]> git.xonotic.org Git - xonotic/darkplaces.git/blob - gl_rmain.c
Just assume GL_ARB_texture_non_power_of_two and a number of other extensions are...
[xonotic/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "r_shadow.h"
24 #include "polygon.h"
25 #include "image.h"
26 #include "ft2.h"
27 #include "csprogs.h"
28 #include "cl_video.h"
29 #include "cl_collision.h"
30
31 #ifdef WIN32
32 // Enable NVIDIA High Performance Graphics while using Integrated Graphics.
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 __declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001;
37 #ifdef __cplusplus
38 }
39 #endif
40 #endif
41
42 mempool_t *r_main_mempool;
43 rtexturepool_t *r_main_texturepool;
44
45 static int r_textureframe = 0; ///< used only by R_GetCurrentTexture
46
47 static qboolean r_loadnormalmap;
48 static qboolean r_loadgloss;
49 qboolean r_loadfog;
50 static qboolean r_loaddds;
51 static qboolean r_savedds;
52 static qboolean r_gpuskeletal;
53
54 //
55 // screen size info
56 //
57 r_refdef_t r_refdef;
58
59 cvar_t r_motionblur = {CVAR_SAVE, "r_motionblur", "0", "screen motionblur - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
60 cvar_t r_damageblur = {CVAR_SAVE, "r_damageblur", "0", "screen motionblur based on damage - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
61 cvar_t r_motionblur_averaging = {CVAR_SAVE, "r_motionblur_averaging", "0.1", "sliding average reaction time for velocity (higher = slower adaption to change)"};
62 cvar_t r_motionblur_randomize = {CVAR_SAVE, "r_motionblur_randomize", "0.1", "randomizing coefficient to workaround ghosting"};
63 cvar_t r_motionblur_minblur = {CVAR_SAVE, "r_motionblur_minblur", "0.5", "factor of blur to apply at all times (always have this amount of blur no matter what the other factors are)"};
64 cvar_t r_motionblur_maxblur = {CVAR_SAVE, "r_motionblur_maxblur", "0.9", "maxmimum amount of blur"};
65 cvar_t r_motionblur_velocityfactor = {CVAR_SAVE, "r_motionblur_velocityfactor", "1", "factoring in of player velocity to the blur equation - the faster the player moves around the map, the more blur they get"};
66 cvar_t r_motionblur_velocityfactor_minspeed = {CVAR_SAVE, "r_motionblur_velocityfactor_minspeed", "400", "lower value of velocity when it starts to factor into blur equation"};
67 cvar_t r_motionblur_velocityfactor_maxspeed = {CVAR_SAVE, "r_motionblur_velocityfactor_maxspeed", "800", "upper value of velocity when it reaches the peak factor into blur equation"};
68 cvar_t r_motionblur_mousefactor = {CVAR_SAVE, "r_motionblur_mousefactor", "2", "factoring in of mouse acceleration to the blur equation - the faster the player turns their mouse, the more blur they get"};
69 cvar_t r_motionblur_mousefactor_minspeed = {CVAR_SAVE, "r_motionblur_mousefactor_minspeed", "0", "lower value of mouse acceleration when it starts to factor into blur equation"};
70 cvar_t r_motionblur_mousefactor_maxspeed = {CVAR_SAVE, "r_motionblur_mousefactor_maxspeed", "50", "upper value of mouse acceleration when it reaches the peak factor into blur equation"};
71
72 // TODO do we want a r_equalize_entities cvar that works on all ents, or would that be a cheat?
73 cvar_t r_equalize_entities_fullbright = {CVAR_SAVE, "r_equalize_entities_fullbright", "0", "render fullbright entities by equalizing their lightness, not by not rendering light (DEPRECATED)"};
74 cvar_t r_equalize_entities_minambient = {CVAR_SAVE, "r_equalize_entities_minambient", "0.5", "light equalizing: ensure at least this ambient/diffuse ratio (DEPRECATED)"};
75 cvar_t r_equalize_entities_by = {CVAR_SAVE, "r_equalize_entities_by", "0.7", "light equalizing: exponent of dynamics compression (0 = no compression, 1 = full compression) (DEPRECATED)"};
76 cvar_t r_equalize_entities_to = {CVAR_SAVE, "r_equalize_entities_to", "0.8", "light equalizing: target light level (DEPRECATED)"};
77
78 cvar_t r_depthfirst = {CVAR_SAVE, "r_depthfirst", "0", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
79 cvar_t r_useinfinitefarclip = {CVAR_SAVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"};
80 cvar_t r_farclip_base = {0, "r_farclip_base", "65536", "farclip (furthest visible distance) for rendering when r_useinfinitefarclip is 0"};
81 cvar_t r_farclip_world = {0, "r_farclip_world", "2", "adds map size to farclip multiplied by this value"};
82 cvar_t r_nearclip = {0, "r_nearclip", "1", "distance from camera of nearclip plane" };
83 cvar_t r_deformvertexes = {0, "r_deformvertexes", "1", "allows use of deformvertexes in shader files (can be turned off to check performance impact)"};
84 cvar_t r_transparent = {0, "r_transparent", "1", "allows use of transparent surfaces (can be turned off to check performance impact)"};
85 cvar_t r_transparent_alphatocoverage = {0, "r_transparent_alphatocoverage", "1", "enables GL_ALPHA_TO_COVERAGE antialiasing technique on alphablend and alphatest surfaces when using vid_samples 2 or higher"};
86 cvar_t r_transparent_sortsurfacesbynearest = {0, "r_transparent_sortsurfacesbynearest", "1", "sort entity and world surfaces by nearest point on bounding box instead of using the center of the bounding box, usually reduces sorting artifacts"};
87 cvar_t r_transparent_useplanardistance = {0, "r_transparent_useplanardistance", "0", "sort transparent meshes by distance from view plane rather than spherical distance to the chosen point"};
88 cvar_t r_showoverdraw = {0, "r_showoverdraw", "0", "shows overlapping geometry"};
89 cvar_t r_showbboxes = {0, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
90 cvar_t r_showbboxes_client = { 0, "r_showbboxes_client", "0", "shows bounding boxes of clientside qc entities, value controls opacity scaling (1 = 10%,  10 = 100%)" };
91 cvar_t r_showsurfaces = {0, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
92 cvar_t r_showtris = {0, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
93 cvar_t r_shownormals = {0, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
94 cvar_t r_showlighting = {0, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
95 cvar_t r_showcollisionbrushes = {0, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
96 cvar_t r_showcollisionbrushes_polygonfactor = {0, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
97 cvar_t r_showcollisionbrushes_polygonoffset = {0, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
98 cvar_t r_showdisabledepthtest = {0, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
99 cvar_t r_showspriteedges = {0, "r_showspriteedges", "0", "renders a debug outline to show the polygon shape of each sprite frame rendered (may be 2 or more in case of interpolated animations), for debugging rendering bugs with specific view types"};
100 cvar_t r_showparticleedges = {0, "r_showparticleedges", "0", "renders a debug outline to show the polygon shape of each particle, for debugging rendering bugs with specific view types"};
101 cvar_t r_drawportals = {0, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
102 cvar_t r_drawentities = {0, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
103 cvar_t r_draw2d = {0, "r_draw2d","1", "draw 2D stuff (dangerous to turn off)"};
104 cvar_t r_drawworld = {0, "r_drawworld","1", "draw world (most static stuff)"};
105 cvar_t r_drawviewmodel = {0, "r_drawviewmodel","1", "draw your weapon model"};
106 cvar_t r_drawexteriormodel = {0, "r_drawexteriormodel","1", "draw your player model (e.g. in chase cam, reflections)"};
107 cvar_t r_cullentities_trace = {0, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
108 cvar_t r_cullentities_trace_entityocclusion = { 0, "r_cullentities_trace_entityocclusion", "1", "check for occluding entities such as doors, not just world hull" };
109 cvar_t r_cullentities_trace_samples = {0, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling (in addition to center sample)"};
110 cvar_t r_cullentities_trace_tempentitysamples = {0, "r_cullentities_trace_tempentitysamples", "-1", "number of samples to test for entity culling of temp entities (including all CSQC entities), -1 disables trace culling on these entities to prevent flicker (pvs still applies)"};
111 cvar_t r_cullentities_trace_enlarge = {0, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
112 cvar_t r_cullentities_trace_expand = {0, "r_cullentities_trace_expand", "0", "box expanded by this many units for entity culling"};
113 cvar_t r_cullentities_trace_pad = {0, "r_cullentities_trace_pad", "8", "accept traces that hit within this many units of the box"};
114 cvar_t r_cullentities_trace_delay = {0, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
115 cvar_t r_cullentities_trace_eyejitter = {0, "r_cullentities_trace_eyejitter", "16", "randomly offset rays from the eye by this much to reduce the odds of flickering"};
116 cvar_t r_sortentities = {0, "r_sortentities", "0", "sort entities before drawing (might be faster)"};
117 cvar_t r_speeds = {0, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
118 cvar_t r_fullbright = {0, "r_fullbright","0", "makes map very bright and renders faster"};
119
120 cvar_t r_fakelight = {0, "r_fakelight","0", "render 'fake' lighting instead of real lightmaps (DEPRECATED)"};
121 cvar_t r_fakelight_intensity = {0, "r_fakelight_intensity","0.75", "fakelight intensity modifier (DEPRECATED)"};
122 #define FAKELIGHT_ENABLED (r_fakelight.integer >= 2 || (r_fakelight.integer && r_refdef.scene.worldmodel && !r_refdef.scene.worldmodel->lit))
123
124 cvar_t r_fullbright_directed = {0, "r_fullbright_directed", "0", "render fullbright things (unlit worldmodel and EF_FULLBRIGHT entities, but not fullbright shaders) using a constant light direction instead to add more depth while keeping uniform brightness"};
125 cvar_t r_fullbright_directed_ambient = {0, "r_fullbright_directed_ambient", "0.5", "ambient light multiplier for directed fullbright"};
126 cvar_t r_fullbright_directed_diffuse = {0, "r_fullbright_directed_diffuse", "0.75", "diffuse light multiplier for directed fullbright"};
127 cvar_t r_fullbright_directed_pitch = {0, "r_fullbright_directed_pitch", "20", "constant pitch direction ('height') of the fake light source to use for fullbright"};
128 cvar_t r_fullbright_directed_pitch_relative = {0, "r_fullbright_directed_pitch_relative", "0", "whether r_fullbright_directed_pitch is interpreted as absolute (0) or relative (1) pitch"};
129
130 cvar_t r_wateralpha = {CVAR_SAVE, "r_wateralpha","1", "opacity of water polygons"};
131 cvar_t r_dynamic = {CVAR_SAVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
132 cvar_t r_fullbrights = {CVAR_SAVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
133 cvar_t r_shadows = {CVAR_SAVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this); when set to 2, always cast the shadows in the direction set by r_shadows_throwdirection, otherwise use the model lighting."};
134 cvar_t r_shadows_darken = {CVAR_SAVE, "r_shadows_darken", "0.5", "how much shadowed areas will be darkened"};
135 cvar_t r_shadows_throwdistance = {CVAR_SAVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
136 cvar_t r_shadows_throwdirection = {CVAR_SAVE, "r_shadows_throwdirection", "0 0 -1", "override throwing direction for r_shadows 2"};
137 cvar_t r_shadows_drawafterrtlighting = {CVAR_SAVE, "r_shadows_drawafterrtlighting", "0", "draw fake shadows AFTER realtime lightning is drawn. May be useful for simulating fast sunlight on large outdoor maps with only one noshadow rtlight. The price is less realistic appearance of dynamic light shadows."};
138 cvar_t r_shadows_castfrombmodels = {CVAR_SAVE, "r_shadows_castfrombmodels", "0", "do cast shadows from bmodels"};
139 cvar_t r_shadows_focus = {CVAR_SAVE, "r_shadows_focus", "0 0 0", "offset the shadowed area focus"};
140 cvar_t r_shadows_shadowmapscale = {CVAR_SAVE, "r_shadows_shadowmapscale", "0.25", "higher values increase shadowmap quality at a cost of area covered (multiply global shadowmap precision) for fake shadows. Needs shadowmapping ON."};
141 cvar_t r_shadows_shadowmapbias = {CVAR_SAVE, "r_shadows_shadowmapbias", "-1", "sets shadowmap bias for fake shadows. -1 sets the value of r_shadow_shadowmapping_bias. Needs shadowmapping ON."};
142 cvar_t r_q1bsp_skymasking = {0, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
143 cvar_t r_polygonoffset_submodel_factor = {0, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
144 cvar_t r_polygonoffset_submodel_offset = {0, "r_polygonoffset_submodel_offset", "14", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
145 cvar_t r_polygonoffset_decals_factor = {0, "r_polygonoffset_decals_factor", "0", "biases depth values of decals to prevent z-fighting artifacts"};
146 cvar_t r_polygonoffset_decals_offset = {0, "r_polygonoffset_decals_offset", "-14", "biases depth values of decals to prevent z-fighting artifacts"};
147 cvar_t r_fog_exp2 = {0, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
148 cvar_t r_fog_clear = {0, "r_fog_clear", "1", "clears renderbuffer with fog color before render starts"};
149 cvar_t r_drawfog = {CVAR_SAVE, "r_drawfog", "1", "allows one to disable fog rendering"};
150 cvar_t r_transparentdepthmasking = {CVAR_SAVE, "r_transparentdepthmasking", "0", "enables depth writes on transparent meshes whose materially is normally opaque, this prevents seeing the inside of a transparent mesh"};
151 cvar_t r_transparent_sortmindist = {CVAR_SAVE, "r_transparent_sortmindist", "0", "lower distance limit for transparent sorting"};
152 cvar_t r_transparent_sortmaxdist = {CVAR_SAVE, "r_transparent_sortmaxdist", "32768", "upper distance limit for transparent sorting"};
153 cvar_t r_transparent_sortarraysize = {CVAR_SAVE, "r_transparent_sortarraysize", "4096", "number of distance-sorting layers"};
154 cvar_t r_celshading = {CVAR_SAVE, "r_celshading", "0", "cartoon-style light shading (OpenGL 2.x only)"}; // FIXME remove OpenGL 2.x only once implemented for DX9
155 cvar_t r_celoutlines = {CVAR_SAVE, "r_celoutlines", "0", "cartoon-style outlines (requires r_shadow_deferred; OpenGL 2.x only)"}; // FIXME remove OpenGL 2.x only once implemented for DX9
156
157 cvar_t gl_fogenable = {0, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
158 cvar_t gl_fogdensity = {0, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
159 cvar_t gl_fogred = {0, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
160 cvar_t gl_foggreen = {0, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
161 cvar_t gl_fogblue = {0, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
162 cvar_t gl_fogstart = {0, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
163 cvar_t gl_fogend = {0, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
164 cvar_t gl_skyclip = {0, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
165
166 cvar_t r_texture_dds_load = {CVAR_SAVE, "r_texture_dds_load", "0", "load compressed dds/filename.dds texture instead of filename.tga, if the file exists (requires driver support)"};
167 cvar_t r_texture_dds_save = {CVAR_SAVE, "r_texture_dds_save", "0", "save compressed dds/filename.dds texture when filename.tga is loaded, so that it can be loaded instead next time"};
168
169 cvar_t r_textureunits = {0, "r_textureunits", "32", "number of texture units to use in GL 1.1 and GL 1.3 rendering paths"};
170 static cvar_t gl_combine = {CVAR_READONLY, "gl_combine", "1", "indicates whether the OpenGL 1.3 rendering path is active"};
171 static cvar_t r_glsl = {CVAR_READONLY, "r_glsl", "1", "indicates whether the OpenGL 2.0 rendering path is active"};
172
173 cvar_t r_usedepthtextures = {CVAR_SAVE, "r_usedepthtextures", "1", "use depth texture instead of depth renderbuffer where possible, uses less video memory but may render slower (or faster) depending on hardware"};
174 cvar_t r_viewfbo = {CVAR_SAVE, "r_viewfbo", "0", "enables use of an 8bit (1) or 16bit (2) or 32bit (3) per component float framebuffer render, which may be at a different resolution than the video mode"};
175 cvar_t r_rendertarget_debug = {0, "r_rendertarget_debug", "-1", "replaces the view with the contents of the specified render target (by number - note that these can fluctuate depending on scene)"};
176 cvar_t r_viewscale = {CVAR_SAVE, "r_viewscale", "1", "scaling factor for resolution of the fbo rendering method, must be > 0, can be above 1 for a costly antialiasing behavior, typical values are 0.5 for 1/4th as many pixels rendered, or 1 for normal rendering"};
177 cvar_t r_viewscale_fpsscaling = {CVAR_SAVE, "r_viewscale_fpsscaling", "0", "change resolution based on framerate"};
178 cvar_t r_viewscale_fpsscaling_min = {CVAR_SAVE, "r_viewscale_fpsscaling_min", "0.0625", "worst acceptable quality"};
179 cvar_t r_viewscale_fpsscaling_multiply = {CVAR_SAVE, "r_viewscale_fpsscaling_multiply", "5", "adjust quality up or down by the frametime difference from 1.0/target, multiplied by this factor"};
180 cvar_t r_viewscale_fpsscaling_stepsize = {CVAR_SAVE, "r_viewscale_fpsscaling_stepsize", "0.01", "smallest adjustment to hit the target framerate (this value prevents minute oscillations)"};
181 cvar_t r_viewscale_fpsscaling_stepmax = {CVAR_SAVE, "r_viewscale_fpsscaling_stepmax", "1.00", "largest adjustment to hit the target framerate (this value prevents wild overshooting of the estimate)"};
182 cvar_t r_viewscale_fpsscaling_target = {CVAR_SAVE, "r_viewscale_fpsscaling_target", "70", "desired framerate"};
183
184 cvar_t r_glsl_skeletal = {CVAR_SAVE, "r_glsl_skeletal", "1", "render skeletal models faster using a gpu-skinning technique"};
185 cvar_t r_glsl_deluxemapping = {CVAR_SAVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
186 cvar_t r_glsl_offsetmapping = {CVAR_SAVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
187 cvar_t r_glsl_offsetmapping_steps = {CVAR_SAVE, "r_glsl_offsetmapping_steps", "2", "offset mapping steps (note: too high values may be not supported by your GPU)"};
188 cvar_t r_glsl_offsetmapping_reliefmapping = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
189 cvar_t r_glsl_offsetmapping_reliefmapping_steps = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping_steps", "10", "relief mapping steps (note: too high values may be not supported by your GPU)"};
190 cvar_t r_glsl_offsetmapping_reliefmapping_refinesteps = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping_refinesteps", "5", "relief mapping refine steps (these are a binary search executed as the last step as given by r_glsl_offsetmapping_reliefmapping_steps)"};
191 cvar_t r_glsl_offsetmapping_scale = {CVAR_SAVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
192 cvar_t r_glsl_offsetmapping_lod = {CVAR_SAVE, "r_glsl_offsetmapping_lod", "0", "apply distance-based level-of-detail correction to number of offsetmappig steps, effectively making it render faster on large open-area maps"};
193 cvar_t r_glsl_offsetmapping_lod_distance = {CVAR_SAVE, "r_glsl_offsetmapping_lod_distance", "32", "first LOD level distance, second level (-50% steps) is 2x of this, third (33%) - 3x etc."};
194 cvar_t r_glsl_postprocess = {CVAR_SAVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
195 cvar_t r_glsl_postprocess_uservec1 = {CVAR_SAVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
196 cvar_t r_glsl_postprocess_uservec2 = {CVAR_SAVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
197 cvar_t r_glsl_postprocess_uservec3 = {CVAR_SAVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
198 cvar_t r_glsl_postprocess_uservec4 = {CVAR_SAVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
199 cvar_t r_glsl_postprocess_uservec1_enable = {CVAR_SAVE, "r_glsl_postprocess_uservec1_enable", "1", "enables postprocessing uservec1 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
200 cvar_t r_glsl_postprocess_uservec2_enable = {CVAR_SAVE, "r_glsl_postprocess_uservec2_enable", "1", "enables postprocessing uservec2 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
201 cvar_t r_glsl_postprocess_uservec3_enable = {CVAR_SAVE, "r_glsl_postprocess_uservec3_enable", "1", "enables postprocessing uservec3 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
202 cvar_t r_glsl_postprocess_uservec4_enable = {CVAR_SAVE, "r_glsl_postprocess_uservec4_enable", "1", "enables postprocessing uservec4 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
203
204 cvar_t r_water = {CVAR_SAVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
205 cvar_t r_water_cameraentitiesonly = {CVAR_SAVE, "r_water_cameraentitiesonly", "0", "whether to only show QC-defined reflections/refractions (typically used for camera- or portal-like effects)"};
206 cvar_t r_water_clippingplanebias = {CVAR_SAVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
207 cvar_t r_water_resolutionmultiplier = {CVAR_SAVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
208 cvar_t r_water_refractdistort = {CVAR_SAVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
209 cvar_t r_water_reflectdistort = {CVAR_SAVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
210 cvar_t r_water_scissormode = {0, "r_water_scissormode", "3", "scissor (1) or cull (2) or both (3) water renders"};
211 cvar_t r_water_lowquality = {0, "r_water_lowquality", "0", "special option to accelerate water rendering, 1 disables shadows and particles, 2 disables all dynamic lights"};
212 cvar_t r_water_hideplayer = {CVAR_SAVE, "r_water_hideplayer", "0", "if set to 1 then player will be hidden in refraction views, if set to 2 then player will also be hidden in reflection views, player is always visible in camera views"};
213
214 cvar_t r_lerpsprites = {CVAR_SAVE, "r_lerpsprites", "0", "enables animation smoothing on sprites"};
215 cvar_t r_lerpmodels = {CVAR_SAVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
216 cvar_t r_lerplightstyles = {CVAR_SAVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
217 cvar_t r_waterscroll = {CVAR_SAVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
218
219 cvar_t r_bloom = {CVAR_SAVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
220 cvar_t r_bloom_colorscale = {CVAR_SAVE, "r_bloom_colorscale", "1", "how bright the glow is"};
221
222 cvar_t r_bloom_brighten = {CVAR_SAVE, "r_bloom_brighten", "2", "how bright the glow is, after subtract/power"};
223 cvar_t r_bloom_blur = {CVAR_SAVE, "r_bloom_blur", "4", "how large the glow is"};
224 cvar_t r_bloom_resolution = {CVAR_SAVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
225 cvar_t r_bloom_colorexponent = {CVAR_SAVE, "r_bloom_colorexponent", "1", "how exaggerated the glow is"};
226 cvar_t r_bloom_colorsubtract = {CVAR_SAVE, "r_bloom_colorsubtract", "0.125", "reduces bloom colors by a certain amount"};
227 cvar_t r_bloom_scenebrightness = {CVAR_SAVE, "r_bloom_scenebrightness", "1", "global rendering brightness when bloom is enabled"};
228
229 cvar_t r_hdr_scenebrightness = {CVAR_SAVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
230 cvar_t r_hdr_glowintensity = {CVAR_SAVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
231 cvar_t r_hdr_irisadaptation = {CVAR_SAVE, "r_hdr_irisadaptation", "0", "adjust scene brightness according to light intensity at player location"};
232 cvar_t r_hdr_irisadaptation_multiplier = {CVAR_SAVE, "r_hdr_irisadaptation_multiplier", "2", "brightness at which value will be 1.0"};
233 cvar_t r_hdr_irisadaptation_minvalue = {CVAR_SAVE, "r_hdr_irisadaptation_minvalue", "0.5", "minimum value that can result from multiplier / brightness"};
234 cvar_t r_hdr_irisadaptation_maxvalue = {CVAR_SAVE, "r_hdr_irisadaptation_maxvalue", "4", "maximum value that can result from multiplier / brightness"};
235 cvar_t r_hdr_irisadaptation_value = {0, "r_hdr_irisadaptation_value", "1", "current value as scenebrightness multiplier, changes continuously when irisadaptation is active"};
236 cvar_t r_hdr_irisadaptation_fade_up = {CVAR_SAVE, "r_hdr_irisadaptation_fade_up", "0.1", "fade rate at which value adjusts to darkness"};
237 cvar_t r_hdr_irisadaptation_fade_down = {CVAR_SAVE, "r_hdr_irisadaptation_fade_down", "0.5", "fade rate at which value adjusts to brightness"};
238 cvar_t r_hdr_irisadaptation_radius = {CVAR_SAVE, "r_hdr_irisadaptation_radius", "15", "lighting within this many units of the eye is averaged"};
239
240 cvar_t r_smoothnormals_areaweighting = {0, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
241
242 cvar_t developer_texturelogging = {0, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
243
244 cvar_t gl_lightmaps = {0, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers), a value of 2 keeps normalmap shading"};
245
246 cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
247
248 cvar_t r_batch_multidraw = {CVAR_SAVE, "r_batch_multidraw", "1", "issue multiple glDrawElements calls when rendering a batch of surfaces with the same texture (otherwise the index data is copied to make it one draw)"};
249 cvar_t r_batch_multidraw_mintriangles = {CVAR_SAVE, "r_batch_multidraw_mintriangles", "0", "minimum number of triangles to activate multidraw path (copying small groups of triangles may be faster)"};
250 cvar_t r_batch_debugdynamicvertexpath = {CVAR_SAVE, "r_batch_debugdynamicvertexpath", "0", "force the dynamic batching code path for debugging purposes"};
251 cvar_t r_batch_dynamicbuffer = {CVAR_SAVE, "r_batch_dynamicbuffer", "0", "use vertex/index buffers for drawing dynamic and copytriangles batches"};
252
253 cvar_t r_glsl_saturation = {CVAR_SAVE, "r_glsl_saturation", "1", "saturation multiplier (only working in glsl!)"};
254 cvar_t r_glsl_saturation_redcompensate = {CVAR_SAVE, "r_glsl_saturation_redcompensate", "0", "a 'vampire sight' addition to desaturation effect, does compensation for red color, r_glsl_restart is required"};
255
256 cvar_t r_glsl_vertextextureblend_usebothalphas = {CVAR_SAVE, "r_glsl_vertextextureblend_usebothalphas", "0", "use both alpha layers on vertex blended surfaces, each alpha layer sets amount of 'blend leak' on another layer, requires mod_q3shader_force_terrain_alphaflag on."};
257
258 cvar_t r_framedatasize = {CVAR_SAVE, "r_framedatasize", "0.5", "size of renderer data cache used during one frame (for skeletal animation caching, light processing, etc)"};
259 cvar_t r_buffermegs[R_BUFFERDATA_COUNT] =
260 {
261         {CVAR_SAVE, "r_buffermegs_vertex", "4", "vertex buffer size for one frame"},
262         {CVAR_SAVE, "r_buffermegs_index16", "1", "index buffer size for one frame (16bit indices)"},
263         {CVAR_SAVE, "r_buffermegs_index32", "1", "index buffer size for one frame (32bit indices)"},
264         {CVAR_SAVE, "r_buffermegs_uniform", "0.25", "uniform buffer size for one frame"},
265 };
266
267 extern cvar_t v_glslgamma_2d;
268
269 extern qboolean v_flipped_state;
270
271 r_framebufferstate_t r_fb;
272
273 /// shadow volume bsp struct with automatically growing nodes buffer
274 svbsp_t r_svbsp;
275
276 int r_uniformbufferalignment = 32; // dynamically updated to match GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
277
278 rtexture_t *r_texture_blanknormalmap;
279 rtexture_t *r_texture_white;
280 rtexture_t *r_texture_grey128;
281 rtexture_t *r_texture_black;
282 rtexture_t *r_texture_notexture;
283 rtexture_t *r_texture_whitecube;
284 rtexture_t *r_texture_normalizationcube;
285 rtexture_t *r_texture_fogattenuation;
286 rtexture_t *r_texture_fogheighttexture;
287 rtexture_t *r_texture_gammaramps;
288 unsigned int r_texture_gammaramps_serial;
289 //rtexture_t *r_texture_fogintensity;
290 rtexture_t *r_texture_reflectcube;
291
292 // TODO: hash lookups?
