rsurface.batchtvector3f_bufferoffset = 0;
8429                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8430                         }
8431                         break;
8432                 case Q3DEFORM_MOVE:
8433                         // deform vertex array
8434                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
8435                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8436                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, deform->waveparms);
8437                         VectorScale(deform->parms, scale, waveparms);
8438 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8439 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8440 //                      rsurface.batchvertex3f_bufferoffset = 0;
8441                         for (j = 0;j < batchnumvertices;j++)
8442                                 VectorAdd(rsurface.batchvertex3f + 3*j, waveparms, rsurface.batchvertex3f + 3*j);
8443                         break;
8444                 }
8445         }
8446
8447         if (rsurface.batchtexcoordtexture2f && rsurface.texture->materialshaderpass)
8448         {
8449         // generate texcoords based on the chosen texcoord source
8450                 switch(rsurface.texture->materialshaderpass->tcgen.tcgen)
8451                 {
8452                 default:
8453                 case Q3TCGEN_TEXTURE:
8454                         break;
8455                 case Q3TCGEN_LIGHTMAP:
8456         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8457         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8458         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8459                         if (rsurface.batchtexcoordlightmap2f)
8460                                 memcpy(rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordlightmap2f, batchnumvertices * sizeof(float[2]));
8461                         break;
8462                 case Q3TCGEN_VECTOR:
8463         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8464         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8465         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8466                         for (j = 0;j < batchnumvertices;j++)
8467                         {
8468                                 rsurface.batchtexcoordtexture2f[j*2+0] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms);
8469                                 rsurface.batchtexcoordtexture2f[j*2+1] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms + 3);
8470                         }
8471                         break;
8472                 case Q3TCGEN_ENVIRONMENT:
8473                         // make environment reflections using a spheremap
8474                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8475                         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8476                         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8477                         for (j = 0;j < batchnumvertices;j++)
8478                         {
8479                                 // identical to Q3A's method, but executed in worldspace so
8480                                 // carried models can be shiny too
8481
8482                                 float viewer[3], d, reflected[3], worldreflected[3];
8483
8484                                 VectorSubtract(rsurface.localvieworigin, rsurface.batchvertex3f + 3*j, viewer);
8485                                 // VectorNormalize(viewer);
8486
8487                                 d = DotProduct(rsurface.batchnormal3f + 3*j, viewer);
8488
8489                                 reflected[0] = rsurface.batchnormal3f[j*3+0]*2*d - viewer[0];
8490                                 reflected[1] = rsurface.batchnormal3f[j*3+1]*2*d - viewer[1];
8491                                 reflected[2] = rsurface.batchnormal3f[j*3+2]*2*d - viewer[2];
8492                                 // note: this is proportinal to viewer, so we can normalize later
8493
8494                                 Matrix4x4_Transform3x3(&rsurface.matrix, reflected, worldreflected);
8495                                 VectorNormalize(worldreflected);
8496
8497                                 // note: this sphere map only uses world x and z!
8498                                 // so positive and negative y will LOOK THE SAME.
8499                                 rsurface.batchtexcoordtexture2f[j*2+0] = 0.5 + 0.5 * worldreflected[1];
8500                                 rsurface.batchtexcoordtexture2f[j*2+1] = 0.5 - 0.5 * worldreflected[2];
8501                         }
8502                         break;
8503                 }
8504                 // the only tcmod that needs software vertex processing is turbulent, so
8505                 // check for it here and apply the changes if needed
8506                 // and we only support that as the first one
8507                 // (handling a mixture of turbulent and other tcmods would be problematic
8508                 //  without punting it entirely to a software path)
8509                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
8510                 {
8511                         amplitude = rsurface.texture->materialshaderpass->tcmods[0].parms[1];
8512                         animpos = rsurface.texture->materialshaderpass->tcmods[0].parms[2] + rsurface.shadertime * rsurface.texture->materialshaderpass->tcmods[0].parms[3];
8513         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8514         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8515         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8516                         for (j = 0;j < batchnumvertices;j++)
8517                         {
8518                                 rsurface.batchtexcoordtexture2f[j*2+0] += amplitude * sin(((rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+2]) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8519                                 rsurface.batchtexcoordtexture2f[j*2+1] += amplitude * sin(((rsurface.batchvertex3f[j*3+1]                                ) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8520                         }
8521                 }
8522         }
8523 }
8524
8525 void RSurf_DrawBatch(void)
8526 {
8527         // sometimes a zero triangle surface (usually a degenerate patch) makes it
8528         // through the pipeline, killing it earlier in the pipeline would have
8529         // per-surface overhead rather than per-batch overhead, so it's best to
8530         // reject it here, before it hits glDraw.
8531         if (rsurface.batchnumtriangles == 0)
8532                 return;
8533 #if 0
8534         // batch debugging code
8535         if (r_test.integer && rsurface.entity == r_refdef.scene.worldentity && rsurface.batchvertex3f == r_refdef.scene.worldentity->model->surfmesh.data_vertex3f)
8536         {
8537                 int i;
8538                 int j;
8539                 int c;
8540                 const int *e;
8541                 e = rsurface.batchelement3i + rsurface.batchfirsttriangle*3;
8542                 for (i = 0;i < rsurface.batchnumtriangles*3;i++)
8543                 {
8544                         c = e[i];
8545                         for (j = 0;j < rsurface.entity->model->num_surfaces;j++)
8546                         {
8547                                 if (c >= rsurface.modelsurfaces[j].num_firstvertex && c < (rsurface.modelsurfaces[j].num_firstvertex + rsurface.modelsurfaces[j].num_vertices))
8548                                 {
8549                                         if (rsurface.modelsurfaces[j].texture != rsurface.texture)
8550                                                 Sys_Error("RSurf_DrawBatch: index %i uses different texture (%s) than surface %i which it belongs to (which uses %s)\n", c, rsurface.texture->name, j, rsurface.modelsurfaces[j].texture->name);
8551                                         break;
8552                                 }
8553                         }
8554                 }
8555         }
8556 #endif
8557         if (rsurface.batchmultidraw)
8558         {
8559                 // issue multiple draws rather than copying index data
8560                 int numsurfaces = rsurface.batchmultidrawnumsurfaces;
8561                 const msurface_t **surfacelist = rsurface.batchmultidrawsurfacelist;
8562                 int i, j, k, firstvertex, endvertex, firsttriangle, endtriangle;
8563                 for (i = 0;i < numsurfaces;)
8564                 {
8565                         // combine consecutive surfaces as one draw
8566                         for (k = i, j = i + 1;j < numsurfaces;k = j, j++)
8567                                 if (surfacelist[j] != surfacelist[k] + 1)
8568                                         break;
8569                         firstvertex = surfacelist[i]->num_firstvertex;
8570                         endvertex = surfacelist[k]->num_firstvertex + surfacelist[k]->num_vertices;
8571                         firsttriangle = surfacelist[i]->num_firsttriangle;
8572                         endtriangle = surfacelist[k]->num_firsttriangle + surfacelist[k]->num_triangles;
8573                         R_Mesh_Draw(firstvertex, endvertex - firstvertex, firsttriangle, endtriangle - firsttriangle, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8574                         i = j;
8575                 }
8576         }
8577         else
8578         {
8579                 // there is only one consecutive run of index data (may have been combined)
8580                 R_Mesh_Draw(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchfirsttriangle, rsurface.batchnumtriangles, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8581         }
8582 }
8583
8584 static int RSurf_FindWaterPlaneForSurface(const msurface_t *surface)
8585 {
8586         // pick the closest matching water plane
8587         int planeindex, vertexindex, bestplaneindex = -1;
8588         float d, bestd;
8589         vec3_t vert;
8590         const float *v;
8591         r_waterstate_waterplane_t *p;
8592         qbool prepared = false;
8593         bestd = 0;
8594         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
8595         {
8596                 if(p->camera_entity != rsurface.texture->camera_entity)
8597                         continue;
8598                 d = 0;
8599                 if(!prepared)
8600                 {
8601                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX, 1, &surface);
8602                         prepared = true;
8603                         if(rsurface.batchnumvertices == 0)
8604                                 break;
8605                 }
8606                 for (vertexindex = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3;vertexindex < rsurface.batchnumvertices;vertexindex++, v += 3)
8607                 {
8608                         Matrix4x4_Transform(&rsurface.matrix, v, vert);
8609                         d += fabs(PlaneDiff(vert, &p->plane));
8610                 }
8611                 if (bestd > d || bestplaneindex < 0)
8612                 {
8613                         bestd = d;
8614                         bestplaneindex = planeindex;
8615                 }
8616         }
8617         return bestplaneindex;
8618         // NOTE: this MAY return a totally unrelated water plane; we can ignore
8619         // this situation though, as it might be better to render single larger
8620         // batches with useless stuff (backface culled for example) than to
8621         // render multiple smaller batches
8622 }
8623
8624 void RSurf_SetupDepthAndCulling(void)
8625 {
8626         // submodels are biased to avoid z-fighting with world surfaces that they
8627         // may be exactly overlapping (avoids z-fighting artifacts on certain
8628         // doors and things in Quake maps)
8629         GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1);
8630         GL_PolygonOffset(rsurface.basepolygonfactor + rsurface.texture->biaspolygonfactor, rsurface.basepolygonoffset + rsurface.texture->biaspolygonoffset);
8631         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST));
8632         GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
8633 }
8634
8635 static void R_DrawTextureSurfaceList_Sky(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8636 {
8637         int j;
8638         const float *v;
8639         float p[3], mins[3], maxs[3];
8640         int scissor[4];
8641         // transparent sky would be ridiculous
8642         if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8643                 return;
8644         R_SetupShader_Generic_NoTexture(false, false);
8645         skyrenderlater = true;
8646         RSurf_SetupDepthAndCulling();
8647         GL_DepthMask(true);
8648
8649         // add the vertices of the surfaces to a world bounding box so we can scissor the sky render later
8650         if (r_sky_scissor.integer)
8651         {
8652                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8653                 for (j = 0, v = rsurface.batchvertex3f + 3 * rsurface.batchfirstvertex; j < rsurface.batchnumvertices; j++, v += 3)
8654                 {
8655                         Matrix4x4_Transform(&rsurface.matrix, v, p);
8656                         if (j > 0)
8657                         {
8658                                 if (mins[0] > p[0]) mins[0] = p[0];
8659                                 if (mins[1] > p[1]) mins[1] = p[1];
8660                                 if (mins[2] > p[2]) mins[2] = p[2];
8661                                 if (maxs[0] < p[0]) maxs[0] = p[0];
8662                                 if (maxs[1] < p[1]) maxs[1] = p[1];
8663                                 if (maxs[2] < p[2]) maxs[2] = p[2];
8664                         }
8665                         else
8666                         {
8667                                 VectorCopy(p, mins);
8668                                 VectorCopy(p, maxs);
8669                         }
8670                 }
8671                 if (!R_ScissorForBBox(mins, maxs, scissor))
8672                 {
8673                         if (skyscissor[2])
8674                         {
8675                                 if (skyscissor[0] > scissor[0])
8676                                 {
8677                                         skyscissor[2] += skyscissor[0] - scissor[0];
8678                                         skyscissor[0] = scissor[0];
8679                                 }
8680                                 if (skyscissor[1] > scissor[1])
8681                                 {
8682                                         skyscissor[3] += skyscissor[1] - scissor[1];
8683                                         skyscissor[1] = scissor[1];
8684                                 }
8685                                 if (skyscissor[0] + skyscissor[2] < scissor[0] + scissor[2])
8686                                         skyscissor[2] = scissor[0] + scissor[2] - skyscissor[0];
8687                                 if (skyscissor[1] + skyscissor[3] < scissor[1] + scissor[3])
8688                                         skyscissor[3] = scissor[1] + scissor[3] - skyscissor[1];
8689                         }
8690                         else
8691                                 Vector4Copy(scissor, skyscissor);
8692                 }
8693         }
8694
8695         // LadyHavoc: HalfLife maps have freaky skypolys so don't use
8696         // skymasking on them, and Quake3 never did sky masking (unlike
8697         // software Quake and software Quake2), so disable the sky masking
8698         // in Quake3 maps as it causes problems with q3map2 sky tricks,
8699         // and skymasking also looks very bad when noclipping outside the
8700         // level, so don't use it then either.