293 typedef struct cubemapinfo_s
294 {
295         char basename[64];
296         rtexture_t *texture;
297 }
298 cubemapinfo_t;
299
300 int r_texture_numcubemaps;
301 cubemapinfo_t *r_texture_cubemaps[MAX_CUBEMAPS];
302
303 unsigned int r_queries[MAX_OCCLUSION_QUERIES];
304 unsigned int r_numqueries;
305 unsigned int r_maxqueries;
306
307 typedef struct r_qwskincache_s
308 {
309         char name[MAX_QPATH];
310         skinframe_t *skinframe;
311 }
312 r_qwskincache_t;
313
314 static r_qwskincache_t *r_qwskincache;
315 static int r_qwskincache_size;
316
317 /// vertex coordinates for a quad that covers the screen exactly
318 extern const float r_screenvertex3f[12];
319 const float r_screenvertex3f[12] =
320 {
321         0, 0, 0,
322         1, 0, 0,
323         1, 1, 0,
324         0, 1, 0
325 };
326
327 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
328 {
329         int i;
330         for (i = 0;i < verts;i++)
331         {
332                 out[0] = in[0] * r;
333                 out[1] = in[1] * g;
334                 out[2] = in[2] * b;
335                 out[3] = in[3];
336                 in += 4;
337                 out += 4;
338         }
339 }
340
341 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
342 {
343         int i;
344         for (i = 0;i < verts;i++)
345         {
346                 out[0] = r;
347                 out[1] = g;
348                 out[2] = b;
349                 out[3] = a;
350                 out += 4;
351         }
352 }
353
354 // FIXME: move this to client?
355 void FOG_clear(void)
356 {
357         if (gamemode == GAME_NEHAHRA)
358         {
359                 Cvar_Set("gl_fogenable", "0");
360                 Cvar_Set("gl_fogdensity", "0.2");
361                 Cvar_Set("gl_fogred", "0.3");
362                 Cvar_Set("gl_foggreen", "0.3");
363                 Cvar_Set("gl_fogblue", "0.3");
364         }
365         r_refdef.fog_density = 0;
366         r_refdef.fog_red = 0;
367         r_refdef.fog_green = 0;
368         r_refdef.fog_blue = 0;
369         r_refdef.fog_alpha = 1;
370         r_refdef.fog_start = 0;
371         r_refdef.fog_end = 16384;
372         r_refdef.fog_height = 1<<30;
373         r_refdef.fog_fadedepth = 128;
374         memset(r_refdef.fog_height_texturename, 0, sizeof(r_refdef.fog_height_texturename));
375 }
376
377 static void R_BuildBlankTextures(void)
378 {
379         unsigned char data[4];
380         data[2] = 128; // normal X
381         data[1] = 128; // normal Y
382         data[0] = 255; // normal Z
383         data[3] = 255; // height
384         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
385         data[0] = 255;
386         data[1] = 255;
387         data[2] = 255;
388         data[3] = 255;
389         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
390         data[0] = 128;
391         data[1] = 128;
392         data[2] = 128;
393         data[3] = 255;
394         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
395         data[0] = 0;
396         data[1] = 0;
397         data[2] = 0;
398         data[3] = 255;
399         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
400 }
401
402 static void R_BuildNoTexture(void)
403 {
404         int x, y;
405         unsigned char pix[16][16][4];
406         // this makes a light grey/dark grey checkerboard texture
407         for (y = 0;y < 16;y++)
408         {
409                 for (x = 0;x < 16;x++)
410                 {
411                         if ((y < 8) ^ (x < 8))
412                         {
413                                 pix[y][x][0] = 128;
414                                 pix[y][x][1] = 128;
415                                 pix[y][x][2] = 128;
416                                 pix[y][x][3] = 255;
417                         }
418                         else
419                         {
420                                 pix[y][x][0] = 64;
421                                 pix[y][x][1] = 64;
422                                 pix[y][x][2] = 64;
423                                 pix[y][x][3] = 255;
424                         }
425                 }
426         }
427         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, -1, NULL);
428 }
429
430 static void R_BuildWhiteCube(void)
431 {
432         unsigned char data[6*1*1*4];
433         memset(data, 255, sizeof(data));
434         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
435 }
436
437 static void R_BuildNormalizationCube(void)
438 {
439         int x, y, side;
440         vec3_t v;
441         vec_t s, t, intensity;
442 #define NORMSIZE 64
443         unsigned char *data;
444         data = (unsigned char *)Mem_Alloc(tempmempool, 6*NORMSIZE*NORMSIZE*4);
445         for (side = 0;side < 6;side++)
446         {
447                 for (y = 0;y < NORMSIZE;y++)
448                 {
449                         for (x = 0;x < NORMSIZE;x++)
450                         {
451                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
452                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
453                                 switch(side)
454                                 {
455                                 default:
456                                 case 0:
457                                         v[0] = 1;
458                                         v[1] = -t;
459                                         v[2] = -s;
460                                         break;
461                                 case 1:
462                                         v[0] = -1;
463                                         v[1] = -t;
464                                         v[2] = s;
465                                         break;
466                                 case 2:
467                                         v[0] = s;
468                                         v[1] = 1;
469                                         v[2] = t;
470                                         break;
471                                 case 3:
472                                         v[0] = s;
473                                         v[1] = -1;
474                                         v[2] = -t;
475                                         break;
476                                 case 4:
477                                         v[0] = s;
478                                         v[1] = -t;
479                                         v[2] = 1;
480                                         break;
481                                 case 5:
482                                         v[0] = -s;
483                                         v[1] = -t;
484                                         v[2] = -1;
485                                         break;
486                                 }
487                                 intensity = 127.0f / sqrt(DotProduct(v, v));
488                                 data[((side*64+y)*64+x)*4+2] = (unsigned char)(128.0f + intensity * v[0]);
489                                 data[((side*64+y)*64+x)*4+1] = (unsigned char)(128.0f + intensity * v[1]);
490                                 data[((side*64+y)*64+x)*4+0] = (unsigned char)(128.0f + intensity * v[2]);
491                                 data[((side*64+y)*64+x)*4+3] = 255;
492                         }
493                 }
494         }
495         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
496         Mem_Free(data);
497 }
498
499 static void R_BuildFogTexture(void)
500 {
501         int x, b;
502 #define FOGWIDTH 256
503         unsigned char data1[FOGWIDTH][4];
504         //unsigned char data2[FOGWIDTH][4];
505         double d, r, alpha;
506
507         r_refdef.fogmasktable_start = r_refdef.fog_start;
508         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
509         r_refdef.fogmasktable_range = r_refdef.fogrange;
510         r_refdef.fogmasktable_density = r_refdef.fog_density;
511
512         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
513         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
514         {
515                 d = (x * r - r_refdef.fogmasktable_start);
516                 if(developer_extra.integer)
517                         Con_DPrintf("%f ", d);
518                 d = max(0, d);
519                 if (r_fog_exp2.integer)
520                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
521                 else
522                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
523                 if(developer_extra.integer)
524                         Con_DPrintf(" : %f ", alpha);
525                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
526                 if(developer_extra.integer)
527                         Con_DPrintf(" = %f\n", alpha);
528                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
529         }
530
531         for (x = 0;x < FOGWIDTH;x++)
532         {
533                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
534                 data1[x][0] = b;
535                 data1[x][1] = b;
536                 data1[x][2] = b;
537                 data1[x][3] = 255;
538                 //data2[x][0] = 255 - b;
539                 //data2[x][1] = 255 - b;
540                 //data2[x][2] = 255 - b;
541                 //data2[x][3] = 255;
542         }
543         if (r_texture_fogattenuation)
544         {
545                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, 0, FOGWIDTH, 1, 1);
546                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, 0, FOGWIDTH, 1, 1);
547         }
548         else
549         {
550                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
551                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
552         }
553 }
554
555 static void R_BuildFogHeightTexture(void)
556 {
557         unsigned char *inpixels;
558         int size;
559         int x;
560         int y;
561         int j;
562         float c[4];
563         float f;
564         inpixels = NULL;
565         strlcpy(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename, sizeof(r_refdef.fogheighttexturename));
566         if (r_refdef.fogheighttexturename[0])
567                 inpixels = loadimagepixelsbgra(r_refdef.fogheighttexturename, true, false, false, NULL);
568         if (!inpixels)
569         {
570                 r_refdef.fog_height_tablesize = 0;
571                 if (r_texture_fogheighttexture)
572                         R_FreeTexture(r_texture_fogheighttexture);
573                 r_texture_fogheighttexture = NULL;
574                 if (r_refdef.fog_height_table2d)
575                         Mem_Free(r_refdef.fog_height_table2d);
576                 r_refdef.fog_height_table2d = NULL;
577                 if (r_refdef.fog_height_table1d)
578                         Mem_Free(r_refdef.fog_height_table1d);
579                 r_refdef.fog_height_table1d = NULL;
580                 return;
581         }
582         size = image_width;
583         r_refdef.fog_height_tablesize = size;
584         r_refdef.fog_height_table1d = (unsigned char *)Mem_Alloc(r_main_mempool, size * 4);
585         r_refdef.fog_height_table2d = (unsigned char *)Mem_Alloc(r_main_mempool, size * size * 4);
586         memcpy(r_refdef.fog_height_table1d, inpixels, size * 4);
587         Mem_Free(inpixels);
588         // LordHavoc: now the magic - what is that table2d for?  it is a cooked
589         // average fog color table accounting for every fog layer between a point
590         // and the camera.  (Note: attenuation is handled separately!)
591         for (y = 0;y < size;y++)
592         {
593                 for (x = 0;x < size;x++)
594                 {
595                         Vector4Clear(c);
596                         f = 0;
597                         if (x < y)
598                         {
599                                 for (j = x;j <= y;j++)
600                                 {
601                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
602                                         f++;
603                                 }
604                         }
605                         else
606                         {
607                                 for (j = x;j >= y;j--)
608                                 {
609                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
610                                         f++;
611                                 }
612                         }
613                         f = 1.0f / f;
614                         r_refdef.fog_height_table2d[(y*size+x)*4+0] = (unsigned char)(c[0] * f);
615                         r_refdef.fog_height_table2d[(y*size+x)*4+1] = (unsigned char)(c[1] * f);
616                         r_refdef.fog_height_table2d[(y*size+x)*4+2] = (unsigned char)(c[2] * f);
617                         r_refdef.fog_height_table2d[(y*size+x)*4+3] = (unsigned char)(c[3] * f);
618                 }
619         }
620         r_texture_fogheighttexture = R_LoadTexture2D(r_main_texturepool, "fogheighttable", size, size, r_refdef.fog_height_table2d, TEXTYPE_BGRA, TEXF_ALPHA | TEXF_CLAMP, -1, NULL);
621 }
622
623 //=======================================================================================================================================================
624
625 static const char *builtinshaderstrings[] =
626 {
627 #include "shader_glsl.h"
628 0
629 };
630
631 //=======================================================================================================================================================
632
633 typedef struct shaderpermutationinfo_s
634 {
635         const char *pretext;
636         const char *name;
637 }
638 shaderpermutationinfo_t;
639
640 typedef struct shadermodeinfo_s
641 {
642         const char *sourcebasename;
643         const char *extension;
644         const char **builtinshaderstrings;
645         const char *pretext;
646         const char *name;
647         char *filename;
648         char *builtinstring;
649         int builtincrc;
650 }
651 shadermodeinfo_t;
652
653 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
654 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
655 {
656         {"#define USEDIFFUSE\n", " diffuse"},
657         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
658         {"#define USEVIEWTINT\n", " viewtint"},
659         {"#define USECOLORMAPPING\n", " colormapping"},
660         {"#define USESATURATION\n", " saturation"},
661         {"#define USEFOGINSIDE\n", " foginside"},
662         {"#define USEFOGOUTSIDE\n", " fogoutside"},
663         {"#define USEFOGHEIGHTTEXTURE\n", " fogheighttexture"},
664         {"#define USEFOGALPHAHACK\n", " fogalphahack"},
665         {"#define USEGAMMARAMPS\n", " gammaramps"},
666         {"#define USECUBEFILTER\n", " cubefilter"},
667         {"#define USEGLOW\n", " glow"},
668         {"#define USEBLOOM\n", " bloom"},
669         {"#define USESPECULAR\n", " specular"},
670         {"#define USEPOSTPROCESSING\n", " postprocessing"},
671         {"#define USEREFLECTION\n", " reflection"},
672         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
673         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
674         {"#define USESHADOWMAP2D\n", " shadowmap2d"},
675         {"#define USESHADOWMAPVSDCT\n", " shadowmapvsdct"}, // TODO make this a static parm
676         {"#define USESHADOWMAPORTHO\n", " shadowmaportho"},
677         {"#define USEDEFERREDLIGHTMAP\n", " deferredlightmap"},
678         {"#define USEALPHAKILL\n", " alphakill"},
679         {"#define USEREFLECTCUBE\n", " reflectcube"},
680         {"#define USENORMALMAPSCROLLBLEND\n", " normalmapscrollblend"},
681         {"#define USEBOUNCEGRID\n", " bouncegrid"},
682         {"#define USEBOUNCEGRIDDIRECTIONAL\n", " bouncegriddirectional"}, // TODO make this a static parm
683         {"#define USETRIPPY\n", " trippy"},
684         {"#define USEDEPTHRGB\n", " depthrgb"},
685         {"#define USEALPHAGENVERTEX\n", " alphagenvertex"},
686         {"#define USESKELETAL\n", " skeletal"},
687         {"#define USEOCCLUDE\n", " occlude"}
688 };
689
690 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
691 shadermodeinfo_t shadermodeinfo[SHADERLANGUAGE_COUNT][SHADERMODE_COUNT] =
692 {
693         // SHADERLANGUAGE_GLSL
694         {
695                 {"combined", "glsl", builtinshaderstrings, "#define MODE_GENERIC\n", " generic"},
696                 {"combined", "glsl", builtinshaderstrings, "#define MODE_POSTPROCESS\n", " postprocess"},
697                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
698                 {"combined", "glsl", builtinshaderstrings, "#define MODE_FLATCOLOR\n", " flatcolor"},
699                 {"combined", "glsl", builtinshaderstrings, "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
700                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTMAP\n", " lightmap"},
701                 {"combined", "glsl", builtinshaderstrings, "#define MODE_FAKELIGHT\n", " fakelight"},
702                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
703                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
704                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP\n", " lightdirectionmap_forced_lightmap"},
705                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR\n", " lightdirectionmap_forced_vertexcolor"},
706                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
707                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTSOURCE\n", " lightsource"},
708                 {"combined", "glsl", builtinshaderstrings, "#define MODE_REFRACTION\n", " refraction"},
709                 {"combined", "glsl", builtinshaderstrings, "#define MODE_WATER\n", " water"},
710                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"},
711                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"},
712         },
713 };
714
715 struct r_glsl_permutation_s;
716 typedef struct r_glsl_permutation_s
717 {
718         /// hash lookup data
719         struct r_glsl_permutation_s *hashnext;
720         unsigned int mode;
721         dpuint64 permutation;
722
723         /// indicates if we have tried compiling this permutation already
724         qboolean compiled;
725         /// 0 if compilation failed
726         int program;
727         // texture units assigned to each detected uniform
728         int tex_Texture_First;
729         int tex_Texture_Second;
730         int tex_Texture_GammaRamps;
731         int tex_Texture_Normal;
732         int tex_Texture_Color;
733         int tex_Texture_Gloss;
734         int tex_Texture_Glow;
735         int tex_Texture_SecondaryNormal;
736         int tex_Texture_SecondaryColor;
737         int tex_Texture_SecondaryGloss;
738         int tex_Texture_SecondaryGlow;
739         int tex_Texture_Pants;
740         int tex_Texture_Shirt;
741         int tex_Texture_FogHeightTexture;
742         int tex_Texture_FogMask;
743         int tex_Texture_Lightmap;
744         int tex_Texture_Deluxemap;
745         int tex_Texture_Attenuation;
746         int tex_Texture_Cube;
747         int tex_Texture_Refraction;
748         int tex_Texture_Reflection;
749         int tex_Texture_ShadowMap2D;
750         int tex_Texture_CubeProjection;
751         int tex_Texture_ScreenNormalMap;
752         int tex_Texture_ScreenDiffuse;
753         int tex_Texture_ScreenSpecular;
754         int tex_Texture_ReflectMask;
755         int tex_Texture_ReflectCube;
756         int tex_Texture_BounceGrid;
757         /// locations of detected uniforms in program object, or -1 if not found
758         int loc_Texture_First;
759         int loc_Texture_Second;
760         int loc_Texture_GammaRamps;
761         int loc_Texture_Normal;
762         int loc_Texture_Color;
763         int loc_Texture_Gloss;
764         int loc_Texture_Glow;
765         int loc_Texture_SecondaryNormal;
766         int loc_Texture_SecondaryColor;
767         int loc_Texture_SecondaryGloss;
768         int loc_Texture_SecondaryGlow;
769         int loc_Texture_Pants;
770         int loc_Texture_Shirt;
771         int loc_Texture_FogHeightTexture;
772         int loc_Texture_FogMask;
773         int loc_Texture_Lightmap;
774         int loc_Texture_Deluxemap;
775         int loc_Texture_Attenuation;
776         int loc_Texture_Cube;
777         int loc_Texture_Refraction;
778         int loc_Texture_Reflection;
779         int loc_Texture_ShadowMap2D;
780         int loc_Texture_CubeProjection;
781         int loc_Texture_ScreenNormalMap;
782         int loc_Texture_ScreenDiffuse;
783         int loc_Texture_ScreenSpecular;
784         int loc_Texture_ReflectMask;
785         int loc_Texture_ReflectCube;
786         int loc_Texture_BounceGrid;
787         int loc_Alpha;
788         int loc_BloomBlur_Parameters;
789         int loc_ClientTime;
790         int loc_Color_Ambient;
791         int loc_Color_Diffuse;
792         int loc_Color_Specular;
793         int loc_Color_Glow;
794         int loc_Color_Pants;
795         int loc_Color_Shirt;
796         int loc_DeferredColor_Ambient;
797         int loc_DeferredColor_Diffuse;
798         int loc_DeferredColor_Specular;
799         int loc_DeferredMod_Diffuse;
800         int loc_DeferredMod_Specular;
801         int loc_DistortScaleRefractReflect;
802         int loc_EyePosition;
803         int loc_FogColor;
804         int loc_FogHeightFade;
805         int loc_FogPlane;
806         int loc_FogPlaneViewDist;
807         int loc_FogRangeRecip;
808         int loc_LightColor;
809         int loc_LightDir;
810         int loc_LightPosition;
811         int loc_OffsetMapping_ScaleSteps;
812         int loc_OffsetMapping_LodDistance;
813         int loc_OffsetMapping_Bias;
814         int loc_PixelSize;
815         int loc_ReflectColor;
816         int loc_ReflectFactor;
817         int loc_ReflectOffset;
818         int loc_RefractColor;
819         int loc_Saturation;
820         int loc_ScreenCenterRefractReflect;
821         int loc_ScreenScaleRefractReflect;
822         int loc_ScreenToDepth;
823         int loc_ShadowMap_Parameters;
824         int loc_ShadowMap_TextureScale;
825         int loc_SpecularPower;
826         int loc_Skeletal_Transform12;
827         int loc_UserVec1;
828         int loc_UserVec2;
829         int loc_UserVec3;
830         int loc_UserVec4;
831         int loc_ViewTintColor;
832         int loc_ViewToLight;
833         int loc_ModelToLight;
834         int loc_TexMatrix;
835         int loc_BackgroundTexMatrix;
836         int loc_ModelViewProjectionMatrix;
837         int loc_ModelViewMatrix;
838         int loc_PixelToScreenTexCoord;
839         int loc_ModelToReflectCube;
840         int loc_ShadowMapMatrix;
841         int loc_BloomColorSubtract;
842         int loc_NormalmapScrollBlend;
843         int loc_BounceGridMatrix;
844         int loc_BounceGridIntensity;
845         /// uniform block bindings
846         int ubibind_Skeletal_Transform12_UniformBlock;
847         /// uniform block indices
848         int ubiloc_Skeletal_Transform12_UniformBlock;
849 }
850 r_glsl_permutation_t;
851
852 #define SHADERPERMUTATION_HASHSIZE 256
853
854
855 // non-degradable "lightweight" shader parameters to keep the permutations simpler
856 // these can NOT degrade! only use for simple stuff
857 enum
858 {
859         SHADERSTATICPARM_SATURATION_REDCOMPENSATE = 0, ///< red compensation filter for saturation
860         SHADERSTATICPARM_EXACTSPECULARMATH = 1, ///< (lightsource or deluxemapping) use exact reflection map for specular effects, as opposed to the usual OpenGL approximation
861         SHADERSTATICPARM_POSTPROCESS_USERVEC1 = 2, ///< postprocess uservec1 is enabled
862         SHADERSTATICPARM_POSTPROCESS_USERVEC2 = 3, ///< postprocess uservec2 is enabled
863         SHADERSTATICPARM_POSTPROCESS_USERVEC3 = 4, ///< postprocess uservec3 is enabled
864         SHADERSTATICPARM_POSTPROCESS_USERVEC4 = 5,  ///< postprocess uservec4 is enabled
865         SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS = 6, // use both alpha layers while blending materials, allows more advanced microblending
866         SHADERSTATICPARM_OFFSETMAPPING_USELOD = 7,  ///< LOD for offsetmapping
867         SHADERSTATICPARM_SHADOWMAPPCF_1 = 8, ///< PCF 1
868         SHADERSTATICPARM_SHADOWMAPPCF_2 = 9, ///< PCF 2
869         SHADERSTATICPARM_SHADOWSAMPLER = 10, ///< sampler
870         SHADERSTATICPARM_CELSHADING = 11, ///< celshading (alternative diffuse and specular math)
871         SHADERSTATICPARM_CELOUTLINES = 12, ///< celoutline (depth buffer analysis to produce outlines)
872         SHADERSTATICPARM_FXAA = 13 ///< fast approximate anti aliasing
873 };
874 #define SHADERSTATICPARMS_COUNT 14
875
876 static const char *shaderstaticparmstrings_list[SHADERSTATICPARMS_COUNT];
877 static int shaderstaticparms_count = 0;
878
879 static unsigned int r_compileshader_staticparms[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5] = {0};
880 #define R_COMPILESHADER_STATICPARM_ENABLE(p) r_compileshader_staticparms[(p) >> 5] |= (1 << ((p) & 0x1F))
881
882 extern qboolean r_shadow_shadowmapsampler;
883 extern int r_shadow_shadowmappcf;
884 qboolean R_CompileShader_CheckStaticParms(void)
885 {
886         static int r_compileshader_staticparms_save[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5];
887         memcpy(r_compileshader_staticparms_save, r_compileshader_staticparms, sizeof(r_compileshader_staticparms));
888         memset(r_compileshader_staticparms, 0, sizeof(r_compileshader_staticparms));
889
890         // detect all
891         if (r_glsl_saturation_redcompensate.integer)
892                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SATURATION_REDCOMPENSATE);
893         if (r_glsl_vertextextureblend_usebothalphas.integer)
894                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS);
895         if (r_shadow_glossexact.integer)
896                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_EXACTSPECULARMATH);
897         if (r_glsl_postprocess.integer)
898         {
899                 if (r_glsl_postprocess_uservec1_enable.integer)
900                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC1);
901                 if (r_glsl_postprocess_uservec2_enable.integer)
902                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC2);
903                 if (r_glsl_postprocess_uservec3_enable.integer)
904                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC3);
905                 if (r_glsl_postprocess_uservec4_enable.integer)
906                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC4);
907         }
908         if (r_fxaa.integer)
909                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_FXAA);
910         if (r_glsl_offsetmapping_lod.integer && r_glsl_offsetmapping_lod_distance.integer > 0)
911                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_OFFSETMAPPING_USELOD);
912
913         if (r_shadow_shadowmapsampler)
914                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWSAMPLER);
915         if (r_shadow_shadowmappcf > 1)
916                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_2);
917         else if (r_shadow_shadowmappcf)
918                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_1);
919         if (r_celshading.integer)
920                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELSHADING);
921         if (r_celoutlines.integer)
922                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELOUTLINES);
923
924         return memcmp(r_compileshader_staticparms, r_compileshader_staticparms_save, sizeof(r_compileshader_staticparms)) != 0;
925 }
926
927 #define R_COMPILESHADER_STATICPARM_EMIT(p, n) \
928         if(r_compileshader_staticparms[(p) >> 5] & (1 << ((p) & 0x1F))) \
929                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "#define " n "\n"; \
930         else \
931                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "\n"
932 static void R_CompileShader_AddStaticParms(unsigned int mode, dpuint64 permutation)
933 {
934         shaderstaticparms_count = 0;
935
936         // emit all
937         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SATURATION_REDCOMPENSATE, "SATURATION_REDCOMPENSATE");
938         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_EXACTSPECULARMATH, "USEEXACTSPECULARMATH");
939         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC1, "USERVEC1");
940         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC2, "USERVEC2");
941         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC3, "USERVEC3");
942         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC4, "USERVEC4");
943         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS, "USEBOTHALPHAS");
944         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_OFFSETMAPPING_USELOD, "USEOFFSETMAPPING_LOD");
945         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_1, "USESHADOWMAPPCF 1");
946         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_2, "USESHADOWMAPPCF 2");
947         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWSAMPLER, "USESHADOWSAMPLER");
948         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELSHADING, "USECELSHADING");
949         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELOUTLINES, "USECELOUTLINES");
950         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_FXAA, "USEFXAA");
951 }
952
953 /// information about each possible shader permutation
954 r_glsl_permutation_t *r_glsl_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE];
955 /// currently selected permutation
956 r_glsl_permutation_t *r_glsl_permutation;
957 /// storage for permutations linked in the hash table
958 memexpandablearray_t r_glsl_permutationarray;
959
960 static r_glsl_permutation_t *R_GLSL_FindPermutation(unsigned int mode, dpuint64 permutation)
961 {
962         //unsigned int hashdepth = 0;
963         unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1);
964         r_glsl_permutation_t *p;
965         for (p = r_glsl_permutationhash[mode][hashindex];p;p = p->hashnext)
966         {
967                 if (p->mode == mode && p->permutation == permutation)
968                 {
969                         //if (hashdepth > 10)
970                         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
971                         return p;
972                 }
973                 //hashdepth++;
974         }
975         p = (r_glsl_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_glsl_permutationarray);
976         p->mode = mode;
977         p->permutation = permutation;
978         p->hashnext = r_glsl_permutationhash[mode][hashindex];
979         r_glsl_permutationhash[mode][hashindex] = p;
980         //if (hashdepth > 10)
981         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
982         return p;
983 }
984
985 static char *R_ShaderStrCat(const char **strings)
986 {
987         char *string, *s;
988         const char **p = strings;
989         const char *t;
990         size_t len = 0;
991         for (p = strings;(t = *p);p++)
992                 len += strlen(t);
993         len++;
994         s = string = (char *)Mem_Alloc(r_main_mempool, len);
995         len = 0;
996         for (p = strings;(t = *p);p++)
997         {
998                 len = strlen(t);
999                 memcpy(s, t, len);
1000                 s += len;
1001         }
1002         *s = 0;
1003         return string;
1004 }
1005
1006 static char *R_ShaderStrCat(const char **strings);
1007 static void R_InitShaderModeInfo(void)
1008 {
1009         int i, language;
1010         shadermodeinfo_t *modeinfo;
1011         // we have a bunch of things to compute that weren't calculated at engine compile time - all filenames should have a crc of the builtin strings to prevent accidental overrides (any customization must be updated to match engine)
1012         for (language = 0; language < SHADERLANGUAGE_COUNT; language++)
1013         {
1014                 for (i = 0; i < SHADERMODE_COUNT; i++)
1015                 {
1016                         char filename[MAX_QPATH];
1017                         modeinfo = &shadermodeinfo[language][i];
1018                         modeinfo->builtinstring = R_ShaderStrCat(modeinfo->builtinshaderstrings);
1019                         modeinfo->builtincrc = CRC_Block((const unsigned char *)modeinfo->builtinstring, strlen(modeinfo->builtinstring));
1020                         dpsnprintf(filename, sizeof(filename), "%s/%s_crc%i.%s", modeinfo->extension, modeinfo->sourcebasename, modeinfo->builtincrc, modeinfo->extension);
1021                         modeinfo->filename = Mem_strdup(r_main_mempool, filename);
1022                 }
1023         }
1024 }
1025
1026 static char *ShaderModeInfo_GetShaderText(shadermodeinfo_t *modeinfo, qboolean printfromdisknotice, qboolean builtinonly)
1027 {
1028         char *shaderstring;
1029         // if the mode has no filename we have to return the builtin string
1030         if (builtinonly || !modeinfo->filename)
1031                 return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1032         // note that FS_LoadFile appends a 0 byte to make it a valid string
1033         shaderstring = (char *)FS_LoadFile(modeinfo->filename, r_main_mempool, false, NULL);
1034         if (shaderstring)
1035         {
1036                 if (printfromdisknotice)
1037                         Con_DPrintf("Loading shaders from file %s...\n", modeinfo->filename);
1038                 return shaderstring;
1039         }
1040         // fall back to builtinstring
1041         return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1042 }
1043
1044 static void R_GLSL_CompilePermutation(r_glsl_permutation_t *p, unsigned int mode, dpuint64 permutation)
1045 {
1046         int i;
1047         int ubibind;
1048         int sampler;
1049         shadermodeinfo_t *modeinfo = &shadermodeinfo[SHADERLANGUAGE_GLSL][mode];
1050         char *sourcestring;
1051         char permutationname[256];
1052         int vertstrings_count = 0;
1053         int geomstrings_count = 0;
1054         int fragstrings_count = 0;
1055         const char *vertstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1056         const char *geomstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1057         const char *fragstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1058
1059         if (p->compiled)
1060                 return;
1061         p->compiled = true;
1062         p->program = 0;
1063
1064         permutationname[0] = 0;
1065         sourcestring = ShaderModeInfo_GetShaderText(modeinfo, true, false);
1066
1067         strlcat(permutationname, modeinfo->filename, sizeof(permutationname));
1068
1069         // we need 140 for r_glsl_skeletal (GL_ARB_uniform_buffer_object)
1070         if(vid.support.glshaderversion >= 140)
1071         {
1072                 vertstrings_list[vertstrings_count++] = "#version 140\n";
1073                 geomstrings_list[geomstrings_count++] = "#version 140\n";
1074                 fragstrings_list[fragstrings_count++] = "#version 140\n";
1075                 vertstrings_list[vertstrings_count++] = "#define GLSL140\n";
1076                 geomstrings_list[geomstrings_count++] = "#define GLSL140\n";
1077                 fragstrings_list[fragstrings_count++] = "#define GLSL140\n";
1078         }
1079         // if we can do #version 130, we should (this improves quality of offset/reliefmapping thanks to textureGrad)
1080         else if(vid.support.glshaderversion >= 130)
1081         {
1082                 vertstrings_list[vertstrings_count++] = "#version 130\n";
1083                 geomstrings_list[geomstrings_count++] = "#version 130\n";
1084                 fragstrings_list[fragstrings_count++] = "#version 130\n";
1085                 vertstrings_list[vertstrings_count++] = "#define GLSL130\n";
1086                 geomstrings_list[geomstrings_count++] = "#define GLSL130\n";
1087                 fragstrings_list[fragstrings_count++] = "#define GLSL130\n";
1088         }
1089         // if we can do #version 120, we should (this adds the invariant keyword)
1090         else if(vid.support.glshaderversion >= 120)
1091         {
1092                 vertstrings_list[vertstrings_count++] = "#version 120\n";
1093                 geomstrings_list[geomstrings_count++] = "#version 120\n";
1094                 fragstrings_list[fragstrings_count++] = "#version 120\n";
1095                 vertstrings_list[vertstrings_count++] = "#define GLSL120\n";
1096                 geomstrings_list[geomstrings_count++] = "#define GLSL120\n";
1097                 fragstrings_list[fragstrings_count++] = "#define GLSL120\n";
1098         }
1099         // GLES also adds several things from GLSL120
1100         switch(vid.renderpath)
1101         {
1102         case RENDERPATH_GLES2:
1103                 vertstrings_list[vertstrings_count++] = "#define GLES\n";
1104                 geomstrings_list[geomstrings_count++] = "#define GLES\n";
1105                 fragstrings_list[fragstrings_count++] = "#define GLES\n";
1106                 break;
1107         default:
1108                 break;
1109         }
1110
1111         // the first pretext is which type of shader to compile as
1112         // (later these will all be bound together as a program object)
1113         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1114         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1115         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1116
1117         // the second pretext is the mode (for example a light source)
1118         vertstrings_list[vertstrings_count++] = modeinfo->pretext;
1119         geomstrings_list[geomstrings_count++] = modeinfo->pretext;
1120         fragstrings_list[fragstrings_count++] = modeinfo->pretext;
1121         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1122
1123         // now add all the permutation pretexts
1124         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1125         {
1126                 if (permutation & (1ll<<i))
1127                 {
1128                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1129                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1130                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1131                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1132                 }
1133                 else
1134                 {
1135                         // keep line numbers correct
1136                         vertstrings_list[vertstrings_count++] = "\n";
1137                         geomstrings_list[geomstrings_count++] = "\n";
1138                         fragstrings_list[fragstrings_count++] = "\n";
1139                 }
1140         }
1141
1142         // add static parms
1143         R_CompileShader_AddStaticParms(mode, permutation);
1144         memcpy((char *)(vertstrings_list + vertstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1145         vertstrings_count += shaderstaticparms_count;
1146         memcpy((char *)(geomstrings_list + geomstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1147         geomstrings_count += shaderstaticparms_count;
1148         memcpy((char *)(fragstrings_list + fragstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1149         fragstrings_count += shaderstaticparms_count;
1150
1151         // now append the shader text itself
1152         vertstrings_list[vertstrings_count++] = sourcestring;
1153         geomstrings_list[geomstrings_count++] = sourcestring;
1154         fragstrings_list[fragstrings_count++] = sourcestring;
1155
1156         // compile the shader program
1157         if (vertstrings_count + geomstrings_count + fragstrings_count)
1158                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1159         if (p->program)
1160         {
1161                 CHECKGLERROR
1162                 qglUseProgram(p->program);CHECKGLERROR
1163                 // look up all the uniform variable names we care about, so we don't
1164                 // have to look them up every time we set them
1165
1166 #if 0
1167                 // debugging aid
1168                 {
1169                         GLint activeuniformindex = 0;
1170                         GLint numactiveuniforms = 0;
1171                         char uniformname[128];
1172                         GLsizei uniformnamelength = 0;
1173                         GLint uniformsize = 0;
1174                         GLenum uniformtype = 0;
1175                         memset(uniformname, 0, sizeof(uniformname));
1176                         qglGetProgramiv(p->program, GL_ACTIVE_UNIFORMS, &numactiveuniforms);
1177                         Con_Printf("Shader has %i uniforms\n", numactiveuniforms);
1178                         for (activeuniformindex = 0;activeuniformindex < numactiveuniforms;activeuniformindex++)
1179                         {
1180                                 qglGetActiveUniform(p->program, activeuniformindex, sizeof(uniformname) - 1, &uniformnamelength, &uniformsize, &uniformtype, uniformname);
1181                                 Con_Printf("Uniform %i name \"%s\" size %i type %i\n", (int)activeuniformindex, uniformname, (int)uniformsize, (int)uniformtype);
1182                         }
1183                 }
1184 #endif
1185
1186                 p->loc_Texture_First              = qglGetUniformLocation(p->program, "Texture_First");
1187                 p->loc_Texture_Second             = qglGetUniformLocation(p->program, "Texture_Second");
1188                 p->loc_Texture_GammaRamps         = qglGetUniformLocation(p->program, "Texture_GammaRamps");
1189                 p->loc_Texture_Normal             = qglGetUniformLocation(p->program, "Texture_Normal");
1190                 p->loc_Texture_Color              = qglGetUniformLocation(p->program, "Texture_Color");
1191                 p->loc_Texture_Gloss              = qglGetUniformLocation(p->program, "Texture_Gloss");
1192                 p->loc_Texture_Glow               = qglGetUniformLocation(p->program, "Texture_Glow");
1193                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocation(p->program, "Texture_SecondaryNormal");
1194                 p->loc_Texture_SecondaryColor     = qglGetUniformLocation(p->program, "Texture_SecondaryColor");
1195                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocation(p->program, "Texture_SecondaryGloss");
1196                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocation(p->program, "Texture_SecondaryGlow");
1197                 p->loc_Texture_Pants              = qglGetUniformLocation(p->program, "Texture_Pants");
1198                 p->loc_Texture_Shirt              = qglGetUniformLocation(p->program, "Texture_Shirt");
1199                 p->loc_Texture_FogHeightTexture   = qglGetUniformLocation(p->program, "Texture_FogHeightTexture");
1200                 p->loc_Texture_FogMask            = qglGetUniformLocation(p->program, "Texture_FogMask");
1201                 p->loc_Texture_Lightmap           = qglGetUniformLocation(p->program, "Texture_Lightmap");
1202                 p->loc_Texture_Deluxemap          = qglGetUniformLocation(p->program, "Texture_Deluxemap");
1203                 p->loc_Texture_Attenuation        = qglGetUniformLocation(p->program, "Texture_Attenuation");
1204                 p->loc_Texture_Cube               = qglGetUniformLocation(p->program, "Texture_Cube");
1205                 p->loc_Texture_Refraction         = qglGetUniformLocation(p->program, "Texture_Refraction");
1206                 p->loc_Texture_Reflection         = qglGetUniformLocation(p->program, "Texture_Reflection");
1207                 p->loc_Texture_ShadowMap2D        = qglGetUniformLocation(p->program, "Texture_ShadowMap2D");
1208                 p->loc_Texture_CubeProjection     = qglGetUniformLocation(p->program, "Texture_CubeProjection");
1209                 p->loc_Texture_ScreenNormalMap    = qglGetUniformLocation(p->program, "Texture_ScreenNormalMap");
1210                 p->loc_Texture_ScreenDiffuse      = qglGetUniformLocation(p->program, "Texture_ScreenDiffuse");
1211                 p->loc_Texture_ScreenSpecular     = qglGetUniformLocation(p->program, "Texture_ScreenSpecular");
1212                 p->loc_Texture_ReflectMask        = qglGetUniformLocation(p->program, "Texture_ReflectMask");
1213                 p->loc_Texture_ReflectCube        = qglGetUniformLocation(p->program, "Texture_ReflectCube");
1214                 p->loc_Texture_BounceGrid         = qglGetUniformLocation(p->program, "Texture_BounceGrid");
1215                 p->loc_Alpha                      = qglGetUniformLocation(p->program, "Alpha");
1216                 p->loc_BloomBlur_Parameters       = qglGetUniformLocation(p->program, "BloomBlur_Parameters");
1217                 p->loc_ClientTime                 = qglGetUniformLocation(p->program, "ClientTime");
1218                 p->loc_Color_Ambient              = qglGetUniformLocation(p->program, "Color_Ambient");
1219                 p->loc_Color_Diffuse              = qglGetUniformLocation(p->program, "Color_Diffuse");
1220                 p->loc_Color_Specular             = qglGetUniformLocation(p->program, "Color_Specular");
1221                 p->loc_Color_Glow                 = qglGetUniformLocation(p->program, "Color_Glow");
1222                 p->loc_Color_Pants                = qglGetUniformLocation(p->program, "Color_Pants");
1223                 p->loc_Color_Shirt                = qglGetUniformLocation(p->program, "Color_Shirt");
1224                 p->loc_DeferredColor_Ambient      = qglGetUniformLocation(p->program, "DeferredColor_Ambient");
1225                 p->loc_DeferredColor_Diffuse      = qglGetUniformLocation(p->program, "DeferredColor_Diffuse");
1226                 p->loc_DeferredColor_Specular     = qglGetUniformLocation(p->program, "DeferredColor_Specular");
1227                 p->loc_DeferredMod_Diffuse        = qglGetUniformLocation(p->program, "DeferredMod_Diffuse");
1228                 p->loc_DeferredMod_Specular       = qglGetUniformLocation(p->program, "DeferredMod_Specular");
1229                 p->loc_DistortScaleRefractReflect = qglGetUniformLocation(p->program, "DistortScaleRefractReflect");
1230                 p->loc_EyePosition                = qglGetUniformLocation(p->program, "EyePosition");
1231                 p->loc_FogColor                   = qglGetUniformLocation(p->program, "FogColor");
1232                 p->loc_FogHeightFade              = qglGetUniformLocation(p->program, "FogHeightFade");
1233                 p->loc_FogPlane                   = qglGetUniformLocation(p->program, "FogPlane");
1234                 p->loc_FogPlaneViewDist           = qglGetUniformLocation(p->program, "FogPlaneViewDist");
1235                 p->loc_FogRangeRecip              = qglGetUniformLocation(p->program, "FogRangeRecip");
1236                 p->loc_LightColor                 = qglGetUniformLocation(p->program, "LightColor");
1237                 p->loc_LightDir                   = qglGetUniformLocation(p->program, "LightDir");
1238                 p->loc_LightPosition              = qglGetUniformLocation(p->program, "LightPosition");
1239                 p->loc_OffsetMapping_ScaleSteps   = qglGetUniformLocation(p->program, "OffsetMapping_ScaleSteps");
1240                 p->loc_OffsetMapping_LodDistance  = qglGetUniformLocation(p->program, "OffsetMapping_LodDistance");
1241                 p->loc_OffsetMapping_Bias         = qglGetUniformLocation(p->program, "OffsetMapping_Bias");
1242                 p->loc_PixelSize                  = qglGetUniformLocation(p->program, "PixelSize");
1243                 p->loc_ReflectColor               = qglGetUniformLocation(p->program, "ReflectColor");
1244                 p->loc_ReflectFactor              = qglGetUniformLocation(p->program, "ReflectFactor");
1245                 p->loc_ReflectOffset              = qglGetUniformLocation(p->program, "ReflectOffset");
1246                 p->loc_RefractColor               = qglGetUniformLocation(p->program, "RefractColor");
1247                 p->loc_Saturation                 = qglGetUniformLocation(p->program, "Saturation");
1248                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocation(p->program, "ScreenCenterRefractReflect");
1249                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocation(p->program, "ScreenScaleRefractReflect");
1250                 p->loc_ScreenToDepth              = qglGetUniformLocation(p->program, "ScreenToDepth");
1251                 p->loc_ShadowMap_Parameters       = qglGetUniformLocation(p->program, "ShadowMap_Parameters");
1252                 p->loc_ShadowMap_TextureScale     = qglGetUniformLocation(p->program, "ShadowMap_TextureScale");
1253                 p->loc_SpecularPower              = qglGetUniformLocation(p->program, "SpecularPower");
1254                 p->loc_UserVec1                   = qglGetUniformLocation(p->program, "UserVec1");
1255                 p->loc_UserVec2                   = qglGetUniformLocation(p->program, "UserVec2");
1256                 p->loc_UserVec3                   = qglGetUniformLocation(p->program, "UserVec3");
1257                 p->loc_UserVec4                   = qglGetUniformLocation(p->program, "UserVec4");
1258                 p->loc_ViewTintColor              = qglGetUniformLocation(p->program, "ViewTintColor");
1259                 p->loc_ViewToLight                = qglGetUniformLocation(p->program, "ViewToLight");
1260                 p->loc_ModelToLight               = qglGetUniformLocation(p->program, "ModelToLight");
1261                 p->loc_TexMatrix                  = qglGetUniformLocation(p->program, "TexMatrix");
1262                 p->loc_BackgroundTexMatrix        = qglGetUniformLocation(p->program, "BackgroundTexMatrix");
1263                 p->loc_ModelViewMatrix            = qglGetUniformLocation(p->program, "ModelViewMatrix");
1264                 p->loc_ModelViewProjectionMatrix  = qglGetUniformLocation(p->program, "ModelViewProjectionMatrix");
1265                 p->loc_PixelToScreenTexCoord      = qglGetUniformLocation(p->program, "PixelToScreenTexCoord");
1266                 p->loc_ModelToReflectCube         = qglGetUniformLocation(p->program, "ModelToReflectCube");
1267                 p->loc_ShadowMapMatrix            = qglGetUniformLocation(p->program, "ShadowMapMatrix");
1268                 p->loc_BloomColorSubtract         = qglGetUniformLocation(p->program, "BloomColorSubtract");
1269                 p->loc_NormalmapScrollBlend       = qglGetUniformLocation(p->program, "NormalmapScrollBlend");
1270                 p->loc_BounceGridMatrix           = qglGetUniformLocation(p->program, "BounceGridMatrix");
1271                 p->loc_BounceGridIntensity        = qglGetUniformLocation(p->program, "BounceGridIntensity");
1272                 // initialize the samplers to refer to the texture units we use
1273                 p->tex_Texture_First = -1;
1274                 p->tex_Texture_Second = -1;
1275                 p->tex_Texture_GammaRamps = -1;
1276                 p->tex_Texture_Normal = -1;
1277                 p->tex_Texture_Color = -1;
1278                 p->tex_Texture_Gloss = -1;
1279                 p->tex_Texture_Glow = -1;
1280                 p->tex_Texture_SecondaryNormal = -1;
1281                 p->tex_Texture_SecondaryColor = -1;
1282                 p->tex_Texture_SecondaryGloss = -1;
1283                 p->tex_Texture_SecondaryGlow = -1;
1284                 p->tex_Texture_Pants = -1;
1285                 p->tex_Texture_Shirt = -1;
1286                 p->tex_Texture_FogHeightTexture = -1;
1287                 p->tex_Texture_FogMask = -1;
1288                 p->tex_Texture_Lightmap = -1;
1289                 p->tex_Texture_Deluxemap = -1;
1290                 p->tex_Texture_Attenuation = -1;
1291                 p->tex_Texture_Cube = -1;
1292                 p->tex_Texture_Refraction = -1;
1293                 p->tex_Texture_Reflection = -1;
1294                 p->tex_Texture_ShadowMap2D = -1;
1295                 p->tex_Texture_CubeProjection = -1;
1296                 p->tex_Texture_ScreenNormalMap = -1;
1297                 p->tex_Texture_ScreenDiffuse = -1;
1298                 p->tex_Texture_ScreenSpecular = -1;
1299                 p->tex_Texture_ReflectMask = -1;
1300                 p->tex_Texture_ReflectCube = -1;
1301                 p->tex_Texture_BounceGrid = -1;
1302                 // bind the texture samplers in use
1303                 sampler = 0;
1304                 if (p->loc_Texture_First           >= 0) {p->tex_Texture_First            = sampler;qglUniform1i(p->loc_Texture_First           , sampler);sampler++;}
1305                 if (p->loc_Texture_Second          >= 0) {p->tex_Texture_Second           = sampler;qglUniform1i(p->loc_Texture_Second          , sampler);sampler++;}
1306                 if (p->loc_Texture_GammaRamps      >= 0) {p->tex_Texture_GammaRamps       = sampler;qglUniform1i(p->loc_Texture_GammaRamps      , sampler);sampler++;}
1307                 if (p->loc_Texture_Normal          >= 0) {p->tex_Texture_Normal           = sampler;qglUniform1i(p->loc_Texture_Normal          , sampler);sampler++;}
1308                 if (p->loc_Texture_Color           >= 0) {p->tex_Texture_Color            = sampler;qglUniform1i(p->loc_Texture_Color           , sampler);sampler++;}
1309                 if (p->loc_Texture_Gloss           >= 0) {p->tex_Texture_Gloss            = sampler;qglUniform1i(p->loc_Texture_Gloss           , sampler);sampler++;}
1310                 if (p->loc_Texture_Glow            >= 0) {p->tex_Texture_Glow             = sampler;qglUniform1i(p->loc_Texture_Glow            , sampler);sampler++;}
1311                 if (p->loc_Texture_SecondaryNormal >= 0) {p->tex_Texture_SecondaryNormal  = sampler;qglUniform1i(p->loc_Texture_SecondaryNormal , sampler);sampler++;}
1312                 if (p->loc_Texture_SecondaryColor  >= 0) {p->tex_Texture_SecondaryColor   = sampler;qglUniform1i(p->loc_Texture_SecondaryColor  , sampler);sampler++;}
1313                 if (p->loc_Texture_SecondaryGloss  >= 0) {p->tex_Texture_SecondaryGloss   = sampler;qglUniform1i(p->loc_Texture_SecondaryGloss  , sampler);sampler++;}
1314                 if (p->loc_Texture_SecondaryGlow   >= 0) {p->tex_Texture_SecondaryGlow    = sampler;qglUniform1i(p->loc_Texture_SecondaryGlow   , sampler);sampler++;}
1315                 if (p->loc_Texture_Pants           >= 0) {p->tex_Texture_Pants            = sampler;qglUniform1i(p->loc_Texture_Pants           , sampler);sampler++;}
1316                 if (p->loc_Texture_Shirt           >= 0) {p->tex_Texture_Shirt            = sampler;qglUniform1i(p->loc_Texture_Shirt           , sampler);sampler++;}
1317                 if (p->loc_Texture_FogHeightTexture>= 0) {p->tex_Texture_FogHeightTexture = sampler;qglUniform1i(p->loc_Texture_FogHeightTexture, sampler);sampler++;}
1318                 if (p->loc_Texture_FogMask         >= 0) {p->tex_Texture_FogMask          = sampler;qglUniform1i(p->loc_Texture_FogMask         , sampler);sampler++;}
1319                 if (p->loc_Texture_Lightmap        >= 0) {p->tex_Texture_Lightmap         = sampler;qglUniform1i(p->loc_Texture_Lightmap        , sampler);sampler++;}
1320                 if (p->loc_Texture_Deluxemap       >= 0) {p->tex_Texture_Deluxemap        = sampler;qglUniform1i(p->loc_Texture_Deluxemap       , sampler);sampler++;}
1321                 if (p->loc_Texture_Attenuation     >= 0) {p->tex_Texture_Attenuation      = sampler;qglUniform1i(p->loc_Texture_Attenuation     , sampler);sampler++;}
1322                 if (p->loc_Texture_Cube            >= 0) {p->tex_Texture_Cube             = sampler;qglUniform1i(p->loc_Texture_Cube            , sampler);sampler++;}
1323                 if (p->loc_Texture_Refraction      >= 0) {p->tex_Texture_Refraction       = sampler;qglUniform1i(p->loc_Texture_Refraction      , sampler);sampler++;}
1324                 if (p->loc_Texture_Reflection      >= 0) {p->tex_Texture_Reflection       = sampler;qglUniform1i(p->loc_Texture_Reflection      , sampler);sampler++;}
1325                 if (p->loc_Texture_ShadowMap2D     >= 0) {p->tex_Texture_ShadowMap2D      = sampler;qglUniform1i(p->loc_Texture_ShadowMap2D     , sampler);sampler++;}
1326                 if (p->loc_Texture_CubeProjection  >= 0) {p->tex_Texture_CubeProjection   = sampler;qglUniform1i(p->loc_Texture_CubeProjection  , sampler);sampler++;}
1327                 if (p->loc_Texture_ScreenNormalMap >= 0) {p->tex_Texture_ScreenNormalMap  = sampler;qglUniform1i(p->loc_Texture_ScreenNormalMap , sampler);sampler++;}
1328                 if (p->loc_Texture_ScreenDiffuse   >= 0) {p->tex_Texture_ScreenDiffuse    = sampler;qglUniform1i(p->loc_Texture_ScreenDiffuse   , sampler);sampler++;}
1329                 if (p->loc_Texture_ScreenSpecular  >= 0) {p->tex_Texture_ScreenSpecular   = sampler;qglUniform1i(p->loc_Texture_ScreenSpecular  , sampler);sampler++;}
1330                 if (p->loc_Texture_ReflectMask     >= 0) {p->tex_Texture_ReflectMask      = sampler;qglUniform1i(p->loc_Texture_ReflectMask     , sampler);sampler++;}