8701         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.skymasking && (r_refdef.scene.worldmodel->brush.isq3bsp ? r_q3bsp_renderskydepth.integer : r_q1bsp_skymasking.integer) && !r_refdef.viewcache.world_novis && !r_trippy.integer)
8702         {
8703                 R_Mesh_ResetTextureState();
8704                 if (skyrendermasked)
8705                 {
8706                         R_SetupShader_DepthOrShadow(false, false, false);
8707                         // depth-only (masking)
8708                         GL_ColorMask(0, 0, 0, 0);
8709                         // just to make sure that braindead drivers don't draw
8710                         // anything despite that colormask...
8711                         GL_BlendFunc(GL_ZERO, GL_ONE);
8712                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8713                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8714                 }
8715                 else
8716                 {
8717                         R_SetupShader_Generic_NoTexture(false, false);
8718                         // fog sky
8719                         GL_BlendFunc(GL_ONE, GL_ZERO);
8720                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8721                         GL_Color(r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], 1);
8722                         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
8723                 }
8724                 RSurf_DrawBatch();
8725                 if (skyrendermasked)
8726                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8727         }
8728         R_Mesh_ResetTextureState();
8729         GL_Color(1, 1, 1, 1);
8730 }
8731
8732 extern rtexture_t *r_shadow_prepasslightingdiffusetexture;
8733 extern rtexture_t *r_shadow_prepasslightingspeculartexture;
8734 static void R_DrawTextureSurfaceList_GL20(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8735 {
8736         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)))
8737                 return;
8738         if (prepass)
8739         {
8740                 // render screenspace normalmap to texture
8741                 GL_DepthMask(true);
8742                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_DEFERREDGEOMETRY, texturenumsurfaces, texturesurfacelist, NULL, false);
8743                 RSurf_DrawBatch();
8744                 return;
8745         }
8746
8747         // bind lightmap texture
8748
8749         // water/refraction/reflection/camera surfaces have to be handled specially
8750         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA | MATERIALFLAG_REFLECTION)))
8751         {
8752                 int start, end, startplaneindex;
8753                 for (start = 0;start < texturenumsurfaces;start = end)
8754                 {
8755                         startplaneindex = RSurf_FindWaterPlaneForSurface(texturesurfacelist[start]);
8756                         if(startplaneindex < 0)
8757                         {
8758                                 // this happens if the plane e.g. got backface culled and thus didn't get a water plane. We can just ignore this.
8759                                 // Con_Printf("No matching water plane for surface with material flags 0x%08x - PLEASE DEBUG THIS\n", rsurface.texture->currentmaterialflags);
8760                                 end = start + 1;
8761                                 continue;
8762                         }
8763                         for (end = start + 1;end < texturenumsurfaces && startplaneindex == RSurf_FindWaterPlaneForSurface(texturesurfacelist[end]);end++)
8764                                 ;
8765                         // now that we have a batch using the same planeindex, render it
8766                         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA)))
8767                         {
8768                                 // render water or distortion background
8769                                 GL_DepthMask(true);
8770                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BACKGROUND, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false);
8771                                 RSurf_DrawBatch();
8772                                 // blend surface on top
8773                                 GL_DepthMask(false);
8774                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, NULL, false);
8775                                 RSurf_DrawBatch();
8776                         }
8777                         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION))
8778                         {
8779                                 // render surface with reflection texture as input
8780                                 GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8781                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false);
8782                                 RSurf_DrawBatch();
8783                         }
8784                 }
8785                 return;
8786         }
8787
8788         // render surface batch normally
8789         GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8790         R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, texturenumsurfaces, texturesurfacelist, NULL, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) != 0 || ui);
8791         RSurf_DrawBatch();
8792 }
8793
8794 static void R_DrawTextureSurfaceList_ShowSurfaces(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth)
8795 {
8796         int vi;
8797         int j;
8798         int texturesurfaceindex;
8799         int k;
8800         const msurface_t *surface;
8801         float surfacecolor4f[4];
8802
8803 //      R_Mesh_ResetTextureState();
8804         R_SetupShader_Generic_NoTexture(false, false);
8805
8806         GL_BlendFunc(GL_ONE, GL_ZERO);
8807         GL_DepthMask(writedepth);
8808
8809         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ALWAYSCOPY, texturenumsurfaces, texturesurfacelist);
8810         vi = 0;
8811         for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++)
8812         {
8813                 surface = texturesurfacelist[texturesurfaceindex];
8814                 k = (int)(((size_t)surface) / sizeof(msurface_t));
8815                 Vector4Set(surfacecolor4f, (k & 0xF) * (1.0f / 16.0f), (k & 0xF0) * (1.0f / 256.0f), (k & 0xF00) * (1.0f / 4096.0f), 1);
8816                 for (j = 0;j < surface->num_vertices;j++)
8817                 {
8818                         Vector4Copy(surfacecolor4f, rsurface.batchlightmapcolor4f + 4 * vi);
8819                         vi++;
8820                 }
8821         }
8822         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchlightmapcolor4f, rsurface.batchtexcoordtexture2f);
8823         RSurf_DrawBatch();
8824 }
8825
8826 static void R_DrawModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8827 {
8828         CHECKGLERROR
8829         RSurf_SetupDepthAndCulling();
8830         if (r_showsurfaces.integer && r_refdef.view.showdebug)
8831         {
8832                 R_DrawTextureSurfaceList_ShowSurfaces(texturenumsurfaces, texturesurfacelist, writedepth);
8833                 return;
8834         }
8835         switch (vid.renderpath)
8836         {
8837         case RENDERPATH_GL32:
8838         case RENDERPATH_GLES2:
8839                 R_DrawTextureSurfaceList_GL20(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8840                 break;
8841         }
8842         CHECKGLERROR
8843 }
8844
8845 static void R_DrawSurface_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
8846 {
8847         int i, j;
8848         int texturenumsurfaces, endsurface;
8849         texture_t *texture;
8850         const msurface_t *surface;
8851         const msurface_t *texturesurfacelist[MESHQUEUE_TRANSPARENT_BATCHSIZE];
8852
8853         RSurf_ActiveModelEntity(ent, true, true, false);
8854
8855         if (r_transparentdepthmasking.integer)
8856         {
8857                 qbool setup = false;
8858                 for (i = 0;i < numsurfaces;i = j)
8859                 {
8860                         j = i + 1;
8861                         surface = rsurface.modelsurfaces + surfacelist[i];
8862                         texture = surface->texture;
8863                         rsurface.texture = R_GetCurrentTexture(texture);
8864                         rsurface.lightmaptexture = NULL;
8865                         rsurface.deluxemaptexture = NULL;
8866                         rsurface.uselightmaptexture = false;
8867                         // scan ahead until we find a different texture
8868                         endsurface = min(i + 1024, numsurfaces);
8869                         texturenumsurfaces = 0;
8870                         texturesurfacelist[texturenumsurfaces++] = surface;
8871                         for (;j < endsurface;j++)
8872                         {
8873                                 surface = rsurface.modelsurfaces + surfacelist[j];
8874                                 if (texture != surface->texture)
8875                                         break;
8876                                 texturesurfacelist[texturenumsurfaces++] = surface;
8877                         }
8878                         if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_TRANSDEPTH))
8879                                 continue;
8880                         // render the range of surfaces as depth
8881                         if (!setup)
8882                         {
8883                                 setup = true;
8884                                 GL_ColorMask(0,0,0,0);
8885                                 GL_Color(1,1,1,1);
8886                                 GL_DepthTest(true);
8887                                 GL_BlendFunc(GL_ONE, GL_ZERO);
8888                                 GL_DepthMask(true);
8889 //                              R_Mesh_ResetTextureState();
8890                         }
8891                         RSurf_SetupDepthAndCulling();
8892                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8893                         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8894                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8895                         RSurf_DrawBatch();
8896                 }
8897                 if (setup)
8898                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8899         }
8900
8901         for (i = 0;i < numsurfaces;i = j)
8902         {
8903                 j = i + 1;
8904                 surface = rsurface.modelsurfaces + surfacelist[i];
8905                 texture = surface->texture;
8906                 rsurface.texture = R_GetCurrentTexture(texture);
8907                 // scan ahead until we find a different texture
8908                 endsurface = min(i + MESHQUEUE_TRANSPARENT_BATCHSIZE, numsurfaces);
8909                 texturenumsurfaces = 0;
8910                 texturesurfacelist[texturenumsurfaces++] = surface;
8911                         rsurface.lightmaptexture = surface->lightmaptexture;
8912                         rsurface.deluxemaptexture = surface->deluxemaptexture;
8913                         rsurface.uselightmaptexture = surface->lightmaptexture != NULL;
8914                         for (;j < endsurface;j++)
8915                         {
8916                                 surface = rsurface.modelsurfaces + surfacelist[j];
8917                                 if (texture != surface->texture || rsurface.lightmaptexture != surface->lightmaptexture)
8918                                         break;
8919                                 texturesurfacelist[texturenumsurfaces++] = surface;
8920                         }
8921                 // render the range of surfaces
8922                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, false, false, false);
8923         }
8924         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
8925 }
8926
8927 static void R_ProcessTransparentTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8928 {
8929         // transparent surfaces get pushed off into the transparent queue
8930         int surfacelistindex;
8931         const msurface_t *surface;
8932         vec3_t tempcenter, center;
8933         for (surfacelistindex = 0;surfacelistindex < texturenumsurfaces;surfacelistindex++)
8934         {
8935                 surface = texturesurfacelist[surfacelistindex];
8936                 if (r_transparent_sortsurfacesbynearest.integer)
8937                 {
8938                         tempcenter[0] = bound(surface->mins[0], rsurface.localvieworigin[0], surface->maxs[0]);
8939                         tempcenter[1] = bound(surface->mins[1], rsurface.localvieworigin[1], surface->maxs[1]);
8940                         tempcenter[2] = bound(surface->mins[2], rsurface.localvieworigin[2], surface->maxs[2]);
8941                 }
8942                 else
8943                 {
8944                         tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f;
8945                         tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f;
8946                         tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f;
8947                 }
8948                 Matrix4x4_Transform(&rsurface.matrix, tempcenter, center);
8949                 if (rsurface.entity->transparent_offset) // transparent offset
8950                 {
8951                         center[0] += r_refdef.view.forward[0]*rsurface.entity->transparent_offset;
8952                         center[1] += r_refdef.view.forward[1]*rsurface.entity->transparent_offset;
8953                         center[2] += r_refdef.view.forward[2]*rsurface.entity->transparent_offset;
8954                 }
8955                 R_MeshQueue_AddTransparent((rsurface.entity->flags & RENDER_WORLDOBJECT) ? TRANSPARENTSORT_SKY : (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) ? TRANSPARENTSORT_HUD : rsurface.texture->transparentsort, center, R_DrawSurface_TransparentCallback, rsurface.entity, surface - rsurface.modelsurfaces, rsurface.rtlight);
8956         }
8957 }
8958
8959 static void R_DrawTextureSurfaceList_DepthOnly(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8960 {
8961         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHATEST)))
8962                 return;
8963         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION)))
8964                 return;
8965         RSurf_SetupDepthAndCulling();
8966         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8967         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8968         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8969         RSurf_DrawBatch();
8970 }
8971
8972 static void R_ProcessModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
8973 {
8974         CHECKGLERROR
8975         if (ui)
8976                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8977         else if (depthonly)
8978                 R_DrawTextureSurfaceList_DepthOnly(texturenumsurfaces, texturesurfacelist);
8979         else if (prepass)
8980         {
8981                 if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8982                         return;
8983                 if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8984                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8985                 else
8986                         R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8987         }
8988         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) && (!r_showsurfaces.integer || r_showsurfaces.integer == 3))
8989                 R_DrawTextureSurfaceList_Sky(texturenumsurfaces, texturesurfacelist);
8990         else if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8991                 return;
8992         else if (((rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) || (r_showsurfaces.integer == 3 && (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST))))
8993         {
8994                 // in the deferred case, transparent surfaces were queued during prepass
8995                 if (!r_shadow_usingdeferredprepass)
8996                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8997         }
8998         else
8999         {
9000                 // the alphatest check is to make sure we write depth for anything we skipped on the depth-only pass earlier
9001                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST), prepass, ui);
9002         }
9003         CHECKGLERROR
9004 }
9005
9006 static void R_QueueModelSurfaceList(entity_render_t *ent, int numsurfaces, const msurface_t **surfacelist, int flagsmask, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
9007 {
9008         int i, j;
9009         texture_t *texture;
9010         R_FrameData_SetMark();
9011         // break the surface list down into batches by texture and use of lightmapping
9012         for (i = 0;i < numsurfaces;i = j)
9013         {
9014                 j = i + 1;
9015                 // texture is the base texture pointer, rsurface.texture is the
9016                 // current frame/skin the texture is directing us to use (for example
9017                 // if a model has 2 skins and it is on skin 1, then skin 0 tells us to
9018                 // use skin 1 instead)
9019                 texture = surfacelist[i]->texture;
9020                 rsurface.texture = R_GetCurrentTexture(texture);
9021                 if (!(rsurface.texture->currentmaterialflags & flagsmask) || (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODRAW))
9022                 {
9023                         // if this texture is not the kind we want, skip ahead to the next one
9024                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
9025                                 ;
9026                         continue;
9027                 }
9028                 if(depthonly || prepass)
9029                 {
9030                         rsurface.lightmaptexture = NULL;
9031                         rsurface.deluxemaptexture = NULL;
9032                         rsurface.uselightmaptexture = false;
9033                         // simply scan ahead until we find a different texture or lightmap state
9034                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
9035                                 ;
9036                 }
9037                 else
9038                 {
9039                         rsurface.lightmaptexture = surfacelist[i]->lightmaptexture;
9040                         rsurface.deluxemaptexture = surfacelist[i]->deluxemaptexture;
9041                         rsurface.uselightmaptexture = surfacelist[i]->lightmaptexture != NULL;
9042                         // simply scan ahead until we find a different texture or lightmap state
9043                         for (;j < numsurfaces && texture == surfacelist[j]->texture && rsurface.lightmaptexture == surfacelist[j]->lightmaptexture;j++)
9044                                 ;
9045                 }
9046                 // render the range of surfaces
9047                 R_ProcessModelTextureSurfaceList(j - i, surfacelist + i, writedepth, depthonly, prepass, ui);
9048         }
9049         R_FrameData_ReturnToMark();
9050 }
9051
9052 float locboxvertex3f[6*4*3] =
9053 {
9054         1,0,1, 1,0,0, 1,1,0, 1,1,1,
9055         0,1,1, 0,1,0, 0,0,0, 0,0,1,
9056         1,1,1, 1,1,0, 0,1,0, 0,1,1,
9057         0,0,1, 0,0,0, 1,0,0, 1,0,1,
9058         0,0,1, 1,0,1, 1,1,1, 0,1,1,
9059         1,0,0, 0,0,0, 0,1,0, 1,1,0
9060 };
9061
9062 unsigned short locboxelements[6*2*3] =
9063 {
9064          0, 1, 2, 0, 2, 3,
9065          4, 5, 6, 4, 6, 7,
9066          8, 9,10, 8,10,11,
9067         12,13,14, 12,14,15,
9068         16,17,18, 16,18,19,
9069         20,21,22, 20,22,23
9070 };
9071
9072 static void R_DrawLoc_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
9073 {
9074         int i, j;