1331                 if (p->loc_Texture_ReflectCube     >= 0) {p->tex_Texture_ReflectCube      = sampler;qglUniform1i(p->loc_Texture_ReflectCube     , sampler);sampler++;}
1332                 if (p->loc_Texture_BounceGrid      >= 0) {p->tex_Texture_BounceGrid       = sampler;qglUniform1i(p->loc_Texture_BounceGrid      , sampler);sampler++;}
1333                 // get the uniform block indices so we can bind them
1334                 p->ubiloc_Skeletal_Transform12_UniformBlock = -1;
1335 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1336                 p->ubiloc_Skeletal_Transform12_UniformBlock = qglGetUniformBlockIndex(p->program, "Skeletal_Transform12_UniformBlock");
1337 #endif
1338                 // clear the uniform block bindings
1339                 p->ubibind_Skeletal_Transform12_UniformBlock = -1;
1340                 // bind the uniform blocks in use
1341                 ubibind = 0;
1342 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1343                 if (p->ubiloc_Skeletal_Transform12_UniformBlock >= 0) {p->ubibind_Skeletal_Transform12_UniformBlock = ubibind;qglUniformBlockBinding(p->program, p->ubiloc_Skeletal_Transform12_UniformBlock, ubibind);ubibind++;}
1344 #endif
1345                 // we're done compiling and setting up the shader, at least until it is used
1346                 CHECKGLERROR
1347                 Con_DPrintf("^5GLSL shader %s compiled (%i textures).\n", permutationname, sampler);
1348         }
1349         else
1350                 Con_Printf("^1GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1351
1352         // free the strings
1353         if (sourcestring)
1354                 Mem_Free(sourcestring);
1355 }
1356
1357 static void R_SetupShader_SetPermutationGLSL(unsigned int mode, dpuint64 permutation)
1358 {
1359         r_glsl_permutation_t *perm = R_GLSL_FindPermutation(mode, permutation);
1360         if (r_glsl_permutation != perm)
1361         {
1362                 r_glsl_permutation = perm;
1363                 if (!r_glsl_permutation->program)
1364                 {
1365                         if (!r_glsl_permutation->compiled)
1366                         {
1367                                 Con_DPrintf("Compiling shader mode %u permutation %u\n", mode, permutation);
1368                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1369                         }
1370                         if (!r_glsl_permutation->program)
1371                         {
1372                                 // remove features until we find a valid permutation
1373                                 int i;
1374                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1375                                 {
1376                                         // reduce i more quickly whenever it would not remove any bits
1377                                         dpuint64 j = 1ll<<(SHADERPERMUTATION_COUNT-1-i);
1378                                         if (!(permutation & j))
1379                                                 continue;
1380                                         permutation -= j;
1381                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1382                                         if (!r_glsl_permutation->compiled)
1383                                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1384                                         if (r_glsl_permutation->program)
1385                                                 break;
1386                                 }
1387                                 if (i >= SHADERPERMUTATION_COUNT)
1388                                 {
1389                                         //Con_Printf("Could not find a working OpenGL 2.0 shader for permutation %s %s\n", shadermodeinfo[mode].filename, shadermodeinfo[mode].pretext);
1390                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1391                                         qglUseProgram(0);CHECKGLERROR
1392                                         return; // no bit left to clear, entire mode is broken
1393                                 }
1394                         }
1395                 }
1396                 CHECKGLERROR
1397                 qglUseProgram(r_glsl_permutation->program);CHECKGLERROR
1398         }
1399         if (r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
1400         if (r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
1401         if (r_glsl_permutation->loc_ClientTime >= 0) qglUniform1f(r_glsl_permutation->loc_ClientTime, cl.time);
1402         CHECKGLERROR
1403 }
1404
1405 void R_GLSL_Restart_f(void)
1406 {
1407         unsigned int i, limit;
1408         switch(vid.renderpath)
1409         {
1410         case RENDERPATH_GL20:
1411         case RENDERPATH_GLES2:
1412                 {
1413                         r_glsl_permutation_t *p;
1414                         r_glsl_permutation = NULL;
1415                         limit = (unsigned int)Mem_ExpandableArray_IndexRange(&r_glsl_permutationarray);
1416                         for (i = 0;i < limit;i++)
1417                         {
1418                                 if ((p = (r_glsl_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_glsl_permutationarray, i)))
1419                                 {
1420                                         GL_Backend_FreeProgram(p->program);
1421                                         Mem_ExpandableArray_FreeRecord(&r_glsl_permutationarray, (void*)p);
1422                                 }
1423                         }
1424                         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
1425                 }
1426                 break;
1427         }
1428 }
1429
1430 static void R_GLSL_DumpShader_f(void)
1431 {
1432         int i, language, mode, dupe;
1433         char *text;
1434         shadermodeinfo_t *modeinfo;
1435         qfile_t *file;
1436
1437         for (language = 0;language < SHADERLANGUAGE_COUNT;language++)
1438         {
1439                 modeinfo = shadermodeinfo[language];
1440                 for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1441                 {
1442                         // don't dump the same file multiple times (most or all shaders come from the same file)
1443                         for (dupe = mode - 1;dupe >= 0;dupe--)
1444                                 if (!strcmp(modeinfo[mode].filename, modeinfo[dupe].filename))
1445                                         break;
1446                         if (dupe >= 0)
1447                                 continue;
1448                         text = modeinfo[mode].builtinstring;
1449                         if (!text)
1450                                 continue;
1451                         file = FS_OpenRealFile(modeinfo[mode].filename, "w", false);
1452                         if (file)
1453                         {
1454                                 FS_Print(file, "/* The engine may define the following macros:\n");
1455                                 FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n");
1456                                 for (i = 0;i < SHADERMODE_COUNT;i++)
1457                                         FS_Print(file, modeinfo[i].pretext);
1458                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1459                                         FS_Print(file, shaderpermutationinfo[i].pretext);
1460                                 FS_Print(file, "*/\n");
1461                                 FS_Print(file, text);
1462                                 FS_Close(file);
1463                                 Con_Printf("%s written\n", modeinfo[mode].filename);
1464                         }
1465                         else
1466                                 Con_Printf("failed to write to %s\n", modeinfo[mode].filename);
1467                 }
1468         }
1469 }
1470
1471 void R_SetupShader_Generic(rtexture_t *t, qboolean usegamma, qboolean notrippy, qboolean suppresstexalpha)
1472 {
1473         dpuint64 permutation = 0;
1474         if (r_trippy.integer && !notrippy)
1475                 permutation |= SHADERPERMUTATION_TRIPPY;
1476         permutation |= SHADERPERMUTATION_VIEWTINT;
1477         if (t)
1478                 permutation |= SHADERPERMUTATION_DIFFUSE;
1479         if (usegamma && v_glslgamma_2d.integer && !vid.sRGB2D && r_texture_gammaramps && !vid_gammatables_trivial)
1480                 permutation |= SHADERPERMUTATION_GAMMARAMPS;
1481         if (suppresstexalpha)
1482                 permutation |= SHADERPERMUTATION_REFLECTCUBE;
1483         if (vid.allowalphatocoverage)
1484                 GL_AlphaToCoverage(false);
1485         switch (vid.renderpath)
1486         {
1487         case RENDERPATH_GL20:
1488         case RENDERPATH_GLES2:
1489                 R_SetupShader_SetPermutationGLSL(SHADERMODE_GENERIC, permutation);
1490                 if (r_glsl_permutation->tex_Texture_First >= 0)
1491                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First, t);
1492                 if (r_glsl_permutation->tex_Texture_GammaRamps >= 0)
1493                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps);
1494                 break;
1495         }
1496 }
1497
1498 void R_SetupShader_Generic_NoTexture(qboolean usegamma, qboolean notrippy)
1499 {
1500         R_SetupShader_Generic(NULL, usegamma, notrippy, false);
1501 }
1502
1503 void R_SetupShader_DepthOrShadow(qboolean notrippy, qboolean depthrgb, qboolean skeletal)
1504 {
1505         dpuint64 permutation = 0;
1506         if (r_trippy.integer && !notrippy)
1507                 permutation |= SHADERPERMUTATION_TRIPPY;
1508         if (depthrgb)
1509                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1510         if (skeletal)
1511                 permutation |= SHADERPERMUTATION_SKELETAL;
1512
1513         if (vid.allowalphatocoverage)
1514                 GL_AlphaToCoverage(false);
1515         switch (vid.renderpath)
1516         {
1517         case RENDERPATH_GL20:
1518         case RENDERPATH_GLES2:
1519                 R_SetupShader_SetPermutationGLSL(SHADERMODE_DEPTH_OR_SHADOW, permutation);
1520 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1521                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1522 #endif
1523                 break;
1524         }
1525 }
1526
1527 #define BLENDFUNC_ALLOWS_COLORMOD      1
1528 #define BLENDFUNC_ALLOWS_FOG           2
1529 #define BLENDFUNC_ALLOWS_FOG_HACK0     4
1530 #define BLENDFUNC_ALLOWS_FOG_HACKALPHA 8
1531 #define BLENDFUNC_ALLOWS_ANYFOG        (BLENDFUNC_ALLOWS_FOG | BLENDFUNC_ALLOWS_FOG_HACK0 | BLENDFUNC_ALLOWS_FOG_HACKALPHA)
1532 static int R_BlendFuncFlags(int src, int dst)
1533 {
1534         int r = 0;
1535
1536         // a blendfunc allows colormod if:
1537         // a) it can never keep the destination pixel invariant, or
1538         // b) it can keep the destination pixel invariant, and still can do so if colormodded
1539         // this is to prevent unintended side effects from colormod
1540
1541         // a blendfunc allows fog if:
1542         // blend(fog(src), fog(dst)) == fog(blend(src, dst))
1543         // this is to prevent unintended side effects from fog
1544
1545         // these checks are the output of fogeval.pl
1546
1547         r |= BLENDFUNC_ALLOWS_COLORMOD;
1548         if(src == GL_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1549         if(src == GL_DST_ALPHA && dst == GL_ONE_MINUS_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1550         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1551         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1552         if(src == GL_DST_COLOR && dst == GL_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1553         if(src == GL_DST_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1554         if(src == GL_DST_COLOR && dst == GL_ZERO) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1555         if(src == GL_ONE && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1556         if(src == GL_ONE && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG_HACKALPHA;
1557         if(src == GL_ONE && dst == GL_ZERO) r |= BLENDFUNC_ALLOWS_FOG;
1558         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1559         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1560         if(src == GL_ONE_MINUS_DST_COLOR && dst == GL_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1561         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1562         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1563         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1564         if(src == GL_ONE_MINUS_SRC_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1565         if(src == GL_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1566         if(src == GL_SRC_ALPHA && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1567         if(src == GL_ZERO && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG;
1568         if(src == GL_ZERO && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1569
1570         return r;
1571 }
1572
1573 void R_SetupShader_Surface(const float rtlightambient[3], const float rtlightdiffuse[3], const float rtlightspecular[3], rsurfacepass_t rsurfacepass, int texturenumsurfaces, const msurface_t **texturesurfacelist, void *surfacewaterplane, qboolean notrippy)
1574 {
1575         // select a permutation of the lighting shader appropriate to this
1576         // combination of texture, entity, light source, and fogging, only use the
1577         // minimum features necessary to avoid wasting rendering time in the
1578         // fragment shader on features that are not being used
1579         dpuint64 permutation = 0;
1580         unsigned int mode = 0;
1581         int blendfuncflags;
1582         texture_t *t = rsurface.texture;
1583         float m16f[16];
1584         matrix4x4_t tempmatrix;
1585         r_waterstate_waterplane_t *waterplane = (r_waterstate_waterplane_t *)surfacewaterplane;
1586         if (r_trippy.integer && !notrippy)
1587                 permutation |= SHADERPERMUTATION_TRIPPY;
1588         if (t->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1589                 permutation |= SHADERPERMUTATION_ALPHAKILL;
1590         if (t->currentmaterialflags & MATERIALFLAG_OCCLUDE)
1591                 permutation |= SHADERPERMUTATION_OCCLUDE;
1592         if (t->r_water_waterscroll[0] && t->r_water_waterscroll[1])
1593                 permutation |= SHADERPERMUTATION_NORMALMAPSCROLLBLEND; // todo: make generic
1594         if (rsurfacepass == RSURFPASS_BACKGROUND)
1595         {
1596                 // distorted background
1597                 if (t->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1598                 {
1599                         mode = SHADERMODE_WATER;
1600                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1601                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1602                         if((r_wateralpha.value < 1) && (t->currentmaterialflags & MATERIALFLAG_WATERALPHA))
1603                         {
1604                                 // this is the right thing to do for wateralpha
1605                                 GL_BlendFunc(GL_ONE, GL_ZERO);
1606                                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1607                         }
1608                         else
1609                         {
1610                                 // this is the right thing to do for entity alpha
1611                                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1612                                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1613                         }
1614                 }
1615                 else if (t->currentmaterialflags & MATERIALFLAG_REFRACTION)
1616                 {
1617                         mode = SHADERMODE_REFRACTION;
1618                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1619                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1620                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1621                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1622                 }
1623                 else
1624                 {
1625                         mode = SHADERMODE_GENERIC;
1626                         permutation |= SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_ALPHAKILL;
1627                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1628                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1629                 }
1630                 if (vid.allowalphatocoverage)
1631                         GL_AlphaToCoverage(false);
1632         }
1633         else if (rsurfacepass == RSURFPASS_DEFERREDGEOMETRY)
1634         {
1635                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1636                 {
1637                         switch(t->offsetmapping)
1638                         {
1639                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1640                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1641                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1642                         case OFFSETMAPPING_OFF: break;
1643                         }
1644                 }
1645                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1646                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1647                 // normalmap (deferred prepass), may use alpha test on diffuse
1648                 mode = SHADERMODE_DEFERREDGEOMETRY;
1649                 GL_BlendFunc(GL_ONE, GL_ZERO);
1650                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1651                 if (vid.allowalphatocoverage)
1652                         GL_AlphaToCoverage(false);
1653         }
1654         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1655         {
1656                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1657                 {
1658                         switch(t->offsetmapping)
1659                         {
1660                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1661                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1662                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1663                         case OFFSETMAPPING_OFF: break;
1664                         }
1665                 }
1666                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1667                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1668                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1669                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1670                 // light source
1671                 mode = SHADERMODE_LIGHTSOURCE;
1672                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1673                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1674                 if (VectorLength2(rtlightdiffuse) > 0)
1675                         permutation |= SHADERPERMUTATION_DIFFUSE;
1676                 if (VectorLength2(rtlightspecular) > 0)
1677                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1678                 if (r_refdef.fogenabled)
1679                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1680                 if (t->colormapping)
1681                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1682                 if (r_shadow_usingshadowmap2d)
1683                 {
1684                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1685                         if(r_shadow_shadowmapvsdct)
1686                                 permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
1687
1688                         if (r_shadow_shadowmap2ddepthbuffer)
1689                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1690                 }
1691                 if (t->reflectmasktexture)
1692                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1693                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1694                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE);
1695                 if (vid.allowalphatocoverage)
1696                         GL_AlphaToCoverage(false);
1697         }
1698         else if (t->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1699         {
1700                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1701                 {
1702                         switch(t->offsetmapping)
1703                         {
1704                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1705                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1706                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1707                         case OFFSETMAPPING_OFF: break;
1708                         }
1709                 }
1710                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1711                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1712                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1713                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1714                 // directional model lighting
1715                 mode = SHADERMODE_LIGHTDIRECTION;
1716                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1717                         permutation |= SHADERPERMUTATION_GLOW;
1718                 if (VectorLength2(t->render_modellight_diffuse))
1719                         permutation |= SHADERPERMUTATION_DIFFUSE;
1720                 if (VectorLength2(t->render_modellight_specular) > 0)
1721                         permutation |= SHADERPERMUTATION_SPECULAR;
1722                 if (r_refdef.fogenabled)
1723                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1724                 if (t->colormapping)
1725                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1726                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1727                 {
1728                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1729                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1730
1731                         if (r_shadow_shadowmap2ddepthbuffer)
1732                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1733                 }
1734                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1735                         permutation |= SHADERPERMUTATION_REFLECTION;
1736                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1737                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1738                 if (t->reflectmasktexture)
1739                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1740                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld)
1741                 {
1742                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1743                         if (r_shadow_bouncegrid_state.directional)
1744                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1745                 }
1746                 GL_BlendFunc(t->currentlayers[0].blendfunc1, t->currentlayers[0].blendfunc2);
1747                 blendfuncflags = R_BlendFuncFlags(t->currentlayers[0].blendfunc1, t->currentlayers[0].blendfunc2);
1748                 // when using alphatocoverage, we don't need alphakill
1749                 if (vid.allowalphatocoverage)
1750                 {
1751                         if (r_transparent_alphatocoverage.integer)
1752                         {
1753                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1754                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1755                         }
1756                         else
1757                                 GL_AlphaToCoverage(false);
1758                 }
1759         }
1760         else
1761         {
1762                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1763                 {
1764                         switch(t->offsetmapping)
1765                         {
1766                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1767                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1768                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1769                         case OFFSETMAPPING_OFF: break;
1770                         }
1771                 }
1772                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1773                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1774                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1775                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1776                 // lightmapped wall
1777                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1778                         permutation |= SHADERPERMUTATION_GLOW;
1779                 if (r_refdef.fogenabled)
1780                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1781                 if (t->colormapping)
1782                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1783                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1784                 {
1785                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1786                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1787
1788                         if (r_shadow_shadowmap2ddepthbuffer)
1789                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1790                 }
1791                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1792                         permutation |= SHADERPERMUTATION_REFLECTION;
1793                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1794                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1795                 if (t->reflectmasktexture)
1796                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1797                 if (FAKELIGHT_ENABLED)
1798                 {
1799                         // fake lightmapping (q1bsp, q3bsp, fullbright map)
1800                         mode = SHADERMODE_FAKELIGHT;
1801                         permutation |= SHADERPERMUTATION_DIFFUSE;
1802                         if (VectorLength2(t->render_lightmap_specular) > 0)
1803                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1804                 }
1805                 else if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1806                 {
1807                         // deluxemapping (light direction texture)
1808                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1809                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1810                         else
1811                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1812                         permutation |= SHADERPERMUTATION_DIFFUSE;
1813                         if (VectorLength2(t->render_lightmap_specular) > 0)
1814                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1815                 }
1816                 else if (r_glsl_deluxemapping.integer >= 2)
1817                 {
1818                         // fake deluxemapping (uniform light direction in tangentspace)
1819                         if (rsurface.uselightmaptexture)
1820                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP;
1821                         else
1822                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR;
1823                         permutation |= SHADERPERMUTATION_DIFFUSE;
1824                         if (VectorLength2(t->render_lightmap_specular) > 0)
1825                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1826                 }
1827                 else if (rsurface.uselightmaptexture)
1828                 {
1829                         // ordinary lightmapping (q1bsp, q3bsp)
1830                         mode = SHADERMODE_LIGHTMAP;
1831                 }
1832                 else
1833                 {
1834                         // ordinary vertex coloring (q3bsp)
1835                         mode = SHADERMODE_VERTEXCOLOR;
1836                 }
1837                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld)
1838                 {
1839                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1840                         if (r_shadow_bouncegrid_state.directional)
1841                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1842                 }
1843                 GL_BlendFunc(t->currentlayers[0].blendfunc1, t->currentlayers[0].blendfunc2);
1844                 blendfuncflags = R_BlendFuncFlags(t->currentlayers[0].blendfunc1, t->currentlayers[0].blendfunc2);