9075         cl_locnode_t *loc = (cl_locnode_t *)ent;
9076         vec3_t mins, size;
9077         float vertex3f[6*4*3];
9078         CHECKGLERROR
9079         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9080         GL_DepthMask(false);
9081         GL_DepthRange(0, 1);
9082         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9083         GL_DepthTest(true);
9084         GL_CullFace(GL_NONE);
9085         R_EntityMatrix(&identitymatrix);
9086
9087 //      R_Mesh_ResetTextureState();
9088
9089         i = surfacelist[0];
9090         GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9091                          ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9092                          ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9093                         surfacelist[0] < 0 ? 0.5f : 0.125f);
9094
9095         if (VectorCompare(loc->mins, loc->maxs))
9096         {
9097                 VectorSet(size, 2, 2, 2);
9098                 VectorMA(loc->mins, -0.5f, size, mins);
9099         }
9100         else
9101         {
9102                 VectorCopy(loc->mins, mins);
9103                 VectorSubtract(loc->maxs, loc->mins, size);
9104         }
9105
9106         for (i = 0;i < 6*4*3;)
9107                 for (j = 0;j < 3;j++, i++)
9108                         vertex3f[i] = mins[j] + size[j] * locboxvertex3f[i];
9109
9110         R_Mesh_PrepareVertices_Generic_Arrays(6*4, vertex3f, NULL, NULL);
9111         R_SetupShader_Generic_NoTexture(false, false);
9112         R_Mesh_Draw(0, 6*4, 0, 6*2, NULL, NULL, 0, locboxelements, NULL, 0);
9113 }
9114
9115 void R_DrawLocs(void)
9116 {
9117         int index;
9118         cl_locnode_t *loc, *nearestloc;
9119         vec3_t center;
9120         nearestloc = CL_Locs_FindNearest(cl.movement_origin);
9121         for (loc = cl.locnodes, index = 0;loc;loc = loc->next, index++)
9122         {
9123                 VectorLerp(loc->mins, 0.5f, loc->maxs, center);
9124                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawLoc_Callback, (entity_render_t *)loc, loc == nearestloc ? -1 : index, NULL);
9125         }
9126 }
9127
9128 void R_DecalSystem_Reset(decalsystem_t *decalsystem)
9129 {
9130         if (decalsystem->decals)
9131                 Mem_Free(decalsystem->decals);
9132         memset(decalsystem, 0, sizeof(*decalsystem));
9133 }
9134
9135 static void R_DecalSystem_SpawnTriangle(decalsystem_t *decalsystem, const float *v0, const float *v1, const float *v2, const float *t0, const float *t1, const float *t2, const float *c0, const float *c1, const float *c2, int triangleindex, int surfaceindex, unsigned int decalsequence)
9136 {
9137         tridecal_t *decal;
9138         tridecal_t *decals;
9139         int i;
9140
9141         // expand or initialize the system
9142         if (decalsystem->maxdecals <= decalsystem->numdecals)
9143         {
9144                 decalsystem_t old = *decalsystem;
9145                 qbool useshortelements;
9146                 decalsystem->maxdecals = max(16, decalsystem->maxdecals * 2);
9147                 useshortelements = decalsystem->maxdecals * 3 <= 65536;
9148                 decalsystem->decals = (tridecal_t *)Mem_Alloc(cls.levelmempool, decalsystem->maxdecals * (sizeof(tridecal_t) + sizeof(float[3][3]) + sizeof(float[3][2]) + sizeof(float[3][4]) + sizeof(int[3]) + (useshortelements ? sizeof(unsigned short[3]) : 0)));
9149                 decalsystem->color4f = (float *)(decalsystem->decals + decalsystem->maxdecals);
9150                 decalsystem->texcoord2f = (float *)(decalsystem->color4f + decalsystem->maxdecals*12);
9151                 decalsystem->vertex3f = (float *)(decalsystem->texcoord2f + decalsystem->maxdecals*6);
9152                 decalsystem->element3i = (int *)(decalsystem->vertex3f + decalsystem->maxdecals*9);
9153                 decalsystem->element3s = (useshortelements ? ((unsigned short *)(decalsystem->element3i + decalsystem->maxdecals*3)) : NULL);
9154                 if (decalsystem->numdecals)
9155                         memcpy(decalsystem->decals, old.decals, decalsystem->numdecals * sizeof(tridecal_t));
9156                 if (old.decals)
9157                         Mem_Free(old.decals);
9158                 for (i = 0;i < decalsystem->maxdecals*3;i++)
9159                         decalsystem->element3i[i] = i;
9160                 if (useshortelements)
9161                         for (i = 0;i < decalsystem->maxdecals*3;i++)
9162                                 decalsystem->element3s[i] = i;
9163         }
9164
9165         // grab a decal and search for another free slot for the next one
9166         decals = decalsystem->decals;
9167         decal = decalsystem->decals + (i = decalsystem->freedecal++);
9168         for (i = decalsystem->freedecal;i < decalsystem->numdecals && decals[i].color4f[0][3];i++)
9169                 ;
9170         decalsystem->freedecal = i;
9171         if (decalsystem->numdecals <= i)
9172                 decalsystem->numdecals = i + 1;
9173
9174         // initialize the decal
9175         decal->lived = 0;
9176         decal->triangleindex = triangleindex;
9177         decal->surfaceindex = surfaceindex;
9178         decal->decalsequence = decalsequence;
9179         decal->color4f[0][0] = c0[0];
9180         decal->color4f[0][1] = c0[1];
9181         decal->color4f[0][2] = c0[2];
9182         decal->color4f[0][3] = 1;
9183         decal->color4f[1][0] = c1[0];
9184         decal->color4f[1][1] = c1[1];
9185         decal->color4f[1][2] = c1[2];
9186         decal->color4f[1][3] = 1;
9187         decal->color4f[2][0] = c2[0];
9188         decal->color4f[2][1] = c2[1];
9189         decal->color4f[2][2] = c2[2];
9190         decal->color4f[2][3] = 1;
9191         decal->vertex3f[0][0] = v0[0];
9192         decal->vertex3f[0][1] = v0[1];
9193         decal->vertex3f[0][2] = v0[2];
9194         decal->vertex3f[1][0] = v1[0];
9195         decal->vertex3f[1][1] = v1[1];
9196         decal->vertex3f[1][2] = v1[2];
9197         decal->vertex3f[2][0] = v2[0];
9198         decal->vertex3f[2][1] = v2[1];
9199         decal->vertex3f[2][2] = v2[2];
9200         decal->texcoord2f[0][0] = t0[0];
9201         decal->texcoord2f[0][1] = t0[1];
9202         decal->texcoord2f[1][0] = t1[0];
9203         decal->texcoord2f[1][1] = t1[1];
9204         decal->texcoord2f[2][0] = t2[0];
9205         decal->texcoord2f[2][1] = t2[1];
9206         TriangleNormal(v0, v1, v2, decal->plane);
9207         VectorNormalize(decal->plane);
9208         decal->plane[3] = DotProduct(v0, decal->plane);
9209 }
9210
9211 extern cvar_t cl_decals_bias;
9212 extern cvar_t cl_decals_models;
9213 extern cvar_t cl_decals_newsystem_intensitymultiplier;
9214 // baseparms, parms, temps
9215 static void R_DecalSystem_SplatTriangle(decalsystem_t *decalsystem, float r, float g, float b, float a, float s1, float t1, float s2, float t2, unsigned int decalsequence, qbool dynamic, float (*planes)[4], matrix4x4_t *projection, int triangleindex, int surfaceindex)
9216 {
9217         int cornerindex;
9218         int index;
9219         float v[9][3];
9220         const float *vertex3f;
9221         const float *normal3f;
9222         int numpoints;
9223         float points[2][9][3];
9224         float temp[3];
9225         float tc[9][2];
9226         float f;
9227         float c[9][4];
9228         const int *e;
9229
9230         e = rsurface.modelelement3i + 3*triangleindex;
9231
9232         vertex3f = rsurface.modelvertex3f;
9233         normal3f = rsurface.modelnormal3f;
9234
9235         if (normal3f)
9236         {
9237                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9238                 {
9239                         index = 3*e[cornerindex];
9240                         VectorMA(vertex3f + index, cl_decals_bias.value, normal3f + index, v[cornerindex]);
9241                 }
9242         }
9243         else
9244         {
9245                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9246                 {
9247                         index = 3*e[cornerindex];
9248                         VectorCopy(vertex3f + index, v[cornerindex]);
9249                 }
9250         }
9251
9252         // cull backfaces
9253         //TriangleNormal(v[0], v[1], v[2], normal);
9254         //if (DotProduct(normal, localnormal) < 0.0f)
9255         //      continue;
9256         // clip by each of the box planes formed from the projection matrix
9257         // if anything survives, we emit the decal
9258         numpoints = PolygonF_Clip(3        , v[0]        , planes[0][0], planes[0][1], planes[0][2], planes[0][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9259         if (numpoints < 3)
9260                 return;
9261         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[1][0], planes[1][1], planes[1][2], planes[1][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9262         if (numpoints < 3)
9263                 return;
9264         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[2][0], planes[2][1], planes[2][2], planes[2][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9265         if (numpoints < 3)
9266                 return;
9267         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[3][0], planes[3][1], planes[3][2], planes[3][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9268         if (numpoints < 3)
9269                 return;
9270         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[4][0], planes[4][1], planes[4][2], planes[4][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9271         if (numpoints < 3)
9272                 return;
9273         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[5][0], planes[5][1], planes[5][2], planes[5][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), v[0]);
9274         if (numpoints < 3)
9275                 return;
9276         // some part of the triangle survived, so we have to accept it...