1845                 // when using alphatocoverage, we don't need alphakill
1846                 if (vid.allowalphatocoverage)
1847                 {
1848                         if (r_transparent_alphatocoverage.integer)
1849                         {
1850                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1851                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1852                         }
1853                         else
1854                                 GL_AlphaToCoverage(false);
1855                 }
1856         }
1857         if(!(blendfuncflags & BLENDFUNC_ALLOWS_ANYFOG))
1858                 permutation &= ~(SHADERPERMUTATION_FOGHEIGHTTEXTURE | SHADERPERMUTATION_FOGOUTSIDE | SHADERPERMUTATION_FOGINSIDE);
1859         if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACKALPHA)
1860                 permutation |= SHADERPERMUTATION_FOGALPHAHACK;
1861         switch(vid.renderpath)
1862         {
1863         case RENDERPATH_GL20:
1864         case RENDERPATH_GLES2:
1865                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_ARRAY_LIGHTMAP : 0) | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
1866                 R_Mesh_VertexPointer(     3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
1867                 R_Mesh_ColorPointer(      4, GL_FLOAT, sizeof(float[4]), rsurface.batchlightmapcolor4f, rsurface.batchlightmapcolor4f_vertexbuffer, rsurface.batchlightmapcolor4f_bufferoffset);
1868                 R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
1869                 R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchsvector3f, rsurface.batchsvector3f_vertexbuffer, rsurface.batchsvector3f_bufferoffset);
1870                 R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchtvector3f, rsurface.batchtvector3f_vertexbuffer, rsurface.batchtvector3f_bufferoffset);
1871                 R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchnormal3f, rsurface.batchnormal3f_vertexbuffer, rsurface.batchnormal3f_bufferoffset);
1872                 R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset);
1873                 R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
1874                 R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, rsurface.batchskeletalindex4ub_vertexbuffer, rsurface.batchskeletalindex4ub_bufferoffset);
1875                 R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, rsurface.batchskeletalweight4ub_vertexbuffer, rsurface.batchskeletalweight4ub_bufferoffset);
1876                 // this has to be after RSurf_PrepareVerticesForBatch
1877                 if (rsurface.batchskeletaltransform3x4buffer)
1878                         permutation |= SHADERPERMUTATION_SKELETAL;
1879                 R_SetupShader_SetPermutationGLSL(mode, permutation);
1880 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1881                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1882 #endif
1883                 if (r_glsl_permutation->loc_ModelToReflectCube >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToReflectCube, 1, false, m16f);}
1884                 if (mode == SHADERMODE_LIGHTSOURCE)
1885                 {
1886                         if (r_glsl_permutation->loc_ModelToLight >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToLight, 1, false, m16f);}
1887                         if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3f(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1888                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1889                         if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, rtlightambient[0], rtlightambient[1], rtlightambient[2]);
1890                         if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, rtlightdiffuse[0], rtlightdiffuse[1], rtlightdiffuse[2]);
1891                         if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, rtlightspecular[0], rtlightspecular[1], rtlightspecular[2]);
1892         
1893                         // additive passes are only darkened by fog, not tinted
1894                         if (r_glsl_permutation->loc_FogColor >= 0)
1895                                 qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1896                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1897                 }
1898                 else
1899                 {
1900                         if (mode == SHADERMODE_FLATCOLOR)
1901                         {
1902                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1903                         }
1904                         else if (mode == SHADERMODE_LIGHTDIRECTION)
1905                         {
1906                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1907                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_modellight_diffuse[0], t->render_modellight_diffuse[1], t->render_modellight_diffuse[2]);
1908                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_modellight_specular[0], t->render_modellight_specular[1], t->render_modellight_specular[2]);
1909                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1910                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1911                                 if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1912                                 if (r_glsl_permutation->loc_LightDir >= 0) qglUniform3f(r_glsl_permutation->loc_LightDir, t->render_modellight_lightdir[0], t->render_modellight_lightdir[1], t->render_modellight_lightdir[2]);
1913                         }
1914                         else
1915                         {
1916                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1917                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1918                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1919                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1920                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1921                         }
1922                         // additive passes are only darkened by fog, not tinted
1923                         if (r_glsl_permutation->loc_FogColor >= 0)
1924                         {
1925                                 if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACK0)
1926                                         qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1927                                 else
1928                                         qglUniform3f(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1929                         }
1930                         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * t->refractfactor, r_water_refractdistort.value * t->refractfactor, r_water_reflectdistort.value * t->reflectfactor, r_water_reflectdistort.value * t->reflectfactor);
1931                         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_fb.water.screenscale[0], r_fb.water.screenscale[1], r_fb.water.screenscale[0], r_fb.water.screenscale[1]);
1932                         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_fb.water.screencenter[0], r_fb.water.screencenter[1], r_fb.water.screencenter[0], r_fb.water.screencenter[1]);
1933                         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4f(r_glsl_permutation->loc_RefractColor, t->refractcolor4f[0], t->refractcolor4f[1], t->refractcolor4f[2], t->refractcolor4f[3] * t->currentalpha);
1934                         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4f(r_glsl_permutation->loc_ReflectColor, t->reflectcolor4f[0], t->reflectcolor4f[1], t->reflectcolor4f[2], t->reflectcolor4f[3] * t->currentalpha);
1935                         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectFactor, t->reflectmax - t->reflectmin);
1936                         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectOffset, t->reflectmin);
1937                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1938                         if (r_glsl_permutation->loc_NormalmapScrollBlend >= 0) qglUniform2f(r_glsl_permutation->loc_NormalmapScrollBlend, t->r_water_waterscroll[0], t->r_water_waterscroll[1]);
1939                 }
1940                 if (r_glsl_permutation->loc_TexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currenttexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_TexMatrix, 1, false, m16f);}
1941                 if (r_glsl_permutation->loc_BackgroundTexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currentbackgroundtexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BackgroundTexMatrix, 1, false, m16f);}
1942                 if (r_glsl_permutation->loc_ShadowMapMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ShadowMapMatrix, 1, false, m16f);}
1943                 if (permutation & SHADERPERMUTATION_SHADOWMAPORTHO)
1944                 {
1945                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_modelshadowmap_texturescale[0], r_shadow_modelshadowmap_texturescale[1], r_shadow_modelshadowmap_texturescale[2], r_shadow_modelshadowmap_texturescale[3]);
1946                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_modelshadowmap_parameters[0], r_shadow_modelshadowmap_parameters[1], r_shadow_modelshadowmap_parameters[2], r_shadow_modelshadowmap_parameters[3]);
1947                 }
1948                 else
1949                 {
1950                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
1951                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
1952                 }
1953
1954                 if (r_glsl_permutation->loc_Color_Glow >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Glow, t->render_glowmod[0], t->render_glowmod[1], t->render_glowmod[2]);
1955                 if (r_glsl_permutation->loc_Alpha >= 0) qglUniform1f(r_glsl_permutation->loc_Alpha, t->currentalpha * ((t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay) ? t->r_water_wateralpha : 1));
1956                 if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3f(r_glsl_permutation->loc_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]);
1957                 if (r_glsl_permutation->loc_Color_Pants >= 0)
1958                 {
1959                         if (t->pantstexture)
1960                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, t->render_colormap_pants[0], t->render_colormap_pants[1], t->render_colormap_pants[2]);
1961                         else
1962                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1963                 }
1964                 if (r_glsl_permutation->loc_Color_Shirt >= 0)
1965                 {
1966                         if (t->shirttexture)
1967                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, t->render_colormap_shirt[0], t->render_colormap_shirt[1], t->render_colormap_shirt[2]);
1968                         else
1969                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
1970                 }
1971                 if (r_glsl_permutation->loc_FogPlane >= 0) qglUniform4f(r_glsl_permutation->loc_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]);
1972                 if (r_glsl_permutation->loc_FogPlaneViewDist >= 0) qglUniform1f(r_glsl_permutation->loc_FogPlaneViewDist, rsurface.fogplaneviewdist);
1973                 if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1f(r_glsl_permutation->loc_FogRangeRecip, rsurface.fograngerecip);
1974                 if (r_glsl_permutation->loc_FogHeightFade >= 0) qglUniform1f(r_glsl_permutation->loc_FogHeightFade, rsurface.fogheightfade);
1975                 if (r_glsl_permutation->loc_OffsetMapping_ScaleSteps >= 0) qglUniform4f(r_glsl_permutation->loc_OffsetMapping_ScaleSteps,
1976                                 r_glsl_offsetmapping_scale.value*t->offsetscale,
1977                                 max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
1978                                 1.0 / max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
1979                                 max(1, r_glsl_offsetmapping_reliefmapping_refinesteps.integer)
1980                         );
1981                 if (r_glsl_permutation->loc_OffsetMapping_LodDistance >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_LodDistance, r_glsl_offsetmapping_lod_distance.integer * r_refdef.view.quality);
1982                 if (r_glsl_permutation->loc_OffsetMapping_Bias >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_Bias, t->offsetbias);
1983                 if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2f(r_glsl_permutation->loc_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
1984                 if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/vid.width, 1.0f/vid.height);
1985                 if (r_glsl_permutation->loc_BounceGridMatrix >= 0) {Matrix4x4_Concat(&tempmatrix, &r_shadow_bouncegrid_state.matrix, &rsurface.matrix);Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BounceGridMatrix, 1, false, m16f);}
1986                 if (r_glsl_permutation->loc_BounceGridIntensity >= 0) qglUniform1f(r_glsl_permutation->loc_BounceGridIntensity, r_shadow_bouncegrid_state.intensity*r_refdef.view.colorscale);
1987
1988                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First            , r_texture_white                                     );
1989                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second           , r_texture_white                                     );
1990                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps       , r_texture_gammaramps                                );
1991                 if (r_glsl_permutation->tex_Texture_Normal          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Normal           , t->nmaptexture                       );
1992                 if (r_glsl_permutation->tex_Texture_Color           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Color            , t->basetexture                       );
1993                 if (r_glsl_permutation->tex_Texture_Gloss           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Gloss            , t->glosstexture                      );
1994                 if (r_glsl_permutation->tex_Texture_Glow            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Glow             , t->glowtexture                       );
1995                 if (r_glsl_permutation->tex_Texture_SecondaryNormal >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryNormal  , t->backgroundnmaptexture             );
1996                 if (r_glsl_permutation->tex_Texture_SecondaryColor  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryColor   , t->backgroundbasetexture             );
1997                 if (r_glsl_permutation->tex_Texture_SecondaryGloss  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGloss   , t->backgroundglosstexture            );
1998                 if (r_glsl_permutation->tex_Texture_SecondaryGlow   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGlow    , t->backgroundglowtexture             );
1999                 if (r_glsl_permutation->tex_Texture_Pants           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Pants            , t->pantstexture                      );
2000                 if (r_glsl_permutation->tex_Texture_Shirt           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Shirt            , t->shirttexture                      );
2001                 if (r_glsl_permutation->tex_Texture_ReflectMask     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectMask      , t->reflectmasktexture                );
2002                 if (r_glsl_permutation->tex_Texture_ReflectCube     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectCube      , t->reflectcubetexture ? t->reflectcubetexture : r_texture_whitecube);
2003                 if (r_glsl_permutation->tex_Texture_FogHeightTexture>= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogHeightTexture , r_texture_fogheighttexture                          );
2004                 if (r_glsl_permutation->tex_Texture_FogMask         >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogMask          , r_texture_fogattenuation                            );
2005                 if (r_glsl_permutation->tex_Texture_Lightmap        >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Lightmap         , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white);
2006                 if (r_glsl_permutation->tex_Texture_Deluxemap       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Deluxemap        , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap);
2007                 if (r_glsl_permutation->tex_Texture_Attenuation     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation      , r_shadow_attenuationgradienttexture                 );
2008                 if (rsurfacepass == RSURFPASS_BACKGROUND)
2009                 {
2010                         if (r_glsl_permutation->tex_Texture_Refraction  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Refraction        , waterplane->rt_refraction ? waterplane->rt_refraction->colortexture[0] : r_texture_black);
2011                         if (r_glsl_permutation->tex_Texture_First       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First             , waterplane->rt_camera ? waterplane->rt_camera->colortexture[0] : r_texture_black);
2012                         if (r_glsl_permutation->tex_Texture_Reflection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2013                 }
2014                 else
2015                 {
2016                         if (r_glsl_permutation->tex_Texture_Reflection >= 0 && waterplane) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2017                 }
2018                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap   , r_shadow_prepassgeometrynormalmaptexture            );
2019                 if (r_glsl_permutation->tex_Texture_ScreenDiffuse   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenDiffuse     , r_shadow_prepasslightingdiffusetexture              );
2020                 if (r_glsl_permutation->tex_Texture_ScreenSpecular  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenSpecular    , r_shadow_prepasslightingspeculartexture             );
2021                 if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)))
2022                 {
2023                         if (r_glsl_permutation->tex_Texture_ShadowMap2D     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D, r_shadow_shadowmap2ddepthtexture                           );
2024                         if (rsurface.rtlight)
2025                         {
2026                                 if (r_glsl_permutation->tex_Texture_Cube            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube              , rsurface.rtlight->currentcubemap                    );
2027                                 if (r_glsl_permutation->tex_Texture_CubeProjection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection    , r_shadow_shadowmapvsdcttexture                      );
2028                         }
2029                 }
2030                 if (r_glsl_permutation->tex_Texture_BounceGrid  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_BounceGrid, r_shadow_bouncegrid_state.texture);
2031                 CHECKGLERROR
2032                 break;
2033         }
2034 }
2035
2036 void R_SetupShader_DeferredLight(const rtlight_t *rtlight)
2037 {
2038         // select a permutation of the lighting shader appropriate to this
2039         // combination of texture, entity, light source, and fogging, only use the
2040         // minimum features necessary to avoid wasting rendering time in the
2041         // fragment shader on features that are not being used
2042         dpuint64 permutation = 0;
2043         unsigned int mode = 0;
2044         const float *lightcolorbase = rtlight->currentcolor;
2045         float ambientscale = rtlight->ambientscale;
2046         float diffusescale = rtlight->diffusescale;
2047         float specularscale = rtlight->specularscale;
2048         // this is the location of the light in view space
2049         vec3_t viewlightorigin;
2050         // this transforms from view space (camera) to light space (cubemap)
2051         matrix4x4_t viewtolight;
2052         matrix4x4_t lighttoview;
2053         float viewtolight16f[16];
2054         // light source
2055         mode = SHADERMODE_DEFERREDLIGHTSOURCE;
2056         if (rtlight->currentcubemap != r_texture_whitecube)
2057                 permutation |= SHADERPERMUTATION_CUBEFILTER;
2058         if (diffusescale > 0)
2059                 permutation |= SHADERPERMUTATION_DIFFUSE;
2060         if (specularscale > 0 && r_shadow_gloss.integer > 0)
2061                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
2062         if (r_shadow_usingshadowmap2d)
2063         {
2064                 permutation |= SHADERPERMUTATION_SHADOWMAP2D;
2065                 if (r_shadow_shadowmapvsdct)
2066                         permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
2067
2068                 if (r_shadow_shadowmap2ddepthbuffer)
2069                         permutation |= SHADERPERMUTATION_DEPTHRGB;
2070         }
2071         if (vid.allowalphatocoverage)
2072                 GL_AlphaToCoverage(false);
2073         Matrix4x4_Transform(&r_refdef.view.viewport.viewmatrix, rtlight->shadoworigin, viewlightorigin);
2074         Matrix4x4_Concat(&lighttoview, &r_refdef.view.viewport.viewmatrix, &rtlight->matrix_lighttoworld);
2075         Matrix4x4_Invert_Full(&viewtolight, &lighttoview);
2076         Matrix4x4_ToArrayFloatGL(&viewtolight, viewtolight16f);
2077         switch(vid.renderpath)
2078         {
2079         case RENDERPATH_GL20:
2080         case RENDERPATH_GLES2:
2081                 R_SetupShader_SetPermutationGLSL(mode, permutation);
2082                 if (r_glsl_permutation->loc_LightPosition             >= 0) qglUniform3f(       r_glsl_permutation->loc_LightPosition            , viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]);
2083                 if (r_glsl_permutation->loc_ViewToLight               >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ViewToLight              , 1, false, viewtolight16f);
2084                 if (r_glsl_permutation->loc_DeferredColor_Ambient     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Ambient    , lightcolorbase[0] * ambientscale , lightcolorbase[1] * ambientscale , lightcolorbase[2] * ambientscale );
2085                 if (r_glsl_permutation->loc_DeferredColor_Diffuse     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Diffuse    , lightcolorbase[0] * diffusescale , lightcolorbase[1] * diffusescale , lightcolorbase[2] * diffusescale );
2086                 if (r_glsl_permutation->loc_DeferredColor_Specular    >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Specular   , lightcolorbase[0] * specularscale, lightcolorbase[1] * specularscale, lightcolorbase[2] * specularscale);
2087                 if (r_glsl_permutation->loc_ShadowMap_TextureScale    >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_TextureScale   , r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
2088                 if (r_glsl_permutation->loc_ShadowMap_Parameters      >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_Parameters     , r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
2089                 if (r_glsl_permutation->loc_SpecularPower             >= 0) qglUniform1f(       r_glsl_permutation->loc_SpecularPower            , (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
2090                 if (r_glsl_permutation->loc_ScreenToDepth             >= 0) qglUniform2f(       r_glsl_permutation->loc_ScreenToDepth            , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2091                 if (r_glsl_permutation->loc_PixelToScreenTexCoord     >= 0) qglUniform2f(       r_glsl_permutation->loc_PixelToScreenTexCoord    , 1.0f/vid.width, 1.0f/vid.height);
2092
2093                 if (r_glsl_permutation->tex_Texture_Attenuation       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation        , r_shadow_attenuationgradienttexture                 );
2094                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap    , r_shadow_prepassgeometrynormalmaptexture            );
2095                 if (r_glsl_permutation->tex_Texture_Cube              >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube               , rsurface.rtlight->currentcubemap                    );
2096                 if (r_glsl_permutation->tex_Texture_ShadowMap2D       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D        , r_shadow_shadowmap2ddepthtexture                    );
2097                 if (r_glsl_permutation->tex_Texture_CubeProjection    >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection     , r_shadow_shadowmapvsdcttexture                      );
2098                 break;
2099         }
2100 }
2101
2102 #define SKINFRAME_HASH 1024
2103
2104 typedef struct
2105 {
2106         unsigned int loadsequence; // incremented each level change
2107         memexpandablearray_t array;
2108         skinframe_t *hash[SKINFRAME_HASH];
2109 }
2110 r_skinframe_t;
2111 r_skinframe_t r_skinframe;
2112
2113 void R_SkinFrame_PrepareForPurge(void)
2114 {
2115         r_skinframe.loadsequence++;
2116         // wrap it without hitting zero
2117         if (r_skinframe.loadsequence >= 200)
2118                 r_skinframe.loadsequence = 1;
2119 }
2120
2121 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
2122 {
2123         if (!skinframe)
2124                 return;
2125         // mark the skinframe as used for the purging code
2126         skinframe->loadsequence = r_skinframe.loadsequence;
2127 }
2128
2129 void R_SkinFrame_PurgeSkinFrame(skinframe_t *s)
2130 {
2131         if (s == NULL)
2132                 return;
2133         if (s->merged == s->base)
2134                 s->merged = NULL;
2135         R_PurgeTexture(s->stain); s->stain = NULL;
2136         R_PurgeTexture(s->merged); s->merged = NULL;
2137         R_PurgeTexture(s->base); s->base = NULL;
2138         R_PurgeTexture(s->pants); s->pants = NULL;
2139         R_PurgeTexture(s->shirt); s->shirt = NULL;
2140         R_PurgeTexture(s->nmap); s->nmap = NULL;
2141         R_PurgeTexture(s->gloss); s->gloss = NULL;
2142         R_PurgeTexture(s->glow); s->glow = NULL;
2143         R_PurgeTexture(s->fog); s->fog = NULL;
2144         R_PurgeTexture(s->reflect); s->reflect = NULL;
2145         s->loadsequence = 0;
2146 }
2147
2148 void R_SkinFrame_Purge(void)
2149 {
2150         int i;
2151         skinframe_t *s;
2152         for (i = 0;i < SKINFRAME_HASH;i++)
2153         {
2154                 for (s = r_skinframe.hash[i];s;s = s->next)
2155                 {
2156                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
2157                                 R_SkinFrame_PurgeSkinFrame(s);
2158                 }
2159         }
2160 }
2161
2162 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
2163         skinframe_t *item;
2164         char basename[MAX_QPATH];
2165
2166         Image_StripImageExtension(name, basename, sizeof(basename));
2167
2168         if( last == NULL ) {
2169                 int hashindex;
2170                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2171                 item = r_skinframe.hash[hashindex];
2172         } else {
2173                 item = last->next;
2174         }
2175
2176         // linearly search through the hash bucket
2177         for( ; item ; item = item->next ) {
2178                 if( !strcmp( item->basename, basename ) ) {
2179                         return item;
2180                 }
2181         }
2182         return NULL;
2183 }
2184
2185 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qboolean add)
2186 {
2187         skinframe_t *item;
2188         int hashindex;
2189         char basename[MAX_QPATH];
2190
2191         Image_StripImageExtension(name, basename, sizeof(basename));
2192
2193         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2194         for (item = r_skinframe.hash[hashindex];item;item = item->next)
2195                 if (!strcmp(item->basename, basename) && (comparecrc < 0 || (item->textureflags == textureflags && item->comparewidth == comparewidth && item->compareheight == compareheight && item->comparecrc == comparecrc)))
2196                         break;
2197
2198         if (!item)
2199         {
2200                 if (!add)
2201                         return NULL;
2202                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
2203                 memset(item, 0, sizeof(*item));