9277         if (dynamic)
9278         {
9279                 // dynamic always uses the original triangle
9280                 numpoints = 3;
9281                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9282                 {
9283                         index = 3*e[cornerindex];
9284                         VectorCopy(vertex3f + index, v[cornerindex]);
9285                 }
9286         }
9287         for (cornerindex = 0;cornerindex < numpoints;cornerindex++)
9288         {
9289                 // convert vertex positions to texcoords
9290                 Matrix4x4_Transform(projection, v[cornerindex], temp);
9291                 tc[cornerindex][0] = (temp[1]+1.0f)*0.5f * (s2-s1) + s1;
9292                 tc[cornerindex][1] = (temp[2]+1.0f)*0.5f * (t2-t1) + t1;
9293                 // calculate distance fade from the projection origin
9294                 f = a * (1.0f-fabs(temp[0])) * cl_decals_newsystem_intensitymultiplier.value;
9295                 f = bound(0.0f, f, 1.0f);
9296                 c[cornerindex][0] = r * f;
9297                 c[cornerindex][1] = g * f;
9298                 c[cornerindex][2] = b * f;
9299                 c[cornerindex][3] = 1.0f;
9300                 //VectorMA(v[cornerindex], cl_decals_bias.value, localnormal, v[cornerindex]);
9301         }
9302         if (dynamic)
9303                 R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[1], v[2], tc[0], tc[1], tc[2], c[0], c[1], c[2], triangleindex, surfaceindex, decalsequence);
9304         else
9305                 for (cornerindex = 0;cornerindex < numpoints-2;cornerindex++)
9306                         R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[cornerindex+1], v[cornerindex+2], tc[0], tc[cornerindex+1], tc[cornerindex+2], c[0], c[cornerindex+1], c[cornerindex+2], -1, surfaceindex, decalsequence);
9307 }
9308 static void R_DecalSystem_SplatEntity(entity_render_t *ent, const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9309 {
9310         matrix4x4_t projection;
9311         decalsystem_t *decalsystem;
9312         qbool dynamic;
9313         dp_model_t *model;
9314         const msurface_t *surface;
9315         const msurface_t *surfaces;
9316         const int *surfacelist;
9317         const texture_t *texture;
9318         int numtriangles;
9319         int numsurfacelist;
9320         int surfacelistindex;
9321         int surfaceindex;
9322         int triangleindex;
9323         float localorigin[3];
9324         float localnormal[3];
9325         float localmins[3];
9326         float localmaxs[3];
9327         float localsize;
9328         //float normal[3];
9329         float planes[6][4];
9330         float angles[3];
9331         bih_t *bih;
9332         int bih_triangles_count;
9333         int bih_triangles[256];
9334         int bih_surfaces[256];
9335
9336         decalsystem = &ent->decalsystem;
9337         model = ent->model;
9338         if (!model || !ent->allowdecals || ent->alpha < 1 || (ent->flags & (RENDER_ADDITIVE | RENDER_NODEPTHTEST)))
9339         {
9340                 R_DecalSystem_Reset(&ent->decalsystem);
9341                 return;
9342         }
9343
9344         if (!model->brush.data_leafs && !cl_decals_models.integer)
9345         {
9346                 if (decalsystem->model)
9347                         R_DecalSystem_Reset(decalsystem);
9348                 return;
9349         }
9350
9351         if (decalsystem->model != model)
9352                 R_DecalSystem_Reset(decalsystem);
9353         decalsystem->model = model;
9354
9355         RSurf_ActiveModelEntity(ent, true, false, false);
9356
9357         Matrix4x4_Transform(&rsurface.inversematrix, worldorigin, localorigin);
9358         Matrix4x4_Transform3x3(&rsurface.inversematrix, worldnormal, localnormal);
9359         VectorNormalize(localnormal);
9360         localsize = worldsize*rsurface.inversematrixscale;
9361         localmins[0] = localorigin[0] - localsize;
9362         localmins[1] = localorigin[1] - localsize;
9363         localmins[2] = localorigin[2] - localsize;
9364         localmaxs[0] = localorigin[0] + localsize;
9365         localmaxs[1] = localorigin[1] + localsize;
9366         localmaxs[2] = localorigin[2] + localsize;
9367
9368         //VectorCopy(localnormal, planes[4]);
9369         //VectorVectors(planes[4], planes[2], planes[0]);
9370         AnglesFromVectors(angles, localnormal, NULL, false);
9371         AngleVectors(angles, planes[0], planes[2], planes[4]);
9372         VectorNegate(planes[0], planes[1]);
9373         VectorNegate(planes[2], planes[3]);
9374         VectorNegate(planes[4], planes[5]);
9375         planes[0][3] = DotProduct(planes[0], localorigin) - localsize;
9376         planes[1][3] = DotProduct(planes[1], localorigin) - localsize;
9377         planes[2][3] = DotProduct(planes[2], localorigin) - localsize;
9378         planes[3][3] = DotProduct(planes[3], localorigin) - localsize;
9379         planes[4][3] = DotProduct(planes[4], localorigin) - localsize;
9380         planes[5][3] = DotProduct(planes[5], localorigin) - localsize;
9381
9382 #if 1
9383 // works
9384 {
9385         matrix4x4_t forwardprojection;
9386         Matrix4x4_CreateFromQuakeEntity(&forwardprojection, localorigin[0], localorigin[1], localorigin[2], angles[0], angles[1], angles[2], localsize);
9387         Matrix4x4_Invert_Simple(&projection, &forwardprojection);
9388 }
9389 #else
9390 // broken
9391 {
9392         float projectionvector[4][3];
9393         VectorScale(planes[0], ilocalsize, projectionvector[0]);
9394         VectorScale(planes[2], ilocalsize, projectionvector[1]);
9395         VectorScale(planes[4], ilocalsize, projectionvector[2]);
9396         projectionvector[0][0] = planes[0][0] * ilocalsize;
9397         projectionvector[0][1] = planes[1][0] * ilocalsize;
9398         projectionvector[0][2] = planes[2][0] * ilocalsize;
9399         projectionvector[1][0] = planes[0][1] * ilocalsize;
9400         projectionvector[1][1] = planes[1][1] * ilocalsize;
9401         projectionvector[1][2] = planes[2][1] * ilocalsize;
9402         projectionvector[2][0] = planes[0][2] * ilocalsize;
9403         projectionvector[2][1] = planes[1][2] * ilocalsize;
9404         projectionvector[2][2] = planes[2][2] * ilocalsize;
9405         projectionvector[3][0] = -(localorigin[0]*projectionvector[0][0]+localorigin[1]*projectionvector[1][0]+localorigin[2]*projectionvector[2][0]);
9406         projectionvector[3][1] = -(localorigin[0]*projectionvector[0][1]+localorigin[1]*projectionvector[1][1]+localorigin[2]*projectionvector[2][1]);
9407         projectionvector[3][2] = -(localorigin[0]*projectionvector[0][2]+localorigin[1]*projectionvector[1][2]+localorigin[2]*projectionvector[2][2]);
9408         Matrix4x4_FromVectors(&projection, projectionvector[0], projectionvector[1], projectionvector[2], projectionvector[3]);
9409 }
9410 #endif
9411
9412         dynamic = model->surfmesh.isanimated;
9413         numsurfacelist = model->nummodelsurfaces;
9414         surfacelist = model->sortedmodelsurfaces;
9415         surfaces = model->data_surfaces;
9416
9417         bih = NULL;
9418         bih_triangles_count = -1;
9419         if(!dynamic)
9420         {
9421                 if(model->render_bih.numleafs)
9422                         bih = &model->render_bih;
9423                 else if(model->collision_bih.numleafs)
9424                         bih = &model->collision_bih;
9425         }
9426         if(bih)
9427                 bih_triangles_count = BIH_GetTriangleListForBox(bih, sizeof(bih_triangles) / sizeof(*bih_triangles), bih_triangles, bih_surfaces, localmins, localmaxs);
9428         if(bih_triangles_count == 0)
9429                 return;
9430         if(bih_triangles_count > (int) (sizeof(bih_triangles) / sizeof(*bih_triangles))) // hit too many, likely bad anyway
9431                 return;
9432         if(bih_triangles_count > 0)
9433         {
9434                 for (triangleindex = 0; triangleindex < bih_triangles_count; ++triangleindex)
9435                 {
9436                         surfaceindex = bih_surfaces[triangleindex];
9437                         surface = surfaces + surfaceindex;
9438                         texture = surface->texture;
9439                         if (!texture)
9440                                 continue;
9441                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9442                                 continue;
9443                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9444                                 continue;
9445                         R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, bih_triangles[triangleindex], surfaceindex);
9446                 }
9447         }
9448         else
9449         {
9450                 for (surfacelistindex = 0;surfacelistindex < numsurfacelist;surfacelistindex++)
9451                 {
9452                         surfaceindex = surfacelist[surfacelistindex];
9453                         surface = surfaces + surfaceindex;
9454                         // check cull box first because it rejects more than any other check
9455                         if (!dynamic && !BoxesOverlap(surface->mins, surface->maxs, localmins, localmaxs))
9456                                 continue;
9457                         // skip transparent surfaces
9458                         texture = surface->texture;
9459                         if (!texture)
9460                                 continue;
9461                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9462                                 continue;
9463                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9464                                 continue;
9465                         numtriangles = surface->num_triangles;
9466                         for (triangleindex = 0; triangleindex < numtriangles; triangleindex++)
9467                                 R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, triangleindex + surface->num_firsttriangle, surfaceindex);
9468                 }
9469         }
9470 }
9471
9472 // do not call this outside of rendering code - use R_DecalSystem_SplatEntities instead
9473 static void R_DecalSystem_ApplySplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9474 {
9475         int renderentityindex;
9476         float worldmins[3];
9477         float worldmaxs[3];
9478         entity_render_t *ent;
9479
9480         worldmins[0] = worldorigin[0] - worldsize;
9481         worldmins[1] = worldorigin[1] - worldsize;
9482         worldmins[2] = worldorigin[2] - worldsize;
9483         worldmaxs[0] = worldorigin[0] + worldsize;
9484         worldmaxs[1] = worldorigin[1] + worldsize;
9485         worldmaxs[2] = worldorigin[2] + worldsize;
9486
9487         R_DecalSystem_SplatEntity(r_refdef.scene.worldentity, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9488
9489         for (renderentityindex = 0;renderentityindex < r_refdef.scene.numentities;renderentityindex++)
9490         {
9491                 ent = r_refdef.scene.entities[renderentityindex];
9492                 if (!BoxesOverlap(ent->mins, ent->maxs, worldmins, worldmaxs))
9493                         continue;
9494
9495                 R_DecalSystem_SplatEntity(ent, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9496         }
9497 }
9498
9499 typedef struct r_decalsystem_splatqueue_s
9500 {
9501         vec3_t worldorigin;
9502         vec3_t worldnormal;
9503         float color[4];
9504         float tcrange[4];
9505         float worldsize;
9506         unsigned int decalsequence;
9507 }
9508 r_decalsystem_splatqueue_t;
9509
9510 int r_decalsystem_numqueued = 0;
9511 r_decalsystem_splatqueue_t r_decalsystem_queue[MAX_DECALSYSTEM_QUEUE];
9512
9513 void R_DecalSystem_SplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize)
9514 {
9515         r_decalsystem_splatqueue_t *queue;
9516
9517         if (r_decalsystem_numqueued == MAX_DECALSYSTEM_QUEUE)
9518                 return;
9519
9520         queue = &r_decalsystem_queue[r_decalsystem_numqueued++];
9521         VectorCopy(worldorigin, queue->worldorigin);
9522         VectorCopy(worldnormal, queue->worldnormal);
9523         Vector4Set(queue->color, r, g, b, a);
9524         Vector4Set(queue->tcrange, s1, t1, s2, t2);
9525         queue->worldsize = worldsize;
9526         queue->decalsequence = cl.decalsequence++;
9527 }
9528
9529 static void R_DecalSystem_ApplySplatEntitiesQueue(void)
9530 {
9531         int i;
9532         r_decalsystem_splatqueue_t *queue;
9533
9534         for (i = 0, queue = r_decalsystem_queue;i < r_decalsystem_numqueued;i++, queue++)
9535                 R_DecalSystem_ApplySplatEntities(queue->worldorigin, queue->worldnormal, queue->color[0], queue->color[1], queue->color[2], queue->color[3], queue->tcrange[0], queue->tcrange[1], queue->tcrange[2], queue->tcrange[3], queue->worldsize, queue->decalsequence);
9536         r_decalsystem_numqueued = 0;
9537 }
9538
9539 extern cvar_t cl_decals_max;
9540 static void R_DrawModelDecals_FadeEntity(entity_render_t *ent)
9541 {
9542         int i;
9543         decalsystem_t *decalsystem = &ent->decalsystem;
9544         int numdecals;
9545         unsigned int killsequence;
9546         tridecal_t *decal;
9547         float frametime;
9548         float lifetime;
9549
9550         if (!decalsystem->numdecals)
9551                 return;
9552
9553         if (r_showsurfaces.integer)
9554                 return;
9555
9556         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9557         {
9558                 R_DecalSystem_Reset(decalsystem);
9559                 return;
9560         }
9561
9562         killsequence = cl.decalsequence - bound(1, (unsigned int) cl_decals_max.integer, cl.decalsequence);
9563         lifetime = cl_decals_time.value + cl_decals_fadetime.value;
9564
9565         if (decalsystem->lastupdatetime)
9566                 frametime = (r_refdef.scene.time - decalsystem->lastupdatetime);
9567         else
9568                 frametime = 0;
9569         decalsystem->lastupdatetime = r_refdef.scene.time;
9570         numdecals = decalsystem->numdecals;
9571
9572         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9573         {
9574                 if (decal->color4f[0][3])
9575                 {
9576                         decal->lived += frametime;
9577                         if (killsequence > decal->decalsequence || decal->lived >= lifetime)
9578                         {
9579                                 memset(decal, 0, sizeof(*decal));
9580                                 if (decalsystem->freedecal > i)
9581                                         decalsystem->freedecal = i;
9582                         }
9583                 }
9584         }
9585         decal = decalsystem->decals;
9586         while (numdecals > 0 && !decal[numdecals-1].color4f[0][3])
9587                 numdecals--;
9588
9589         // collapse the array by shuffling the tail decals into the gaps
9590         for (;;)
9591         {
9592                 while (decalsystem->freedecal < numdecals && decal[decalsystem->freedecal].color4f[0][3])
9593                         decalsystem->freedecal++;
9594                 if (decalsystem->freedecal == numdecals)
9595                         break;
9596                 decal[decalsystem->freedecal] = decal[--numdecals];
9597         }
9598
9599         decalsystem->numdecals = numdecals;
9600
9601         if (numdecals <= 0)
9602         {
9603                 // if there are no decals left, reset decalsystem
9604                 R_DecalSystem_Reset(decalsystem);
9605         }
9606 }
9607
9608 extern skinframe_t *decalskinframe;
9609 static void R_DrawModelDecals_Entity(entity_render_t *ent)
9610 {
9611         int i;
9612         decalsystem_t *decalsystem = &ent->decalsystem;
9613         int numdecals;
9614         tridecal_t *decal;
9615         float faderate;
9616         float alpha;
9617         float *v3f;
9618         float *c4f;
9619         float *t2f;
9620         const int *e;
9621         const unsigned char *surfacevisible = ent == r_refdef.scene.worldentity ? r_refdef.viewcache.world_surfacevisible : NULL;
9622         int numtris = 0;
9623
9624         numdecals = decalsystem->numdecals;
9625         if (!numdecals)
9626                 return;
9627
9628         if (r_showsurfaces.integer)
9629                 return;
9630
9631         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9632         {
9633                 R_DecalSystem_Reset(decalsystem);
9634                 return;
9635         }
9636
9637         // if the model is static it doesn't matter what value we give for
9638         // wantnormals and wanttangents, so this logic uses only rules applicable
9639         // to a model, knowing that they are meaningless otherwise
9640         RSurf_ActiveModelEntity(ent, false, false, false);
9641
9642         decalsystem->lastupdatetime = r_refdef.scene.time;
9643
9644         faderate = 1.0f / max(0.001f, cl_decals_fadetime.value);
9645
9646         // update vertex positions for animated models
9647         v3f = decalsystem->vertex3f;
9648         c4f = decalsystem->color4f;
9649         t2f = decalsystem->texcoord2f;
9650         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9651         {
9652                 if (!decal->color4f[0][3])
9653                         continue;
9654
9655                 if (surfacevisible && !surfacevisible[decal->surfaceindex])
9656                         continue;
9657
9658                 // skip backfaces
9659                 if (decal->triangleindex < 0 && DotProduct(r_refdef.view.origin, decal->plane) < decal->plane[3])
9660                         continue;
9661
9662                 // update color values for fading decals
9663                 if (decal->lived >= cl_decals_time.value)
9664                         alpha = 1 - faderate * (decal->lived - cl_decals_time.value);
9665                 else
9666                         alpha = 1.0f;
9667
9668                 c4f[ 0] = decal->color4f[0][0] * alpha;
9669                 c4f[ 1] = decal->color4f[0][1] * alpha;
9670                 c4f[ 2] = decal->color4f[0][2] * alpha;
9671                 c4f[ 3] = 1;
9672                 c4f[ 4] = decal->color4f[1][0] * alpha;
9673                 c4f[ 5] = decal->color4f[1][1] * alpha;
9674                 c4f[ 6] = decal->color4f[1][2] * alpha;
9675                 c4f[ 7] = 1;
9676                 c4f[ 8] = decal->color4f[2][0] * alpha;
9677                 c4f[ 9] = decal->color4f[2][1] * alpha;
9678                 c4f[10] = decal->color4f[2][2] * alpha;
9679                 c4f[11] = 1;
9680
9681                 t2f[0] = decal->texcoord2f[0][0];
9682                 t2f[1] = decal->texcoord2f[0][1];
9683                 t2f[2] = decal->texcoord2f[1][0];
9684                 t2f[3] = decal->texcoord2f[1][1];
9685                 t2f[4] = decal->texcoord2f[2][0];
9686                 t2f[5] = decal->texcoord2f[2][1];
9687
9688                 // update vertex positions for animated models
9689                 if (decal->triangleindex >= 0 && decal->triangleindex < rsurface.modelnumtriangles)
9690                 {
9691                         e = rsurface.modelelement3i + 3*decal->triangleindex;
9692                         VectorCopy(rsurface.modelvertex3f + 3*e[0], v3f);
9693                         VectorCopy(rsurface.modelvertex3f + 3*e[1], v3f + 3);
9694                         VectorCopy(rsurface.modelvertex3f + 3*e[2], v3f + 6);
9695                 }
9696                 else
9697                 {
9698                         VectorCopy(decal->vertex3f[0], v3f);
9699                         VectorCopy(decal->vertex3f[1], v3f + 3);
9700                         VectorCopy(decal->vertex3f[2], v3f + 6);
9701                 }
9702
9703                 if (r_refdef.fogenabled)
9704                 {
9705                         alpha = RSurf_FogVertex(v3f);
9706                         VectorScale(c4f, alpha, c4f);
9707                         alpha = RSurf_FogVertex(v3f + 3);
9708                         VectorScale(c4f + 4, alpha, c4f + 4);
9709                         alpha = RSurf_FogVertex(v3f + 6);
9710                         VectorScale(c4f + 8, alpha, c4f + 8);
9711                 }
9712
9713                 v3f += 9;
9714                 c4f += 12;
9715                 t2f += 6;
9716                 numtris++;
9717         }
9718
9719         if (numtris > 0)
9720         {
9721                 r_refdef.stats[r_stat_drawndecals] += numtris;
9722
9723                 // now render the decals all at once
9724                 // (this assumes they all use one particle font texture!)