2204                 strlcpy(item->basename, basename, sizeof(item->basename));
2205                 item->textureflags = textureflags & ~TEXF_FORCE_RELOAD;
2206                 item->comparewidth = comparewidth;
2207                 item->compareheight = compareheight;
2208                 item->comparecrc = comparecrc;
2209                 item->next = r_skinframe.hash[hashindex];
2210                 r_skinframe.hash[hashindex] = item;
2211         }
2212         else if (textureflags & TEXF_FORCE_RELOAD)
2213         {
2214                 if (!add)
2215                         return NULL;
2216                 R_SkinFrame_PurgeSkinFrame(item);
2217         }
2218
2219         R_SkinFrame_MarkUsed(item);
2220         return item;
2221 }
2222
2223 #define R_SKINFRAME_LOAD_AVERAGE_COLORS(cnt, getpixel) \
2224         { \
2225                 unsigned long long avgcolor[5], wsum; \
2226                 int pix, comp, w; \
2227                 avgcolor[0] = 0; \
2228                 avgcolor[1] = 0; \
2229                 avgcolor[2] = 0; \
2230                 avgcolor[3] = 0; \
2231                 avgcolor[4] = 0; \
2232                 wsum = 0; \
2233                 for(pix = 0; pix < cnt; ++pix) \
2234                 { \
2235                         w = 0; \
2236                         for(comp = 0; comp < 3; ++comp) \
2237                                 w += getpixel; \
2238                         if(w) /* ignore perfectly black pixels because that is better for model skins */ \
2239                         { \
2240                                 ++wsum; \
2241                                 /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2242                                 w = getpixel; \
2243                                 for(comp = 0; comp < 3; ++comp) \
2244                                         avgcolor[comp] += getpixel * w; \
2245                                 avgcolor[3] += w; \
2246                         } \
2247                         /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2248                         avgcolor[4] += getpixel; \
2249                 } \
2250                 if(avgcolor[3] == 0) /* no pixels seen? even worse */ \
2251                         avgcolor[3] = 1; \
2252                 skinframe->avgcolor[0] = avgcolor[2] / (255.0 * avgcolor[3]); \
2253                 skinframe->avgcolor[1] = avgcolor[1] / (255.0 * avgcolor[3]); \
2254                 skinframe->avgcolor[2] = avgcolor[0] / (255.0 * avgcolor[3]); \
2255                 skinframe->avgcolor[3] = avgcolor[4] / (255.0 * cnt); \
2256         }
2257
2258 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qboolean complain, qboolean fallbacknotexture)
2259 {
2260         skinframe_t *skinframe;
2261
2262         if (cls.state == ca_dedicated)
2263                 return NULL;
2264
2265         // return an existing skinframe if already loaded
2266         // if loading of the first image fails, don't make a new skinframe as it
2267         // would cause all future lookups of this to be missing
2268         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, -1, false);
2269         if (skinframe && skinframe->base)
2270                 return skinframe;
2271
2272         return R_SkinFrame_LoadExternal_SkinFrame(skinframe, name, textureflags, complain, fallbacknotexture);
2273 }
2274
2275 extern cvar_t gl_picmip;
2276 skinframe_t *R_SkinFrame_LoadExternal_SkinFrame(skinframe_t *skinframe, const char *name, int textureflags, qboolean complain, qboolean fallbacknotexture)
2277 {
2278         int j;
2279         unsigned char *pixels;
2280         unsigned char *bumppixels;
2281         unsigned char *basepixels = NULL;
2282         int basepixels_width = 0;
2283         int basepixels_height = 0;
2284         rtexture_t *ddsbase = NULL;
2285         qboolean ddshasalpha = false;
2286         float ddsavgcolor[4];
2287         char basename[MAX_QPATH];
2288         int miplevel = R_PicmipForFlags(textureflags);
2289         int savemiplevel = miplevel;
2290         int mymiplevel;
2291         char vabuf[1024];
2292
2293         if (cls.state == ca_dedicated)
2294                 return NULL;
2295
2296         Image_StripImageExtension(name, basename, sizeof(basename));
2297
2298         // check for DDS texture file first
2299         if (!r_loaddds || !(ddsbase = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s.dds", basename), vid.sRGB3D, textureflags, &ddshasalpha, ddsavgcolor, miplevel, false)))
2300         {
2301                 basepixels = loadimagepixelsbgra(name, complain, true, false, &miplevel);
2302                 if (basepixels == NULL && fallbacknotexture)
2303                         basepixels = Image_GenerateNoTexture();
2304                 if (basepixels == NULL)
2305                         return NULL;
2306         }
2307
2308         // FIXME handle miplevel
2309
2310         if (developer_loading.integer)
2311                 Con_Printf("loading skin \"%s\"\n", name);
2312
2313         // we've got some pixels to store, so really allocate this new texture now
2314         if (!skinframe)
2315                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
2316         textureflags &= ~TEXF_FORCE_RELOAD;
2317         skinframe->stain = NULL;
2318         skinframe->merged = NULL;
2319         skinframe->base = NULL;
2320         skinframe->pants = NULL;
2321         skinframe->shirt = NULL;
2322         skinframe->nmap = NULL;
2323         skinframe->gloss = NULL;
2324         skinframe->glow = NULL;
2325         skinframe->fog = NULL;
2326         skinframe->reflect = NULL;
2327         skinframe->hasalpha = false;
2328         // we could store the q2animname here too
2329
2330         if (ddsbase)
2331         {
2332                 skinframe->base = ddsbase;
2333                 skinframe->hasalpha = ddshasalpha;
2334                 VectorCopy(ddsavgcolor, skinframe->avgcolor);
2335                 if (r_loadfog && skinframe->hasalpha)
2336                         skinframe->fog = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), false, textureflags | TEXF_ALPHA, NULL, NULL, miplevel, true);
2337                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2338         }
2339         else
2340         {
2341                 basepixels_width = image_width;
2342                 basepixels_height = image_height;
2343                 skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2344                 if (textureflags & TEXF_ALPHA)
2345                 {
2346                         for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
2347                         {
2348                                 if (basepixels[j] < 255)
2349                                 {
2350                                         skinframe->hasalpha = true;
2351                                         break;
2352                                 }
2353                         }
2354                         if (r_loadfog && skinframe->hasalpha)
2355                         {
2356                                 // has transparent pixels
2357                                 pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2358                                 for (j = 0;j < image_width * image_height * 4;j += 4)
2359                                 {
2360                                         pixels[j+0] = 255;
2361                                         pixels[j+1] = 255;
2362                                         pixels[j+2] = 255;
2363                                         pixels[j+3] = basepixels[j+3];
2364                                 }
2365                                 skinframe->fog = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2366                                 Mem_Free(pixels);
2367                         }
2368                 }
2369                 R_SKINFRAME_LOAD_AVERAGE_COLORS(basepixels_width * basepixels_height, basepixels[4 * pix + comp]);
2370 #ifndef USE_GLES2
2371                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2372                 if (r_savedds && qglGetCompressedTexImageARB && skinframe->base)
2373                         R_SaveTextureDDSFile(skinframe->base, va(vabuf, sizeof(vabuf), "dds/%s.dds", skinframe->basename), r_texture_dds_save.integer < 2, skinframe->hasalpha);
2374                 if (r_savedds && qglGetCompressedTexImageARB && skinframe->fog)
2375                         R_SaveTextureDDSFile(skinframe->fog, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2376 #endif
2377         }
2378
2379         if (r_loaddds)
2380         {
2381                 mymiplevel = savemiplevel;
2382                 if (r_loadnormalmap)
2383                         skinframe->nmap = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), false, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), NULL, NULL, mymiplevel, true);
2384                 skinframe->glow = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2385                 if (r_loadgloss)
2386                         skinframe->gloss = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2387                 skinframe->pants = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2388                 skinframe->shirt = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2389                 skinframe->reflect = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2390         }
2391
2392         // _norm is the name used by tenebrae and has been adopted as standard
2393         if (r_loadnormalmap && skinframe->nmap == NULL)
2394         {
2395                 mymiplevel = savemiplevel;
2396                 if ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_norm", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2397                 {
2398                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2399                         Mem_Free(pixels);
2400                         pixels = NULL;
2401                 }
2402                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_bump", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2403                 {
2404                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2405                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
2406                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2407                         Mem_Free(pixels);
2408                         Mem_Free(bumppixels);
2409                 }
2410                 else if (r_shadow_bumpscale_basetexture.value > 0)
2411                 {
2412                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
2413                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
2414                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2415                         Mem_Free(pixels);
2416                 }
2417 #ifndef USE_GLES2
2418                 if (r_savedds && qglGetCompressedTexImageARB && skinframe->nmap)
2419                         R_SaveTextureDDSFile(skinframe->nmap, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2420 #endif
2421         }
2422
2423         // _luma is supported only for tenebrae compatibility
2424         // _glow is the preferred name
2425         mymiplevel = savemiplevel;
2426         if (skinframe->glow == NULL && ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_glow",  skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_luma", skinframe->basename), false, false, false, &mymiplevel))))
2427         {
2428                 skinframe->glow = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_glow.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2429 #ifndef USE_GLES2
2430                 if (r_savedds && qglGetCompressedTexImageARB && skinframe->glow)
2431                         R_SaveTextureDDSFile(skinframe->glow, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2432 #endif
2433                 Mem_Free(pixels);pixels = NULL;
2434         }
2435
2436         mymiplevel = savemiplevel;
2437         if (skinframe->gloss == NULL && r_loadgloss && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), false, false, false, &mymiplevel)))
2438         {
2439                 skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (gl_texturecompression_gloss.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2440 #ifndef USE_GLES2
2441                 if (r_savedds && qglGetCompressedTexImageARB && skinframe->gloss)
2442                         R_SaveTextureDDSFile(skinframe->gloss, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2443 #endif
2444                 Mem_Free(pixels);
2445                 pixels = NULL;
2446         }
2447
2448         mymiplevel = savemiplevel;
2449         if (skinframe->pants == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), false, false, false, &mymiplevel)))
2450         {
2451                 skinframe->pants = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2452 #ifndef USE_GLES2
2453                 if (r_savedds && qglGetCompressedTexImageARB && skinframe->pants)
2454                         R_SaveTextureDDSFile(skinframe->pants, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2455 #endif
2456                 Mem_Free(pixels);
2457                 pixels = NULL;
2458         }
2459
2460         mymiplevel = savemiplevel;
2461         if (skinframe->shirt == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), false, false, false, &mymiplevel)))
2462         {
2463                 skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2464 #ifndef USE_GLES2
2465                 if (r_savedds && qglGetCompressedTexImageARB && skinframe->shirt)
2466                         R_SaveTextureDDSFile(skinframe->shirt, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2467 #endif
2468                 Mem_Free(pixels);
2469                 pixels = NULL;
2470         }
2471
2472         mymiplevel = savemiplevel;
2473         if (skinframe->reflect == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), false, false, false, &mymiplevel)))
2474         {
2475                 skinframe->reflect = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_reflectmask.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2476 #ifndef USE_GLES2
2477                 if (r_savedds && qglGetCompressedTexImageARB && skinframe->reflect)
2478                         R_SaveTextureDDSFile(skinframe->reflect, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2479 #endif
2480                 Mem_Free(pixels);
2481                 pixels = NULL;
2482         }
2483
2484         if (basepixels)
2485                 Mem_Free(basepixels);
2486
2487         return skinframe;
2488 }
2489
2490 // this is only used by .spr32 sprites, HL .spr files, HL .bsp files
2491 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height, qboolean sRGB)
2492 {
2493         int i;
2494         skinframe_t *skinframe;
2495         char vabuf[1024];
2496
2497         if (cls.state == ca_dedicated)
2498                 return NULL;
2499
2500         // if already loaded just return it, otherwise make a new skinframe
2501         skinframe = R_SkinFrame_Find(name, textureflags, width, height, (!(textureflags & TEXF_FORCE_RELOAD) && skindata) ? CRC_Block(skindata, width*height*4) : -1, true);
2502         if (skinframe->base)
2503                 return skinframe;
2504         textureflags &= ~TEXF_FORCE_RELOAD;
2505
2506         skinframe->stain = NULL;
2507         skinframe->merged = NULL;
2508         skinframe->base = NULL;
2509         skinframe->pants = NULL;
2510         skinframe->shirt = NULL;
2511         skinframe->nmap = NULL;
2512         skinframe->gloss = NULL;
2513         skinframe->glow = NULL;
2514         skinframe->fog = NULL;
2515         skinframe->reflect = NULL;
2516         skinframe->hasalpha = false;
2517
2518         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2519         if (!skindata)
2520                 return NULL;
2521
2522         if (developer_loading.integer)
2523                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2524
2525         if (r_loadnormalmap && r_shadow_bumpscale_basetexture.value > 0)
2526         {
2527                 unsigned char *a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2528                 unsigned char *b = a + width * height * 4;
2529                 Image_HeightmapToNormalmap_BGRA(skindata, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2530                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2531                 Mem_Free(a);
2532         }
2533         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, sRGB ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags, -1, NULL);
2534         if (textureflags & TEXF_ALPHA)
2535         {
2536                 for (i = 3;i < width * height * 4;i += 4)
2537                 {
2538                         if (skindata[i] < 255)
2539                         {
2540                                 skinframe->hasalpha = true;
2541                                 break;
2542                         }
2543                 }
2544                 if (r_loadfog && skinframe->hasalpha)
2545                 {
2546                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2547                         memcpy(fogpixels, skindata, width * height * 4);
2548                         for (i = 0;i < width * height * 4;i += 4)
2549                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2550                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, textureflags, -1, NULL);
2551                         Mem_Free(fogpixels);
2552                 }
2553         }
2554
2555         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, skindata[4 * pix + comp]);
2556         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2557
2558         return skinframe;
2559 }
2560
2561 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2562 {
2563         int i;
2564         int featuresmask;
2565         skinframe_t *skinframe;
2566
2567         if (cls.state == ca_dedicated)
2568                 return NULL;
2569
2570         // if already loaded just return it, otherwise make a new skinframe
2571         skinframe = R_SkinFrame_Find(name, textureflags, width, height, (!(textureflags & TEXF_FORCE_RELOAD) && skindata) ? CRC_Block(skindata, width*height) : -1, true);
2572         if (skinframe->base)
2573                 return skinframe;
2574         //textureflags &= ~TEXF_FORCE_RELOAD;
2575
2576         skinframe->stain = NULL;
2577         skinframe->merged = NULL;
2578         skinframe->base = NULL;
2579         skinframe->pants = NULL;
2580         skinframe->shirt = NULL;
2581         skinframe->nmap = NULL;
2582         skinframe->gloss = NULL;
2583         skinframe->glow = NULL;
2584         skinframe->fog = NULL;
2585         skinframe->reflect = NULL;
2586         skinframe->hasalpha = false;
2587
2588         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2589         if (!skindata)
2590                 return NULL;
2591
2592         if (developer_loading.integer)
2593                 Con_Printf("loading quake skin \"%s\"\n", name);
2594
2595         // we actually don't upload anything until the first use, because mdl skins frequently go unused, and are almost never used in both modes (colormapped and non-colormapped)
2596         skinframe->qpixels = (unsigned char *)Mem_Alloc(r_main_mempool, width*height); // FIXME LEAK
2597         memcpy(skinframe->qpixels, skindata, width*height);
2598         skinframe->qwidth = width;
2599         skinframe->qheight = height;
2600
2601         featuresmask = 0;
2602         for (i = 0;i < width * height;i++)
2603                 featuresmask |= palette_featureflags[skindata[i]];
2604
2605         skinframe->hasalpha = false;
2606         // fence textures
2607         if (name[0] == '{')
2608                 skinframe->hasalpha = true;
2609         skinframe->qhascolormapping = loadpantsandshirt && (featuresmask & (PALETTEFEATURE_PANTS | PALETTEFEATURE_SHIRT));
2610         skinframe->qgeneratenmap = r_shadow_bumpscale_basetexture.value > 0;
2611         skinframe->qgeneratemerged = true;
2612         skinframe->qgeneratebase = skinframe->qhascolormapping;
2613         skinframe->qgenerateglow = loadglowtexture && (featuresmask & PALETTEFEATURE_GLOW);
2614
2615         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette_bgra_complete)[skindata[pix]*4 + comp]);
2616         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2617
2618         return skinframe;
2619 }
2620
2621 static void R_SkinFrame_GenerateTexturesFromQPixels(skinframe_t *skinframe, qboolean colormapped)
2622 {
2623         int width;
2624         int height;
2625         unsigned char *skindata;
2626         char vabuf[1024];
2627
2628         if (!skinframe->qpixels)
2629                 return;
2630
2631         if (!skinframe->qhascolormapping)
2632                 colormapped = false;
2633
2634         if (colormapped)
2635         {
2636                 if (!skinframe->qgeneratebase)
2637                         return;
2638         }
2639         else
2640         {
2641                 if (!skinframe->qgeneratemerged)
2642                         return;
2643         }
2644
2645         width = skinframe->qwidth;
2646         height = skinframe->qheight;
2647         skindata = skinframe->qpixels;
2648
2649         if (skinframe->qgeneratenmap)
2650         {
2651                 unsigned char *a, *b;
2652                 skinframe->qgeneratenmap = false;
2653                 a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2654                 b = a + width * height * 4;
2655                 // use either a custom palette or the quake palette
2656                 Image_Copy8bitBGRA(skindata, a, width * height, palette_bgra_complete);
2657                 Image_HeightmapToNormalmap_BGRA(a, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2658                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (skinframe->textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2659                 Mem_Free(a);
2660         }
2661
2662         if (skinframe->qgenerateglow)
2663         {
2664                 skinframe->qgenerateglow = false;
2665                 if (skinframe->hasalpha) // fence textures
2666                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, palette_bgra_onlyfullbrights_transparent); // glow
2667                 else
2668                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_onlyfullbrights); // glow
2669         }
2670
2671         if (colormapped)
2672         {
2673                 skinframe->qgeneratebase = false;
2674                 skinframe->base  = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nospecial", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap);
2675                 skinframe->pants = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_pantsaswhite);
2676                 skinframe->shirt = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_shirtaswhite);
2677         }
2678         else
2679         {
2680                 skinframe->qgeneratemerged = false;
2681                 if (skinframe->hasalpha) // fence textures
2682                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, skinframe->glow ? palette_bgra_nofullbrights_transparent : palette_bgra_transparent);
2683                 else
2684                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nofullbrights : palette_bgra_complete);
2685         }
2686
2687         if (!skinframe->qgeneratemerged && !skinframe->qgeneratebase)
2688         {
2689                 Mem_Free(skinframe->qpixels);
2690                 skinframe->qpixels = NULL;
2691         }
2692 }
2693
2694 skinframe_t *R_SkinFrame_LoadInternal8bit(const char *name, int textureflags, const unsigned char *skindata, int width, int height, const unsigned int *palette, const unsigned int *alphapalette)
2695 {
2696         int i;
2697         skinframe_t *skinframe;
2698         char vabuf[1024];
2699
2700         if (cls.state == ca_dedicated)
2701                 return NULL;
2702
2703         // if already loaded just return it, otherwise make a new skinframe
2704         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2705         if (skinframe->base)
2706                 return skinframe;
2707         textureflags &= ~TEXF_FORCE_RELOAD;
2708
2709         skinframe->stain = NULL;
2710         skinframe->merged = NULL;
2711         skinframe->base = NULL;
2712         skinframe->pants = NULL;
2713         skinframe->shirt = NULL;
2714         skinframe->nmap = NULL;
2715         skinframe->gloss = NULL;
2716         skinframe->glow = NULL;
2717         skinframe->fog = NULL;
2718         skinframe->reflect = NULL;
2719         skinframe->hasalpha = false;
2720
2721         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2722         if (!skindata)
2723                 return NULL;
2724
2725         if (developer_loading.integer)
2726                 Con_Printf("loading embedded 8bit image \"%s\"\n", name);
2727
2728         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, palette);
2729         if ((textureflags & TEXF_ALPHA) && alphapalette)
2730         {
2731                 for (i = 0;i < width * height;i++)
2732                 {
2733                         if (((unsigned char *)palette)[skindata[i]*4+3] < 255)
2734                         {
2735                                 skinframe->hasalpha = true;
2736                                 break;
2737                         }
2738                 }
2739                 if (r_loadfog && skinframe->hasalpha)
2740                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, alphapalette);
2741         }
2742
2743         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette)[skindata[pix]*4 + comp]);
2744         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2745
2746         return skinframe;
2747 }
2748
2749 skinframe_t *R_SkinFrame_LoadMissing(void)
2750 {
2751         skinframe_t *skinframe;
2752
2753         if (cls.state == ca_dedicated)
2754                 return NULL;
2755
2756         skinframe = R_SkinFrame_Find("missing", TEXF_FORCENEAREST, 0, 0, 0, true);
2757         skinframe->stain = NULL;
2758         skinframe->merged = NULL;
2759         skinframe->base = NULL;
2760         skinframe->pants = NULL;
2761         skinframe->shirt = NULL;
2762         skinframe->nmap = NULL;
2763         skinframe->gloss = NULL;
2764         skinframe->glow = NULL;
2765         skinframe->fog = NULL;
2766         skinframe->reflect = NULL;
2767         skinframe->hasalpha = false;
2768
2769         skinframe->avgcolor[0] = rand() / RAND_MAX;
2770         skinframe->avgcolor[1] = rand() / RAND_MAX;
2771         skinframe->avgcolor[2] = rand() / RAND_MAX;
2772         skinframe->avgcolor[3] = 1;
2773
2774         return skinframe;
2775 }
2776
2777 skinframe_t *R_SkinFrame_LoadNoTexture(void)
2778 {
2779         int x, y;
2780         static unsigned char pix[16][16][4];
2781
2782         if (cls.state == ca_dedicated)
2783                 return NULL;
2784
2785         // this makes a light grey/dark grey checkerboard texture
2786         if (!pix[0][0][3])
2787         {
2788                 for (y = 0; y < 16; y++)
2789                 {
2790                         for (x = 0; x < 16; x++)
2791                         {
2792                                 if ((y < 8) ^ (x < 8))
2793                                 {
2794                                         pix[y][x][0] = 128;
2795                                         pix[y][x][1] = 128;
2796                                         pix[y][x][2] = 128;
2797                                         pix[y][x][3] = 255;
2798                                 }
2799                                 else
2800                                 {
2801                                         pix[y][x][0] = 64;
2802                                         pix[y][x][1] = 64;
2803                                         pix[y][x][2] = 64;
2804                                         pix[y][x][3] = 255;
2805                                 }
2806                         }
2807                 }
2808         }
2809
2810         return R_SkinFrame_LoadInternalBGRA("notexture", TEXF_FORCENEAREST, pix[0][0], 16, 16, false);
2811 }
2812
2813 skinframe_t *R_SkinFrame_LoadInternalUsingTexture(const char *name, int textureflags, rtexture_t *tex, int width, int height, qboolean sRGB)
2814 {
2815         skinframe_t *skinframe;
2816         if (cls.state == ca_dedicated)
2817                 return NULL;
2818         // if already loaded just return it, otherwise make a new skinframe