9725                 RSurf_ActiveCustomEntity(&rsurface.matrix, &rsurface.inversematrix, rsurface.ent_flags, ent->shadertime, 1, 1, 1, 1, numdecals*3, decalsystem->vertex3f, decalsystem->texcoord2f, NULL, NULL, NULL, decalsystem->color4f, numtris, decalsystem->element3i, decalsystem->element3s, false, false);
9726 //              R_Mesh_ResetTextureState();
9727                 R_Mesh_PrepareVertices_Generic_Arrays(numtris * 3, decalsystem->vertex3f, decalsystem->color4f, decalsystem->texcoord2f);
9728                 GL_DepthMask(false);
9729                 GL_DepthRange(0, 1);
9730                 GL_PolygonOffset(rsurface.basepolygonfactor + r_polygonoffset_decals_factor.value, rsurface.basepolygonoffset + r_polygonoffset_decals_offset.value);
9731                 GL_DepthTest(true);
9732                 GL_CullFace(GL_NONE);
9733                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
9734                 R_SetupShader_Generic(decalskinframe->base, false, false, false);
9735                 R_Mesh_Draw(0, numtris * 3, 0, numtris, decalsystem->element3i, NULL, 0, decalsystem->element3s, NULL, 0);
9736         }
9737 }
9738
9739 static void R_DrawModelDecals(void)
9740 {
9741         int i, numdecals;
9742
9743         // fade faster when there are too many decals
9744         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9745         for (i = 0;i < r_refdef.scene.numentities;i++)
9746                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9747
9748         R_DrawModelDecals_FadeEntity(r_refdef.scene.worldentity);
9749         for (i = 0;i < r_refdef.scene.numentities;i++)
9750                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9751                         R_DrawModelDecals_FadeEntity(r_refdef.scene.entities[i]);
9752
9753         R_DecalSystem_ApplySplatEntitiesQueue();
9754
9755         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9756         for (i = 0;i < r_refdef.scene.numentities;i++)
9757                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9758
9759         r_refdef.stats[r_stat_totaldecals] += numdecals;
9760
9761         if (r_showsurfaces.integer || !r_drawdecals.integer)
9762                 return;
9763
9764         R_DrawModelDecals_Entity(r_refdef.scene.worldentity);
9765
9766         for (i = 0;i < r_refdef.scene.numentities;i++)
9767         {
9768                 if (!r_refdef.viewcache.entityvisible[i])
9769                         continue;
9770                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9771                         R_DrawModelDecals_Entity(r_refdef.scene.entities[i]);
9772         }
9773 }
9774
9775 static void R_DrawDebugModel(void)
9776 {
9777         entity_render_t *ent = rsurface.entity;
9778         int i, j, flagsmask;
9779         const msurface_t *surface;
9780         dp_model_t *model = ent->model;
9781
9782         if (!sv.active  && !cls.demoplayback && ent != r_refdef.scene.worldentity)
9783                 return;
9784
9785         if (r_showoverdraw.value > 0)
9786         {
9787                 float c = r_refdef.view.colorscale * r_showoverdraw.value * 0.125f;
9788                 flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9789                 R_SetupShader_Generic_NoTexture(false, false);
9790                 GL_DepthTest(false);
9791                 GL_DepthMask(false);
9792                 GL_DepthRange(0, 1);
9793                 GL_BlendFunc(GL_ONE, GL_ONE);
9794                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9795                 {
9796                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9797                                 continue;
9798                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9799                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9800                         {
9801                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, 1, &surface);
9802                                 GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
9803                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9804                                         GL_Color(c, 0, 0, 1.0f);
9805                                 else if (ent == r_refdef.scene.worldentity)
9806                                         GL_Color(c, c, c, 1.0f);
9807                                 else
9808                                         GL_Color(0, c, 0, 1.0f);
9809                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9810                                 RSurf_DrawBatch();
9811                         }
9812                 }
9813                 rsurface.texture = NULL;
9814         }
9815
9816         flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9817
9818 //      R_Mesh_ResetTextureState();
9819         R_SetupShader_Generic_NoTexture(false, false);
9820         GL_DepthRange(0, 1);
9821         GL_DepthTest(!r_showdisabledepthtest.integer);
9822         GL_DepthMask(false);
9823         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9824
9825         if (r_showcollisionbrushes.value > 0 && model->collision_bih.numleafs)
9826         {
9827                 int triangleindex;
9828                 int bihleafindex;
9829                 qbool cullbox = false;
9830                 const q3mbrush_t *brush;
9831                 const bih_t *bih = &model->collision_bih;
9832                 const bih_leaf_t *bihleaf;
9833                 float vertex3f[3][3];
9834                 GL_PolygonOffset(r_refdef.polygonfactor + r_showcollisionbrushes_polygonfactor.value, r_refdef.polygonoffset + r_showcollisionbrushes_polygonoffset.value);
9835                 for (bihleafindex = 0, bihleaf = bih->leafs;bihleafindex < bih->numleafs;bihleafindex++, bihleaf++)
9836                 {
9837                         if (cullbox && R_CullBox(bihleaf->mins, bihleaf->maxs))
9838                                 continue;
9839                         switch (bihleaf->type)
9840                         {
9841                         case BIH_BRUSH:
9842                                 brush = model->brush.data_brushes + bihleaf->itemindex;
9843                                 if (brush->colbrushf && brush->colbrushf->numtriangles)
9844                                 {
9845                                         GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9846                                         R_Mesh_PrepareVertices_Generic_Arrays(brush->colbrushf->numpoints, brush->colbrushf->points->v, NULL, NULL);
9847                                         R_Mesh_Draw(0, brush->colbrushf->numpoints, 0, brush->colbrushf->numtriangles, brush->colbrushf->elements, NULL, 0, NULL, NULL, 0);
9848                                 }
9849                                 break;
9850                         case BIH_COLLISIONTRIANGLE:
9851                                 triangleindex = bihleaf->itemindex;
9852                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+0], vertex3f[0]);
9853                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+1], vertex3f[1]);
9854                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+2], vertex3f[2]);
9855                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9856                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9857                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9858                                 break;
9859                         case BIH_RENDERTRIANGLE:
9860                                 triangleindex = bihleaf->itemindex;
9861                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+0], vertex3f[0]);
9862                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+1], vertex3f[1]);
9863                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+2], vertex3f[2]);
9864                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9865                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9866                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9867                                 break;
9868                         }
9869                 }
9870         }
9871
9872         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9873
9874 #ifndef USE_GLES2
9875         if (r_showtris.value > 0 && qglPolygonMode)
9876         {
9877                 if (r_showdisabledepthtest.integer)
9878                 {
9879                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9880                         GL_DepthMask(false);
9881                 }
9882                 else
9883                 {
9884                         GL_BlendFunc(GL_ONE, GL_ZERO);
9885                         GL_DepthMask(true);
9886                 }
9887                 qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);CHECKGLERROR
9888                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9889                 {
9890                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9891                                 continue;
9892                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9893                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9894                         {
9895                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9896                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9897                                         GL_Color(r_refdef.view.colorscale, 0, 0, r_showtris.value);
9898                                 else if (ent == r_refdef.scene.worldentity)
9899                                         GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, r_showtris.value);
9900                                 else
9901                                         GL_Color(0, r_refdef.view.colorscale, 0, r_showtris.value);
9902                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9903                                 RSurf_DrawBatch();
9904                         }
9905                 }
9906                 qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);CHECKGLERROR
9907                 rsurface.texture = NULL;
9908         }
9909
9910 # if 0
9911         // FIXME!  implement r_shownormals with just triangles
9912         if (r_shownormals.value != 0 && qglBegin)
9913         {
9914                 int l, k;
9915                 vec3_t v;
9916                 if (r_showdisabledepthtest.integer)
9917                 {
9918                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9919                         GL_DepthMask(false);
9920                 }
9921                 else
9922                 {
9923                         GL_BlendFunc(GL_ONE, GL_ZERO);
9924                         GL_DepthMask(true);
9925                 }
9926                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9927                 {
9928                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9929                                 continue;
9930                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9931                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9932                         {
9933                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9934                                 qglBegin(GL_LINES);
9935                                 if (r_shownormals.value < 0 && rsurface.batchnormal3f)
9936                                 {
9937                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9938                                         {
9939                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9940                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9941                                                 qglVertex3f(v[0], v[1], v[2]);
9942                                                 VectorMA(v, -r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9943                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9944                                                 qglVertex3f(v[0], v[1], v[2]);
9945                                         }
9946                                 }
9947                                 if (r_shownormals.value > 0 && rsurface.batchsvector3f)
9948                                 {
9949                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9950                                         {
9951                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9952                                                 GL_Color(r_refdef.view.colorscale, 0, 0, 1);