2819         skinframe = R_SkinFrame_Find(name, textureflags, width, height, (textureflags & TEXF_FORCE_RELOAD) ? -1 : 0, true);
2820         if (skinframe->base)
2821                 return skinframe;
2822         textureflags &= ~TEXF_FORCE_RELOAD;
2823         skinframe->stain = NULL;
2824         skinframe->merged = NULL;
2825         skinframe->base = NULL;
2826         skinframe->pants = NULL;
2827         skinframe->shirt = NULL;
2828         skinframe->nmap = NULL;
2829         skinframe->gloss = NULL;
2830         skinframe->glow = NULL;
2831         skinframe->fog = NULL;
2832         skinframe->reflect = NULL;
2833         skinframe->hasalpha = (textureflags & TEXF_ALPHA) != 0;
2834         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2835         if (!tex)
2836                 return NULL;
2837         if (developer_loading.integer)
2838                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2839         skinframe->base = skinframe->merged = tex;
2840         Vector4Set(skinframe->avgcolor, 1, 1, 1, 1); // bogus placeholder
2841         return skinframe;
2842 }
2843
2844 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
2845 typedef struct suffixinfo_s
2846 {
2847         const char *suffix;
2848         qboolean flipx, flipy, flipdiagonal;
2849 }
2850 suffixinfo_t;
2851 static suffixinfo_t suffix[3][6] =
2852 {
2853         {
2854                 {"px",   false, false, false},
2855                 {"nx",   false, false, false},
2856                 {"py",   false, false, false},
2857                 {"ny",   false, false, false},
2858                 {"pz",   false, false, false},
2859                 {"nz",   false, false, false}
2860         },
2861         {
2862                 {"posx", false, false, false},
2863                 {"negx", false, false, false},
2864                 {"posy", false, false, false},
2865                 {"negy", false, false, false},
2866                 {"posz", false, false, false},
2867                 {"negz", false, false, false}
2868         },
2869         {
2870                 {"rt",    true, false,  true},
2871                 {"lf",   false,  true,  true},
2872                 {"ft",    true,  true, false},
2873                 {"bk",   false, false, false},
2874                 {"up",    true, false,  true},
2875                 {"dn",    true, false,  true}
2876         }
2877 };
2878
2879 static int componentorder[4] = {0, 1, 2, 3};
2880
2881 static rtexture_t *R_LoadCubemap(const char *basename)
2882 {
2883         int i, j, cubemapsize;
2884         unsigned char *cubemappixels, *image_buffer;
2885         rtexture_t *cubemaptexture;
2886         char name[256];
2887         // must start 0 so the first loadimagepixels has no requested width/height
2888         cubemapsize = 0;
2889         cubemappixels = NULL;
2890         cubemaptexture = NULL;
2891         // keep trying different suffix groups (posx, px, rt) until one loads
2892         for (j = 0;j < 3 && !cubemappixels;j++)
2893         {
2894                 // load the 6 images in the suffix group
2895                 for (i = 0;i < 6;i++)
2896                 {
2897                         // generate an image name based on the base and and suffix
2898                         dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix);
2899                         // load it
2900                         if ((image_buffer = loadimagepixelsbgra(name, false, false, false, NULL)))
2901                         {
2902                                 // an image loaded, make sure width and height are equal
2903                                 if (image_width == image_height && (!cubemappixels || image_width == cubemapsize))
2904                                 {
2905                                         // if this is the first image to load successfully, allocate the cubemap memory
2906                                         if (!cubemappixels && image_width >= 1)
2907                                         {
2908                                                 cubemapsize = image_width;
2909                                                 // note this clears to black, so unavailable sides are black
2910                                                 cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4);
2911                                         }
2912                                         // copy the image with any flipping needed by the suffix (px and posx types don't need flipping)
2913                                         if (cubemappixels)
2914                                                 Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_buffer, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder);
2915                                 }
2916                                 else
2917                                         Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height);
2918                                 // free the image
2919                                 Mem_Free(image_buffer);
2920                         }
2921                 }
2922         }
2923         // if a cubemap loaded, upload it
2924         if (cubemappixels)
2925         {
2926                 if (developer_loading.integer)
2927                         Con_Printf("loading cubemap \"%s\"\n", basename);
2928
2929                 cubemaptexture = R_LoadTextureCubeMap(r_main_texturepool, basename, cubemapsize, cubemappixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (gl_texturecompression_lightcubemaps.integer && gl_texturecompression.integer ? TEXF_COMPRESS : 0) | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
2930                 Mem_Free(cubemappixels);
2931         }
2932         else
2933         {
2934                 Con_DPrintf("failed to load cubemap \"%s\"\n", basename);
2935                 if (developer_loading.integer)
2936                 {
2937                         Con_Printf("(tried tried images ");
2938                         for (j = 0;j < 3;j++)
2939                                 for (i = 0;i < 6;i++)
2940                                         Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix);
2941                         Con_Print(" and was unable to find any of them).\n");
2942                 }
2943         }
2944         return cubemaptexture;
2945 }
2946
2947 rtexture_t *R_GetCubemap(const char *basename)
2948 {
2949         int i;
2950         for (i = 0;i < r_texture_numcubemaps;i++)
2951                 if (r_texture_cubemaps[i] != NULL)
2952                         if (!strcasecmp(r_texture_cubemaps[i]->basename, basename))
2953                                 return r_texture_cubemaps[i]->texture ? r_texture_cubemaps[i]->texture : r_texture_whitecube;
2954         if (i >= MAX_CUBEMAPS || !r_main_mempool)
2955                 return r_texture_whitecube;
2956         r_texture_numcubemaps++;
2957         r_texture_cubemaps[i] = (cubemapinfo_t *)Mem_Alloc(r_main_mempool, sizeof(cubemapinfo_t));
2958         strlcpy(r_texture_cubemaps[i]->basename, basename, sizeof(r_texture_cubemaps[i]->basename));
2959         r_texture_cubemaps[i]->texture = R_LoadCubemap(r_texture_cubemaps[i]->basename);
2960         return r_texture_cubemaps[i]->texture;
2961 }
2962
2963 static void R_Main_FreeViewCache(void)
2964 {
2965         if (r_refdef.viewcache.entityvisible)
2966                 Mem_Free(r_refdef.viewcache.entityvisible);
2967         if (r_refdef.viewcache.world_pvsbits)
2968                 Mem_Free(r_refdef.viewcache.world_pvsbits);
2969         if (r_refdef.viewcache.world_leafvisible)
2970                 Mem_Free(r_refdef.viewcache.world_leafvisible);
2971         if (r_refdef.viewcache.world_surfacevisible)
2972                 Mem_Free(r_refdef.viewcache.world_surfacevisible);
2973         memset(&r_refdef.viewcache, 0, sizeof(r_refdef.viewcache));
2974 }
2975
2976 static void R_Main_ResizeViewCache(void)
2977 {
2978         int numentities = r_refdef.scene.numentities;
2979         int numclusters = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusters : 1;
2980         int numclusterbytes = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusterbytes : 1;
2981         int numleafs = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_leafs : 1;
2982         int numsurfaces = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->num_surfaces : 1;
2983         if (r_refdef.viewcache.maxentities < numentities)
2984         {
2985                 r_refdef.viewcache.maxentities = numentities;
2986                 if (r_refdef.viewcache.entityvisible)
2987                         Mem_Free(r_refdef.viewcache.entityvisible);
2988                 r_refdef.viewcache.entityvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.maxentities);
2989         }
2990         if (r_refdef.viewcache.world_numclusters != numclusters)
2991         {
2992                 r_refdef.viewcache.world_numclusters = numclusters;
2993                 r_refdef.viewcache.world_numclusterbytes = numclusterbytes;
2994                 if (r_refdef.viewcache.world_pvsbits)
2995                         Mem_Free(r_refdef.viewcache.world_pvsbits);
2996                 r_refdef.viewcache.world_pvsbits = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numclusterbytes);
2997         }
2998         if (r_refdef.viewcache.world_numleafs != numleafs)
2999         {
3000                 r_refdef.viewcache.world_numleafs = numleafs;
3001                 if (r_refdef.viewcache.world_leafvisible)
3002                         Mem_Free(r_refdef.viewcache.world_leafvisible);
3003                 r_refdef.viewcache.world_leafvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numleafs);
3004         }
3005         if (r_refdef.viewcache.world_numsurfaces != numsurfaces)
3006         {
3007                 r_refdef.viewcache.world_numsurfaces = numsurfaces;
3008                 if (r_refdef.viewcache.world_surfacevisible)
3009                         Mem_Free(r_refdef.viewcache.world_surfacevisible);
3010                 r_refdef.viewcache.world_surfacevisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numsurfaces);
3011         }
3012 }
3013
3014 extern rtexture_t *loadingscreentexture;
3015 static void gl_main_start(void)
3016 {
3017         loadingscreentexture = NULL;
3018         r_texture_blanknormalmap = NULL;
3019         r_texture_white = NULL;
3020         r_texture_grey128 = NULL;
3021         r_texture_black = NULL;
3022         r_texture_whitecube = NULL;
3023         r_texture_normalizationcube = NULL;
3024         r_texture_fogattenuation = NULL;
3025         r_texture_fogheighttexture = NULL;
3026         r_texture_gammaramps = NULL;
3027         r_texture_numcubemaps = 0;
3028         r_uniformbufferalignment = 32;
3029
3030         r_loaddds = r_texture_dds_load.integer != 0;
3031         r_savedds = vid.support.arb_texture_compression && vid.support.ext_texture_compression_s3tc && r_texture_dds_save.integer;
3032
3033         switch(vid.renderpath)
3034         {
3035         case RENDERPATH_GL20:
3036         case RENDERPATH_GLES2:
3037                 Cvar_SetValueQuick(&r_textureunits, vid.texunits);
3038                 Cvar_SetValueQuick(&gl_combine, 1);
3039                 Cvar_SetValueQuick(&r_glsl, 1);
3040                 r_loadnormalmap = true;
3041                 r_loadgloss = true;
3042                 r_loadfog = false;
3043 #ifdef GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
3044                 qglGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &r_uniformbufferalignment);
3045 #endif
3046                 break;
3047         }
3048
3049         R_AnimCache_Free();
3050         R_FrameData_Reset();
3051         R_BufferData_Reset();
3052
3053         r_numqueries = 0;
3054         r_maxqueries = 0;
3055         memset(r_queries, 0, sizeof(r_queries));
3056
3057         r_qwskincache = NULL;
3058         r_qwskincache_size = 0;
3059
3060         // due to caching of texture_t references, the collision cache must be reset
3061         Collision_Cache_Reset(true);
3062
3063         // set up r_skinframe loading system for textures
3064         memset(&r_skinframe, 0, sizeof(r_skinframe));
3065         r_skinframe.loadsequence = 1;
3066         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
3067
3068         r_main_texturepool = R_AllocTexturePool();
3069         R_BuildBlankTextures();
3070         R_BuildNoTexture();
3071         R_BuildWhiteCube();
3072         R_BuildNormalizationCube();
3073         r_texture_fogattenuation = NULL;
3074         r_texture_fogheighttexture = NULL;
3075         r_texture_gammaramps = NULL;
3076         //r_texture_fogintensity = NULL;
3077         memset(&r_fb, 0, sizeof(r_fb));
3078         Mem_ExpandableArray_NewArray(&r_fb.rendertargets, r_main_mempool, sizeof(r_rendertarget_t), 128);
3079         r_glsl_permutation = NULL;
3080         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3081         Mem_ExpandableArray_NewArray(&r_glsl_permutationarray, r_main_mempool, sizeof(r_glsl_permutation_t), 256);
3082         memset(&r_svbsp, 0, sizeof (r_svbsp));
3083
3084         memset(r_texture_cubemaps, 0, sizeof(r_texture_cubemaps));
3085         r_texture_numcubemaps = 0;
3086
3087         r_refdef.fogmasktable_density = 0;
3088
3089 #ifdef __ANDROID__
3090         // For Steelstorm Android
3091         // FIXME CACHE the program and reload
3092         // FIXME see possible combinations for SS:BR android
3093         Con_DPrintf("Compiling most used shaders for SS:BR android... START\n");
3094         R_SetupShader_SetPermutationGLSL(0, 12);
3095         R_SetupShader_SetPermutationGLSL(0, 13);
3096         R_SetupShader_SetPermutationGLSL(0, 8388621);
3097         R_SetupShader_SetPermutationGLSL(3, 0);
3098         R_SetupShader_SetPermutationGLSL(3, 2048);
3099         R_SetupShader_SetPermutationGLSL(5, 0);
3100         R_SetupShader_SetPermutationGLSL(5, 2);
3101         R_SetupShader_SetPermutationGLSL(5, 2048);
3102         R_SetupShader_SetPermutationGLSL(5, 8388608);
3103         R_SetupShader_SetPermutationGLSL(11, 1);
3104         R_SetupShader_SetPermutationGLSL(11, 2049);
3105         R_SetupShader_SetPermutationGLSL(11, 8193);
3106         R_SetupShader_SetPermutationGLSL(11, 10241);
3107         Con_DPrintf("Compiling most used shaders for SS:BR android... END\n");
3108 #endif
3109 }
3110
3111 static void gl_main_shutdown(void)
3112 {
3113         R_RenderTarget_FreeUnused(true);
3114         Mem_ExpandableArray_FreeArray(&r_fb.rendertargets);
3115         R_AnimCache_Free();
3116         R_FrameData_Reset();
3117         R_BufferData_Reset();
3118
3119         R_Main_FreeViewCache();
3120
3121         switch(vid.renderpath)
3122         {
3123         case RENDERPATH_GL20:
3124         case RENDERPATH_GLES2:
3125 #if defined(GL_SAMPLES_PASSED_ARB) && !defined(USE_GLES2)
3126                 if (r_maxqueries)
3127                         qglDeleteQueriesARB(r_maxqueries, r_queries);
3128 #endif
3129                 break;
3130         }
3131
3132         r_numqueries = 0;
3133         r_maxqueries = 0;
3134         memset(r_queries, 0, sizeof(r_queries));
3135
3136         r_qwskincache = NULL;
3137         r_qwskincache_size = 0;
3138
3139         // clear out the r_skinframe state
3140         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
3141         memset(&r_skinframe, 0, sizeof(r_skinframe));
3142
3143         if (r_svbsp.nodes)
3144                 Mem_Free(r_svbsp.nodes);
3145         memset(&r_svbsp, 0, sizeof (r_svbsp));
3146         R_FreeTexturePool(&r_main_texturepool);
3147         loadingscreentexture = NULL;
3148         r_texture_blanknormalmap = NULL;
3149         r_texture_white = NULL;
3150         r_texture_grey128 = NULL;
3151         r_texture_black = NULL;
3152         r_texture_whitecube = NULL;
3153         r_texture_normalizationcube = NULL;
3154         r_texture_fogattenuation = NULL;
3155         r_texture_fogheighttexture = NULL;
3156         r_texture_gammaramps = NULL;
3157         r_texture_numcubemaps = 0;
3158         //r_texture_fogintensity = NULL;
3159         memset(&r_fb, 0, sizeof(r_fb));
3160         R_GLSL_Restart_f();
3161
3162         r_glsl_permutation = NULL;
3163         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3164         Mem_ExpandableArray_FreeArray(&r_glsl_permutationarray);
3165 }
3166
3167 static void gl_main_newmap(void)
3168 {
3169         // FIXME: move this code to client
3170         char *entities, entname[MAX_QPATH];
3171         if (r_qwskincache)
3172                 Mem_Free(r_qwskincache);
3173         r_qwskincache = NULL;
3174         r_qwskincache_size = 0;
3175         if (cl.worldmodel)
3176         {
3177                 dpsnprintf(entname, sizeof(entname), "%s.ent", cl.worldnamenoextension);
3178                 if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
3179                 {
3180                         CL_ParseEntityLump(entities);
3181                         Mem_Free(entities);
3182                         return;
3183                 }
3184                 if (cl.worldmodel->brush.entities)
3185                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
3186         }
3187         R_Main_FreeViewCache();
3188
3189         R_FrameData_Reset();
3190         R_BufferData_Reset();
3191 }
3192
3193 void GL_Main_Init(void)
3194 {
3195         int i;
3196         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
3197         R_InitShaderModeInfo();
3198
3199         Cmd_AddCommand("r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
3200         Cmd_AddCommand("r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
3201         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
3202         if (gamemode == GAME_NEHAHRA)
3203         {
3204                 Cvar_RegisterVariable (&gl_fogenable);
3205                 Cvar_RegisterVariable (&gl_fogdensity);
3206                 Cvar_RegisterVariable (&gl_fogred);
3207                 Cvar_RegisterVariable (&gl_foggreen);
3208                 Cvar_RegisterVariable (&gl_fogblue);
3209                 Cvar_RegisterVariable (&gl_fogstart);
3210                 Cvar_RegisterVariable (&gl_fogend);
3211                 Cvar_RegisterVariable (&gl_skyclip);
3212         }
3213         Cvar_RegisterVariable(&r_motionblur);
3214         Cvar_RegisterVariable(&r_damageblur);
3215         Cvar_RegisterVariable(&r_motionblur_averaging);
3216         Cvar_RegisterVariable(&r_motionblur_randomize);
3217         Cvar_RegisterVariable(&r_motionblur_minblur);
3218         Cvar_RegisterVariable(&r_motionblur_maxblur);
3219         Cvar_RegisterVariable(&r_motionblur_velocityfactor);
3220         Cvar_RegisterVariable(&r_motionblur_velocityfactor_minspeed);
3221         Cvar_RegisterVariable(&r_motionblur_velocityfactor_maxspeed);
3222         Cvar_RegisterVariable(&r_motionblur_mousefactor);
3223         Cvar_RegisterVariable(&r_motionblur_mousefactor_minspeed);
3224         Cvar_RegisterVariable(&r_motionblur_mousefactor_maxspeed);
3225         Cvar_RegisterVariable(&r_equalize_entities_fullbright);
3226         Cvar_RegisterVariable(&r_equalize_entities_minambient);
3227         Cvar_RegisterVariable(&r_equalize_entities_by);
3228         Cvar_RegisterVariable(&r_equalize_entities_to);
3229         Cvar_RegisterVariable(&r_depthfirst);
3230         Cvar_RegisterVariable(&r_useinfinitefarclip);
3231         Cvar_RegisterVariable(&r_farclip_base);
3232         Cvar_RegisterVariable(&r_farclip_world);
3233         Cvar_RegisterVariable(&r_nearclip);
3234         Cvar_RegisterVariable(&r_deformvertexes);
3235         Cvar_RegisterVariable(&r_transparent);
3236         Cvar_RegisterVariable(&r_transparent_alphatocoverage);
3237         Cvar_RegisterVariable(&r_transparent_sortsurfacesbynearest);
3238         Cvar_RegisterVariable(&r_transparent_useplanardistance);
3239         Cvar_RegisterVariable(&r_showoverdraw);
3240         Cvar_RegisterVariable(&r_showbboxes);
3241         Cvar_RegisterVariable(&r_showbboxes_client);
3242         Cvar_RegisterVariable(&r_showsurfaces);
3243         Cvar_RegisterVariable(&r_showtris);
3244         Cvar_RegisterVariable(&r_shownormals);
3245         Cvar_RegisterVariable(&r_showlighting);
3246         Cvar_RegisterVariable(&r_showcollisionbrushes);
3247         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
3248         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
3249         Cvar_RegisterVariable(&r_showdisabledepthtest);
3250         Cvar_RegisterVariable(&r_showspriteedges);
3251         Cvar_RegisterVariable(&r_showparticleedges);
3252         Cvar_RegisterVariable(&r_drawportals);
3253         Cvar_RegisterVariable(&r_drawentities);
3254         Cvar_RegisterVariable(&r_draw2d);
3255         Cvar_RegisterVariable(&r_drawworld);
3256         Cvar_RegisterVariable(&r_cullentities_trace);
3257         Cvar_RegisterVariable(&r_cullentities_trace_entityocclusion);
3258         Cvar_RegisterVariable(&r_cullentities_trace_samples);
3259         Cvar_RegisterVariable(&r_cullentities_trace_tempentitysamples);
3260         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
3261         Cvar_RegisterVariable(&r_cullentities_trace_expand);
3262         Cvar_RegisterVariable(&r_cullentities_trace_pad);
3263         Cvar_RegisterVariable(&r_cullentities_trace_delay);
3264         Cvar_RegisterVariable(&r_cullentities_trace_eyejitter);
3265         Cvar_RegisterVariable(&r_sortentities);
3266         Cvar_RegisterVariable(&r_drawviewmodel);
3267         Cvar_RegisterVariable(&r_drawexteriormodel);
3268         Cvar_RegisterVariable(&r_speeds);
3269         Cvar_RegisterVariable(&r_fullbrights);
3270         Cvar_RegisterVariable(&r_wateralpha);
3271         Cvar_RegisterVariable(&r_dynamic);
3272         Cvar_RegisterVariable(&r_fakelight);
3273         Cvar_RegisterVariable(&r_fakelight_intensity);
3274         Cvar_RegisterVariable(&r_fullbright_directed);
3275         Cvar_RegisterVariable(&r_fullbright_directed_ambient);
3276         Cvar_RegisterVariable(&r_fullbright_directed_diffuse);
3277         Cvar_RegisterVariable(&r_fullbright_directed_pitch);
3278         Cvar_RegisterVariable(&r_fullbright_directed_pitch_relative);
3279         Cvar_RegisterVariable(&r_fullbright);
3280         Cvar_RegisterVariable(&r_shadows);
3281         Cvar_RegisterVariable(&r_shadows_darken);
3282         Cvar_RegisterVariable(&r_shadows_drawafterrtlighting);
3283         Cvar_RegisterVariable(&r_shadows_castfrombmodels);
3284         Cvar_RegisterVariable(&r_shadows_throwdistance);
3285         Cvar_RegisterVariable(&r_shadows_throwdirection);
3286         Cvar_RegisterVariable(&r_shadows_focus);
3287         Cvar_RegisterVariable(&r_shadows_shadowmapscale);
3288         Cvar_RegisterVariable(&r_shadows_shadowmapbias);
3289         Cvar_RegisterVariable(&r_q1bsp_skymasking);
3290         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
3291         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
3292         Cvar_RegisterVariable(&r_polygonoffset_decals_factor);
3293         Cvar_RegisterVariable(&r_polygonoffset_decals_offset);
3294         Cvar_RegisterVariable(&r_fog_exp2);
3295         Cvar_RegisterVariable(&r_fog_clear);
3296         Cvar_RegisterVariable(&r_drawfog);
3297         Cvar_RegisterVariable(&r_transparentdepthmasking);
3298         Cvar_RegisterVariable(&r_transparent_sortmindist);
3299         Cvar_RegisterVariable(&r_transparent_sortmaxdist);
3300         Cvar_RegisterVariable(&r_transparent_sortarraysize);
3301         Cvar_RegisterVariable(&r_texture_dds_load);
3302         Cvar_RegisterVariable(&r_texture_dds_save);
3303         Cvar_RegisterVariable(&r_textureunits);
3304         Cvar_RegisterVariable(&gl_combine);
3305         Cvar_RegisterVariable(&r_usedepthtextures);
3306         Cvar_RegisterVariable(&r_viewfbo);
3307         Cvar_RegisterVariable(&r_rendertarget_debug);
3308         Cvar_RegisterVariable(&r_viewscale);
3309         Cvar_RegisterVariable(&r_viewscale_fpsscaling);
3310         Cvar_RegisterVariable(&r_viewscale_fpsscaling_min);
3311         Cvar_RegisterVariable(&r_viewscale_fpsscaling_multiply);
3312         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepsize);
3313         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepmax);
3314         Cvar_RegisterVariable(&r_viewscale_fpsscaling_target);
3315         Cvar_RegisterVariable(&r_glsl);
3316         Cvar_RegisterVariable(&r_glsl_deluxemapping);
3317         Cvar_RegisterVariable(&r_glsl_offsetmapping);
3318         Cvar_RegisterVariable(&r_glsl_offsetmapping_steps);
3319         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
3320         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_steps);
3321         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_refinesteps);
3322         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
3323         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod);
3324         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod_distance);
3325         Cvar_RegisterVariable(&r_glsl_postprocess);
3326         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
3327         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
3328         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
3329         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
3330         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1_enable);
3331         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2_enable);
3332         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3_enable);
3333         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4_enable);
3334         Cvar_RegisterVariable(&r_celshading);
3335         Cvar_RegisterVariable(&r_celoutlines);
3336
3337         Cvar_RegisterVariable(&r_water);
3338         Cvar_RegisterVariable(&r_water_cameraentitiesonly);
3339         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
3340         Cvar_RegisterVariable(&r_water_clippingplanebias);
3341         Cvar_RegisterVariable(&r_water_refractdistort);
3342         Cvar_RegisterVariable(&r_water_reflectdistort);
3343         Cvar_RegisterVariable(&r_water_scissormode);
3344         Cvar_RegisterVariable(&r_water_lowquality);
3345         Cvar_RegisterVariable(&r_water_hideplayer);
3346
3347         Cvar_RegisterVariable(&r_lerpsprites);
3348         Cvar_RegisterVariable(&r_lerpmodels);
3349         Cvar_RegisterVariable(&r_lerplightstyles);
3350         Cvar_RegisterVariable(&r_waterscroll);
3351         Cvar_RegisterVariable(&r_bloom);
3352         Cvar_RegisterVariable(&r_bloom_colorscale);
3353         Cvar_RegisterVariable(&r_bloom_brighten);
3354         Cvar_RegisterVariable(&r_bloom_blur);
3355         Cvar_RegisterVariable(&r_bloom_resolution);
3356         Cvar_RegisterVariable(&r_bloom_colorexponent);
3357         Cvar_RegisterVariable(&r_bloom_colorsubtract);
3358         Cvar_RegisterVariable(&r_bloom_scenebrightness);
3359         Cvar_RegisterVariable(&r_hdr_scenebrightness);
3360         Cvar_RegisterVariable(&r_hdr_glowintensity);
3361         Cvar_RegisterVariable(&r_hdr_irisadaptation);
3362         Cvar_RegisterVariable(&r_hdr_irisadaptation_multiplier);
3363         Cvar_RegisterVariable(&r_hdr_irisadaptation_minvalue);
3364         Cvar_RegisterVariable(&r_hdr_irisadaptation_maxvalue);
3365         Cvar_RegisterVariable(&r_hdr_irisadaptation_value);
3366         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_up);
3367         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_down);
3368         Cvar_RegisterVariable(&r_hdr_irisadaptation_radius);
3369         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
3370         Cvar_RegisterVariable(&developer_texturelogging);
3371         Cvar_RegisterVariable(&gl_lightmaps);
3372         Cvar_RegisterVariable(&r_test);
3373         Cvar_RegisterVariable(&r_batch_multidraw);
3374         Cvar_RegisterVariable(&r_batch_multidraw_mintriangles);
3375         Cvar_RegisterVariable(&r_batch_debugdynamicvertexpath);
3376         Cvar_RegisterVariable(&r_glsl_skeletal);
3377         Cvar_RegisterVariable(&r_glsl_saturation);
3378         Cvar_RegisterVariable(&r_glsl_saturation_redcompensate);
3379         Cvar_RegisterVariable(&r_glsl_vertextextureblend_usebothalphas);
3380         Cvar_RegisterVariable(&r_framedatasize);
3381         for (i = 0;i < R_BUFFERDATA_COUNT;i++)
3382                 Cvar_RegisterVariable(&r_buffermegs[i]);
3383         Cvar_RegisterVariable(&r_batch_dynamicbuffer);
3384         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
3385                 Cvar_SetValue("r_fullbrights", 0);
3386 #ifdef DP_MOBILETOUCH
3387         // GLES devices have terrible depth precision in general, so...