9953                                                 qglVertex3f(v[0], v[1], v[2]);
9954                                                 VectorMA(v, r_shownormals.value, rsurface.batchsvector3f + l * 3, v);
9955                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9956                                                 qglVertex3f(v[0], v[1], v[2]);
9957                                         }
9958                                 }
9959                                 if (r_shownormals.value > 0 && rsurface.batchtvector3f)
9960                                 {
9961                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9962                                         {
9963                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9964                                                 GL_Color(0, r_refdef.view.colorscale, 0, 1);
9965                                                 qglVertex3f(v[0], v[1], v[2]);
9966                                                 VectorMA(v, r_shownormals.value, rsurface.batchtvector3f + l * 3, v);
9967                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9968                                                 qglVertex3f(v[0], v[1], v[2]);
9969                                         }
9970                                 }
9971                                 if (r_shownormals.value > 0 && rsurface.batchnormal3f)
9972                                 {
9973                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9974                                         {
9975                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9976                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9977                                                 qglVertex3f(v[0], v[1], v[2]);
9978                                                 VectorMA(v, r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9979                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9980                                                 qglVertex3f(v[0], v[1], v[2]);
9981                                         }
9982                                 }
9983                                 qglEnd();
9984                                 CHECKGLERROR
9985                         }
9986                 }
9987                 rsurface.texture = NULL;
9988         }
9989 # endif
9990 #endif
9991 }
9992
9993 int r_maxsurfacelist = 0;
9994 const msurface_t **r_surfacelist = NULL;
9995 void R_DrawModelSurfaces(entity_render_t *ent, qbool skysurfaces, qbool writedepth, qbool depthonly, qbool debug, qbool prepass, qbool ui)
9996 {
9997         int i, j, endj, flagsmask;
9998         dp_model_t *model = ent->model;
9999         msurface_t *surfaces;
10000         unsigned char *update;
10001         int numsurfacelist = 0;
10002         if (model == NULL)
10003                 return;
10004
10005         if (r_maxsurfacelist < model->num_surfaces)
10006         {
10007                 r_maxsurfacelist = model->num_surfaces;
10008                 if (r_surfacelist)
10009                         Mem_Free((msurface_t **)r_surfacelist);
10010                 r_surfacelist = (const msurface_t **) Mem_Alloc(r_main_mempool, r_maxsurfacelist * sizeof(*r_surfacelist));
10011         }
10012
10013         if (r_showsurfaces.integer && r_showsurfaces.integer != 3)
10014                 RSurf_ActiveModelEntity(ent, false, false, false);
10015         else if (prepass)
10016                 RSurf_ActiveModelEntity(ent, true, true, true);
10017         else if (depthonly)
10018                 RSurf_ActiveModelEntity(ent, model->wantnormals, model->wanttangents, false);
10019         else
10020                 RSurf_ActiveModelEntity(ent, true, true, false);
10021
10022         surfaces = model->data_surfaces;
10023         update = model->brushq1.lightmapupdateflags;
10024
10025         // update light styles
10026         if (!skysurfaces && !depthonly && !prepass && model->brushq1.num_lightstyles && r_refdef.scene.lightmapintensity > 0)
10027         {
10028                 model_brush_lightstyleinfo_t *style;
10029                 for (i = 0, style = model->brushq1.data_lightstyleinfo;i < model->brushq1.num_lightstyles;i++, style++)
10030                 {
10031                         if (style->value != r_refdef.scene.lightstylevalue[style->style])
10032                         {
10033                                 int *list = style->surfacelist;
10034                                 style->value = r_refdef.scene.lightstylevalue[style->style];
10035                                 for (j = 0;j < style->numsurfaces;j++)
10036                                         update[list[j]] = true;
10037                         }
10038                 }
10039         }
10040
10041         flagsmask = skysurfaces ? MATERIALFLAG_SKY : MATERIALFLAG_WALL;
10042
10043         if (debug)
10044         {
10045                 R_DrawDebugModel();
10046                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10047                 return;
10048         }
10049
10050         rsurface.lightmaptexture = NULL;
10051         rsurface.deluxemaptexture = NULL;
10052         rsurface.uselightmaptexture = false;
10053         rsurface.texture = NULL;
10054         rsurface.rtlight = NULL;
10055         numsurfacelist = 0;
10056         // add visible surfaces to draw list
10057         if (ent == r_refdef.scene.worldentity)
10058         {
10059                 // for the world entity, check surfacevisible
10060                 for (i = 0;i < model->nummodelsurfaces;i++)
10061                 {
10062                         j = model->sortedmodelsurfaces[i];
10063                         if (r_refdef.viewcache.world_surfacevisible[j])
10064                                 r_surfacelist[numsurfacelist++] = surfaces + j;
10065                 }
10066         }
10067         else if (ui)
10068         {
10069                 // for ui we have to preserve the order of surfaces
10070                 for (i = 0; i < model->nummodelsurfaces; i++)
10071                         r_surfacelist[numsurfacelist++] = surfaces + model->firstmodelsurface + i;
10072         }
10073         else
10074         {
10075                 // add all surfaces
10076                 for (i = 0; i < model->nummodelsurfaces; i++)
10077                         r_surfacelist[numsurfacelist++] = surfaces + model->sortedmodelsurfaces[i];
10078         }
10079         // don't do anything if there were no surfaces
10080         if (!numsurfacelist)
10081         {
10082                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10083                 return;
10084         }
10085         // update lightmaps if needed
10086         if (update)
10087         {
10088                 int updated = 0;
10089                 for (j = model->firstmodelsurface, endj = model->firstmodelsurface + model->nummodelsurfaces;j < endj;j++)
10090                 {
10091                         // Update brush entities even if not visible otherwise they'll render solid black.
10092                         if (update[j] && (r_refdef.viewcache.world_surfacevisible[j] || ent != r_refdef.scene.worldentity))
10093                         {
10094                                 updated++;
10095                                 R_BuildLightMap(ent, surfaces + j);
10096                         }
10097                 }
10098         }
10099
10100         R_QueueModelSurfaceList(ent, numsurfacelist, r_surfacelist, flagsmask, writedepth, depthonly, prepass, ui);
10101
10102         // add to stats if desired
10103         if (r_speeds.integer && !skysurfaces && !depthonly)
10104         {
10105                 r_refdef.stats[r_stat_entities_surfaces] += numsurfacelist;
10106                 for (j = 0;j < numsurfacelist;j++)
10107                         r_refdef.stats[r_stat_entities_triangles] += r_surfacelist[j]->num_triangles;
10108         }
10109
10110         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10111 }
10112
10113 void R_DebugLine(vec3_t start, vec3_t end)
10114 {
10115         dp_model_t *mod = CL_Mesh_UI();
10116         msurface_t *surf;
10117         int e0, e1, e2, e3;
10118         float offsetx, offsety, x1, y1, x2, y2, width = 1.0f;
10119         float r1 = 1.0f, g1 = 0.0f, b1 = 0.0f, alpha1 = 0.25f;
10120         float r2 = 1.0f, g2 = 1.0f, b2 = 0.0f, alpha2 = 0.25f;
10121         vec4_t w[2], s[2];
10122
10123         // transform to screen coords first
10124         Vector4Set(w[0], start[0], start[1], start[2], 1);
10125         Vector4Set(w[1], end[0], end[1], end[2], 1);
10126         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[0], s[0]);
10127         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[1], s[1]);
10128         x1 = s[0][0] * vid_conwidth.value / vid.width;
10129         y1 = (vid.height - s[0][1]) * vid_conheight.value / vid.height;
10130         x2 = s[1][0] * vid_conwidth.value / vid.width;
10131         y2 = (vid.height - s[1][1]) * vid_conheight.value / vid.height;
10132         //Con_DPrintf("R_DebugLine: %.0f,%.0f to %.0f,%.0f\n", x1, y1, x2, y2);
10133
10134         // add the line to the UI mesh for drawing later
10135
10136         // width is measured in real pixels
10137         if (fabs(x2 - x1) > fabs(y2 - y1))
10138         {
10139                 offsetx = 0;
10140                 offsety = 0.5f * width * vid_conheight.value / vid.height;
10141         }
10142         else
10143         {
10144                 offsetx = 0.5f * width * vid_conwidth.value / vid.width;
10145                 offsety = 0;
10146         }
10147         surf = Mod_Mesh_AddSurface(mod, Mod_Mesh_GetTexture(mod, "white", 0, 0, MATERIALFLAG_WALL | MATERIALFLAG_VERTEXCOLOR | MATERIALFLAG_ALPHAGEN_VERTEX | MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW), true);
10148         e0 = Mod_Mesh_IndexForVertex(mod, surf, x1 - offsetx, y1 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10149         e1 = Mod_Mesh_IndexForVertex(mod, surf, x2 - offsetx, y2 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10150         e2 = Mod_Mesh_IndexForVertex(mod, surf, x2 + offsetx, y2 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10151         e3 = Mod_Mesh_IndexForVertex(mod, surf, x1 + offsetx, y1 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10152         Mod_Mesh_AddTriangle(mod, surf, e0, e1, e2);
10153         Mod_Mesh_AddTriangle(mod, surf, e0, e2, e3);
10154
10155 }
10156
10157
10158 void R_DrawCustomSurface(skinframe_t *skinframe, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10159 {
10160         static texture_t texture;
10161
10162         // fake enough texture and surface state to render this geometry
10163
10164         texture.update_lastrenderframe = -1; // regenerate this texture
10165         texture.basematerialflags = materialflags | MATERIALFLAG_CUSTOMSURFACE | MATERIALFLAG_WALL;
10166         texture.basealpha = 1.0f;
10167         texture.currentskinframe = skinframe;
10168         texture.currenttexmatrix = *texmatrix; // requires MATERIALFLAG_CUSTOMSURFACE
10169         texture.offsetmapping = OFFSETMAPPING_OFF;
10170         texture.offsetscale = 1;
10171         texture.specularscalemod = 1;
10172         texture.specularpowermod = 1;
10173         texture.transparentsort = TRANSPARENTSORT_DISTANCE;
10174
10175         R_DrawCustomSurface_Texture(&texture, texmatrix, materialflags, firstvertex, numvertices, firsttriangle, numtriangles, writedepth, prepass, ui);
10176 }
10177
10178 void R_DrawCustomSurface_Texture(texture_t *texture, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10179 {
10180         static msurface_t surface;
10181         const msurface_t *surfacelist = &surface;
10182
10183         // fake enough texture and surface state to render this geometry
10184         surface.texture = texture;
10185         surface.num_triangles = numtriangles;
10186         surface.num_firsttriangle = firsttriangle;
10187         surface.num_vertices = numvertices;
10188         surface.num_firstvertex = firstvertex;
10189
10190         // now render it
10191         rsurface.texture = R_GetCurrentTexture(surface.texture);
10192         rsurface.lightmaptexture = NULL;
10193         rsurface.deluxemaptexture = NULL;
10194         rsurface.uselightmaptexture = false;
10195         R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass, ui);
10196 }