3388         Cvar_SetValueQuick(&r_nearclip, 4);
3389         Cvar_SetValueQuick(&r_farclip_base, 4096);
3390         Cvar_SetValueQuick(&r_farclip_world, 0);
3391         Cvar_SetValueQuick(&r_useinfinitefarclip, 0);
3392 #endif
3393         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap, NULL, NULL);
3394 }
3395
3396 void Render_Init(void)
3397 {
3398         gl_backend_init();
3399         R_Textures_Init();
3400         GL_Main_Init();
3401         Font_Init();
3402         GL_Draw_Init();
3403         R_Shadow_Init();
3404         R_Sky_Init();
3405         GL_Surf_Init();
3406         Sbar_Init();
3407         R_Particles_Init();
3408         R_Explosion_Init();
3409         R_LightningBeams_Init();
3410         Mod_RenderInit();
3411 }
3412
3413 /*
3414 ===============
3415 GL_Init
3416 ===============
3417 */
3418 #ifndef USE_GLES2
3419 extern char *ENGINE_EXTENSIONS;
3420 void GL_Init (void)
3421 {
3422         gl_renderer = (const char *)qglGetString(GL_RENDERER);
3423         gl_vendor = (const char *)qglGetString(GL_VENDOR);
3424         gl_version = (const char *)qglGetString(GL_VERSION);
3425         gl_extensions = (const char *)qglGetString(GL_EXTENSIONS);
3426
3427         if (!gl_extensions)
3428                 gl_extensions = "";
3429         if (!gl_platformextensions)
3430                 gl_platformextensions = "";
3431
3432         Con_Printf("GL_VENDOR: %s\n", gl_vendor);
3433         Con_Printf("GL_RENDERER: %s\n", gl_renderer);
3434         Con_Printf("GL_VERSION: %s\n", gl_version);
3435         Con_DPrintf("GL_EXTENSIONS: %s\n", gl_extensions);
3436         Con_DPrintf("%s_EXTENSIONS: %s\n", gl_platform, gl_platformextensions);
3437
3438         VID_CheckExtensions();
3439
3440         // LordHavoc: report supported extensions
3441 #ifdef CONFIG_MENU
3442         Con_DPrintf("\nQuakeC extensions for server and client: %s\nQuakeC extensions for menu: %s\n", vm_sv_extensions, vm_m_extensions );
3443 #else
3444         Con_DPrintf("\nQuakeC extensions for server and client: %s\n", vm_sv_extensions );
3445 #endif
3446
3447         // clear to black (loading plaque will be seen over this)
3448         GL_Clear(GL_COLOR_BUFFER_BIT, NULL, 1.0f, 0);
3449 }
3450 #endif
3451
3452 int R_CullBox(const vec3_t mins, const vec3_t maxs)
3453 {
3454         int i;
3455         mplane_t *p;
3456         if (r_trippy.integer)
3457                 return false;
3458         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
3459         {
3460                 p = r_refdef.view.frustum + i;
3461                 switch(p->signbits)
3462                 {
3463                 default:
3464                 case 0:
3465                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3466                                 return true;
3467                         break;
3468                 case 1:
3469                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3470                                 return true;
3471                         break;
3472                 case 2:
3473                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3474                                 return true;
3475                         break;
3476                 case 3:
3477                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3478                                 return true;
3479                         break;
3480                 case 4:
3481                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3482                                 return true;
3483                         break;
3484                 case 5:
3485                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3486                                 return true;
3487                         break;
3488                 case 6:
3489                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3490                                 return true;
3491                         break;
3492                 case 7:
3493                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3494                                 return true;
3495                         break;
3496                 }
3497         }
3498         return false;
3499 }
3500
3501 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
3502 {
3503         int i;
3504         const mplane_t *p;
3505         if (r_trippy.integer)
3506                 return false;
3507         for (i = 0;i < numplanes;i++)
3508         {
3509                 p = planes + i;
3510                 switch(p->signbits)
3511                 {
3512                 default:
3513                 case 0:
3514                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3515                                 return true;
3516                         break;
3517                 case 1:
3518                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3519                                 return true;
3520                         break;
3521                 case 2:
3522                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3523                                 return true;
3524                         break;
3525                 case 3:
3526                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3527                                 return true;
3528                         break;
3529                 case 4:
3530                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3531                                 return true;
3532                         break;
3533                 case 5:
3534                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3535                                 return true;
3536                         break;
3537                 case 6:
3538                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3539                                 return true;
3540                         break;
3541                 case 7:
3542                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3543                                 return true;
3544                         break;
3545                 }
3546         }
3547         return false;
3548 }
3549
3550 //==================================================================================
3551
3552 // LordHavoc: this stores temporary data used within the same frame
3553
3554 typedef struct r_framedata_mem_s
3555 {
3556         struct r_framedata_mem_s *purge; // older mem block to free on next frame
3557         size_t size; // how much usable space
3558         size_t current; // how much space in use
3559         size_t mark; // last "mark" location, temporary memory can be freed by returning to this
3560         size_t wantedsize; // how much space was allocated
3561         unsigned char *data; // start of real data (16byte aligned)
3562 }
3563 r_framedata_mem_t;
3564
3565 static r_framedata_mem_t *r_framedata_mem;
3566
3567 void R_FrameData_Reset(void)
3568 {
3569         while (r_framedata_mem)
3570         {
3571                 r_framedata_mem_t *next = r_framedata_mem->purge;
3572                 Mem_Free(r_framedata_mem);
3573                 r_framedata_mem = next;
3574         }
3575 }
3576
3577 static void R_FrameData_Resize(qboolean mustgrow)
3578 {
3579         size_t wantedsize;
3580         wantedsize = (size_t)(r_framedatasize.value * 1024*1024);
3581         wantedsize = bound(65536, wantedsize, 1000*1024*1024);
3582         if (!r_framedata_mem || r_framedata_mem->wantedsize != wantedsize || mustgrow)
3583         {
3584                 r_framedata_mem_t *newmem = (r_framedata_mem_t *)Mem_Alloc(r_main_mempool, wantedsize);
3585                 newmem->wantedsize = wantedsize;
3586                 newmem->data = (unsigned char *)(((size_t)(newmem+1) + 15) & ~15);
3587                 newmem->size = (unsigned char *)newmem + wantedsize - newmem->data;
3588                 newmem->current = 0;
3589                 newmem->mark = 0;
3590                 newmem->purge = r_framedata_mem;
3591                 r_framedata_mem = newmem;
3592         }
3593 }
3594
3595 void R_FrameData_NewFrame(void)
3596 {
3597         R_FrameData_Resize(false);
3598         if (!r_framedata_mem)
3599                 return;
3600         // if we ran out of space on the last frame, free the old memory now
3601         while (r_framedata_mem->purge)
3602         {
3603                 // repeatedly remove the second item in the list, leaving only head
3604                 r_framedata_mem_t *next = r_framedata_mem->purge->purge;
3605                 Mem_Free(r_framedata_mem->purge);
3606                 r_framedata_mem->purge = next;
3607         }
3608         // reset the current mem pointer
3609         r_framedata_mem->current = 0;
3610         r_framedata_mem->mark = 0;
3611 }
3612
3613 void *R_FrameData_Alloc(size_t size)
3614 {
3615         void *data;
3616         float newvalue;
3617
3618         // align to 16 byte boundary - the data pointer is already aligned, so we
3619         // only need to ensure the size of every allocation is also aligned
3620         size = (size + 15) & ~15;
3621
3622         while (!r_framedata_mem || r_framedata_mem->current + size > r_framedata_mem->size)
3623         {
3624                 // emergency - we ran out of space, allocate more memory
3625                 // note: this has no upper-bound, we'll fail to allocate memory eventually and just die
3626                 newvalue = r_framedatasize.value * 2.0f;
3627                 // upper bound based on architecture - if we try to allocate more than this we could overflow, better to loop until we error out on allocation failure
3628                 if (sizeof(size_t) >= 8)
3629                         newvalue = bound(0.25f, newvalue, (float)(1ll << 42));
3630                 else
3631                         newvalue = bound(0.25f, newvalue, (float)(1 << 10));
3632                 // this might not be a growing it, but we'll allocate another buffer every time
3633                 Cvar_SetValueQuick(&r_framedatasize, newvalue);
3634                 R_FrameData_Resize(true);
3635         }
3636
3637         data = r_framedata_mem->data + r_framedata_mem->current;
3638         r_framedata_mem->current += size;
3639
3640         // count the usage for stats
3641         r_refdef.stats[r_stat_framedatacurrent] = max(r_refdef.stats[r_stat_framedatacurrent], (int)r_framedata_mem->current);
3642         r_refdef.stats[r_stat_framedatasize] = max(r_refdef.stats[r_stat_framedatasize], (int)r_framedata_mem->size);
3643
3644         return (void *)data;
3645 }
3646
3647 void *R_FrameData_Store(size_t size, void *data)
3648 {
3649         void *d = R_FrameData_Alloc(size);
3650         if (d && data)
3651                 memcpy(d, data, size);
3652         return d;
3653 }
3654
3655 void R_FrameData_SetMark(void)
3656 {
3657         if (!r_framedata_mem)
3658                 return;
3659         r_framedata_mem->mark = r_framedata_mem->current;
3660 }
3661
3662 void R_FrameData_ReturnToMark(void)
3663 {
3664         if (!r_framedata_mem)
3665                 return;
3666         r_framedata_mem->current = r_framedata_mem->mark;
3667 }
3668
3669 //==================================================================================
3670
3671 // avoid reusing the same buffer objects on consecutive frames
3672 #define R_BUFFERDATA_CYCLE 3
3673
3674 typedef struct r_bufferdata_buffer_s
3675 {
3676         struct r_bufferdata_buffer_s *purge; // older buffer to free on next frame
3677         size_t size; // how much usable space
3678         size_t current; // how much space in use
3679         r_meshbuffer_t *buffer; // the buffer itself
3680 }
3681 r_bufferdata_buffer_t;
3682
3683 static int r_bufferdata_cycle = 0; // incremented and wrapped each frame
3684 static r_bufferdata_buffer_t *r_bufferdata_buffer[R_BUFFERDATA_CYCLE][R_BUFFERDATA_COUNT];
3685
3686 /// frees all dynamic buffers
3687 void R_BufferData_Reset(void)
3688 {
3689         int cycle, type;
3690         r_bufferdata_buffer_t **p, *mem;
3691         for (cycle = 0;cycle < R_BUFFERDATA_CYCLE;cycle++)
3692         {
3693                 for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3694                 {
3695                         // free all buffers
3696                         p = &r_bufferdata_buffer[cycle][type];
3697                         while (*p)
3698                         {
3699                                 mem = *p;
3700                                 *p = (*p)->purge;
3701                                 if (mem->buffer)
3702                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3703                                 Mem_Free(mem);
3704                         }
3705                 }
3706         }
3707 }
3708
3709 // resize buffer as needed (this actually makes a new one, the old one will be recycled next frame)
3710 static void R_BufferData_Resize(r_bufferdata_type_t type, qboolean mustgrow, size_t minsize)
3711 {
3712         r_bufferdata_buffer_t *mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3713         size_t size;
3714         float newvalue = r_buffermegs[type].value;
3715
3716         // increase the cvar if we have to (but only if we already have a mem)
3717         if (mustgrow && mem)
3718                 newvalue *= 2.0f;
3719         newvalue = bound(0.25f, newvalue, 256.0f);
3720         while (newvalue * 1024*1024 < minsize)
3721                 newvalue *= 2.0f;
3722
3723         // clamp the cvar to valid range
3724         newvalue = bound(0.25f, newvalue, 256.0f);
3725         if (r_buffermegs[type].value != newvalue)
3726                 Cvar_SetValueQuick(&r_buffermegs[type], newvalue);
3727
3728         // calculate size in bytes
3729         size = (size_t)(newvalue * 1024*1024);
3730         size = bound(131072, size, 256*1024*1024);
3731
3732         // allocate a new buffer if the size is different (purge old one later)
3733         // or if we were told we must grow the buffer
3734         if (!mem || mem->size != size || mustgrow)
3735         {
3736                 mem = (r_bufferdata_buffer_t *)Mem_Alloc(r_main_mempool, sizeof(*mem));
3737                 mem->size = size;
3738                 mem->current = 0;
3739                 if (type == R_BUFFERDATA_VERTEX)
3740                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbuffervertex", false, false, true, false);
3741                 else if (type == R_BUFFERDATA_INDEX16)
3742                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex16", true, false, true, true);
3743                 else if (type == R_BUFFERDATA_INDEX32)
3744                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex32", true, false, true, false);
3745                 else if (type == R_BUFFERDATA_UNIFORM)
3746                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferuniform", false, true, true, false);
3747                 mem->purge = r_bufferdata_buffer[r_bufferdata_cycle][type];
3748                 r_bufferdata_buffer[r_bufferdata_cycle][type] = mem;
3749         }
3750 }
3751
3752 void R_BufferData_NewFrame(void)
3753 {
3754         int type;
3755         r_bufferdata_buffer_t **p, *mem;
3756         // cycle to the next frame's buffers
3757         r_bufferdata_cycle = (r_bufferdata_cycle + 1) % R_BUFFERDATA_CYCLE;
3758         // if we ran out of space on the last time we used these buffers, free the old memory now
3759         for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3760         {
3761                 if (r_bufferdata_buffer[r_bufferdata_cycle][type])
3762                 {
3763                         R_BufferData_Resize((r_bufferdata_type_t)type, false, 131072);
3764                         // free all but the head buffer, this is how we recycle obsolete
3765                         // buffers after they are no longer in use
3766                         p = &r_bufferdata_buffer[r_bufferdata_cycle][type]->purge;
3767                         while (*p)
3768                         {
3769                                 mem = *p;
3770                                 *p = (*p)->purge;
3771                                 if (mem->buffer)
3772                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3773                                 Mem_Free(mem);
3774                         }
3775                         // reset the current offset
3776                         r_bufferdata_buffer[r_bufferdata_cycle][type]->current = 0;
3777                 }
3778         }
3779 }
3780
3781 r_meshbuffer_t *R_BufferData_Store(size_t datasize, const void *data, r_bufferdata_type_t type, int *returnbufferoffset)
3782 {
3783         r_bufferdata_buffer_t *mem;
3784         int offset = 0;
3785         int padsize;
3786
3787         *returnbufferoffset = 0;
3788
3789         // align size to a byte boundary appropriate for the buffer type, this
3790         // makes all allocations have aligned start offsets
3791         if (type == R_BUFFERDATA_UNIFORM)
3792                 padsize = (datasize + r_uniformbufferalignment - 1) & ~(r_uniformbufferalignment - 1);
3793         else
3794                 padsize = (datasize + 15) & ~15;
3795
3796         // if we ran out of space in this buffer we must allocate a new one
3797         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3798                 R_BufferData_Resize(type, true, padsize);
3799
3800         // if the resize did not give us enough memory, fail
3801         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3802                 Sys_Error("R_BufferData_Store: failed to create a new buffer of sufficient size\n");
3803
3804         mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3805         offset = (int)mem->current;
3806         mem->current += padsize;
3807
3808         // upload the data to the buffer at the chosen offset
3809         if (offset == 0)
3810                 R_Mesh_UpdateMeshBuffer(mem->buffer, NULL, mem->size, false, 0);
3811         R_Mesh_UpdateMeshBuffer(mem->buffer, data, datasize, true, offset);
3812
3813         // count the usage for stats
3814         r_refdef.stats[r_stat_bufferdatacurrent_vertex + type] = max(r_refdef.stats[r_stat_bufferdatacurrent_vertex + type], (int)mem->current);
3815         r_refdef.stats[r_stat_bufferdatasize_vertex + type] = max(r_refdef.stats[r_stat_bufferdatasize_vertex + type], (int)mem->size);
3816
3817         // return the buffer offset
3818         *returnbufferoffset = offset;
3819
3820         return mem->buffer;
3821 }
3822
3823 //==================================================================================
3824
3825 // LordHavoc: animcache originally written by Echon, rewritten since then
3826
3827 /**
3828  * Animation cache prevents re-generating mesh data for an animated model
3829  * multiple times in one frame for lighting, shadowing, reflections, etc.
3830  */
3831
3832 void R_AnimCache_Free(void)
3833 {
3834 }
3835
3836 void R_AnimCache_ClearCache(void)
3837 {
3838         int i;
3839         entity_render_t *ent;
3840
3841         for (i = 0;i < r_refdef.scene.numentities;i++)
3842         {
3843                 ent = r_refdef.scene.entities[i];
3844                 ent->animcache_vertex3f = NULL;
3845                 ent->animcache_vertex3f_vertexbuffer = NULL;
3846                 ent->animcache_vertex3f_bufferoffset = 0;
3847                 ent->animcache_normal3f = NULL;
3848                 ent->animcache_normal3f_vertexbuffer = NULL;
3849                 ent->animcache_normal3f_bufferoffset = 0;
3850                 ent->animcache_svector3f = NULL;
3851                 ent->animcache_svector3f_vertexbuffer = NULL;
3852                 ent->animcache_svector3f_bufferoffset = 0;
3853                 ent->animcache_tvector3f = NULL;
3854                 ent->animcache_tvector3f_vertexbuffer = NULL;
3855                 ent->animcache_tvector3f_bufferoffset = 0;
3856                 ent->animcache_skeletaltransform3x4 = NULL;
3857                 ent->animcache_skeletaltransform3x4buffer = NULL;
3858                 ent->animcache_skeletaltransform3x4offset = 0;
3859                 ent->animcache_skeletaltransform3x4size = 0;
3860         }
3861 }
3862
3863 qboolean R_AnimCache_GetEntity(entity_render_t *ent, qboolean wantnormals, qboolean wanttangents)
3864 {
3865         dp_model_t *model = ent->model;
3866         int numvertices;
3867
3868         // see if this ent is worth caching
3869         if (!model || !model->Draw || !model->AnimateVertices)
3870                 return false;
3871         // nothing to cache if it contains no animations and has no skeleton
3872         if (!model->surfmesh.isanimated && !(model->num_bones && ent->skeleton && ent->skeleton->relativetransforms))
3873                 return false;
3874         // see if it is already cached for gpuskeletal
3875         if (ent->animcache_skeletaltransform3x4)
3876                 return false;
3877         // see if it is already cached as a mesh
3878         if (ent->animcache_vertex3f)
3879         {
3880                 // check if we need to add normals or tangents
3881                 if (ent->animcache_normal3f)
3882                         wantnormals = false;
3883                 if (ent->animcache_svector3f)
3884                         wanttangents = false;
3885                 if (!wantnormals && !wanttangents)
3886                         return false;
3887         }
3888
3889         // check which kind of cache we need to generate
3890         if (r_gpuskeletal && model->num_bones > 0 && model->surfmesh.data_skeletalindex4ub)
3891         {
3892                 // cache the skeleton so the vertex shader can use it
3893                 r_refdef.stats[r_stat_animcache_skeletal_count] += 1;
3894                 r_refdef.stats[r_stat_animcache_skeletal_bones] += model->num_bones;
3895                 r_refdef.stats[r_stat_animcache_skeletal_maxbones] = max(r_refdef.stats[r_stat_animcache_skeletal_maxbones], model->num_bones);
3896                 ent->animcache_skeletaltransform3x4 = (float *)R_FrameData_Alloc(sizeof(float[3][4]) * model->num_bones);
3897                 Mod_Skeletal_BuildTransforms(model, ent->frameblend, ent->skeleton, NULL, ent->animcache_skeletaltransform3x4); 
3898                 // note: this can fail if the buffer is at the grow limit
3899                 ent->animcache_skeletaltransform3x4size = sizeof(float[3][4]) * model->num_bones;
3900                 ent->animcache_skeletaltransform3x4buffer = R_BufferData_Store(ent->animcache_skeletaltransform3x4size, ent->animcache_skeletaltransform3x4, R_BUFFERDATA_UNIFORM, &ent->animcache_skeletaltransform3x4offset);
3901         }
3902         else if (ent->animcache_vertex3f)
3903         {
3904                 // mesh was already cached but we may need to add normals/tangents
3905                 // (this only happens with multiple views, reflections, cameras, etc)
3906                 if (wantnormals || wanttangents)
3907                 {
3908                         numvertices = model->surfmesh.num_vertices;
3909                         if (wantnormals)
3910                                 ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3911                         if (wanttangents)
3912                         {
3913                                 ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3914                                 ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3915                         }
3916                         model->AnimateVertices(model, ent->frameblend, ent->skeleton, NULL, wantnormals ? ent->animcache_normal3f : NULL, wanttangents ? ent->animcache_svector3f : NULL, wanttangents ? ent->animcache_tvector3f : NULL);
3917                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3918                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3919                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3920                 }
3921         }
3922         else
3923         {
3924                 // generate mesh cache
3925                 numvertices = model->surfmesh.num_vertices;
3926                 ent->animcache_vertex3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3927                 if (wantnormals)
3928                         ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3929                 if (wanttangents)
3930                 {
3931                         ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3932                         ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3933                 }
3934                 model->AnimateVertices(model, ent->frameblend, ent->skeleton, ent->animcache_vertex3f, ent->animcache_normal3f, ent->animcache_svector3f, ent->animcache_tvector3f);
3935                 if (wantnormals || wanttangents)
3936                 {
3937                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3938                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3939                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3940                 }
3941                 r_refdef.stats[r_stat_animcache_shape_count] += 1;
3942                 r_refdef.stats[r_stat_animcache_shape_vertices] += numvertices;
3943                 r_refdef.stats[r_stat_animcache_shape_maxvertices] = max(r_refdef.stats[r_stat_animcache_shape_maxvertices], numvertices);
3944         }
3945         return true;
3946 }
3947
3948 void R_AnimCache_CacheVisibleEntities(void)
3949 {
3950         int i;
3951
3952         // TODO: thread this
3953         // NOTE: R_PrepareRTLights() also caches entities
3954
3955         for (i = 0;i < r_refdef.scene.numentities;i++)
3956                 if (r_refdef.viewcache.entityvisible[i])
3957                         R_AnimCache_GetEntity(r_refdef.scene.entities[i], true, true);
3958 }
3959
3960 //==================================================================================
3961
3962 qboolean R_CanSeeBox(int numsamples, vec_t eyejitter, vec_t entboxenlarge, vec_t entboxexpand, vec_t pad, vec3_t eye, vec3_t entboxmins, vec3_t entboxmaxs)
3963 {
3964         int i;
3965         vec3_t eyemins, eyemaxs;
3966         vec3_t boxmins, boxmaxs;
3967         vec3_t padmins, padmaxs;
3968         vec3_t start;
3969         vec3_t end;
3970         dp_model_t *model = r_refdef.scene.worldmodel;
3971         static vec3_t positions[] = {
3972                 { 0.5f, 0.5f, 0.5f },
3973                 { 0.0f, 0.0f, 0.0f },
3974                 { 0.0f, 0.0f, 1.0f },
3975                 { 0.0f, 1.0f, 0.0f },
3976                 { 0.0f, 1.0f, 1.0f },
3977                 { 1.0f, 0.0f, 0.0f },
3978                 { 1.0f, 0.0f, 1.0f },
3979                 { 1.0f, 1.0f, 0.0f },
3980                 { 1.0f, 1.0f, 1.0f },
3981         };
3982
3983         // sample count can be set to -1 to skip this logic, for flicker-prone objects
3984         if (numsamples < 0)
3985                 return true;
3986
3987         // view origin is not used for culling in portal/reflection/refraction renders or isometric views
3988         if (!r_refdef.view.usevieworiginculling)
3989                 return true;
3990
3991         if (!r_cullentities_trace_entityocclusion.integer && (!model || !model->brush.TraceLineOfSight))
3992                 return true;
3993
3994         // expand the eye box a little
3995         eyemins[0] = eye[0] - eyejitter;
3996         eyemaxs[0] = eye[0] + eyejitter;
3997         eyemins[1] = eye[1] - eyejitter;
3998         eyemaxs[1] = eye[1] + eyejitter;
3999         eyemins[2] = eye[2] - eyejitter;
4000         eyemaxs[2] = eye[2] + eyejitter;
4001         // expand the box a little
4002         boxmins[0] = (entboxenlarge + 1) * entboxmins[0] - entboxenlarge * entboxmaxs[0] - entboxexpand;
4003         boxmaxs[0] = (entboxenlarge + 1) * entboxmaxs[0] - entboxenlarge * entboxmins[0] + entboxexpand;
4004         boxmins[1] = (entboxenlarge + 1) * entboxmins[1] - entboxenlarge * entboxmaxs[1] - entboxexpand;
4005         boxmaxs[1] = (entboxenlarge + 1) * entboxmaxs[1] - entboxenlarge * entboxmins[1] + entboxexpand;
4006         boxmins[2] = (entboxenlarge + 1) * entboxmins[2] - entboxenlarge * entboxmaxs[2] - entboxexpand;
4007         boxmaxs[2] = (entboxenlarge + 1) * entboxmaxs[2] - entboxenlarge * entboxmins[2] + entboxexpand;
4008         // make an even larger box for the acceptable area
4009         padmins[0] = boxmins[0] - pad;
4010         padmaxs[0] = boxmaxs[0] + pad;
4011         padmins[1] = boxmins[1] - pad;
4012         padmaxs[1] = boxmaxs[1] + pad;
4013         padmins[2] = boxmins[2] - pad;
4014         padmaxs[2] = boxmaxs[2] + pad;
4015
4016         // return true if eye overlaps enlarged box
4017         if (BoxesOverlap(boxmins, boxmaxs, eyemins, eyemaxs))
4018                 return true;
4019
4020         // try specific positions in the box first - note that these can be cached
4021         if (r_cullentities_trace_entityocclusion.integer)
4022         {
4023                 for (i = 0; i < sizeof(positions) / sizeof(positions[0]); i++)
4024                 {
4025                         VectorCopy(eye, start);
4026                         end[0] = boxmins[0] + (boxmaxs[0] - boxmins[0]) * positions[i][0];
4027                         end[1] = boxmins[1] + (boxmaxs[1] - boxmins[1]) * positions[i][1];
4028                         end[2] = boxmins[2] + (boxmaxs[2] - boxmins[2]) * positions[i][2];
4029                         //trace_t trace = CL_TraceLine(start, end, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, 0.0f, true, false, NULL, true, true);
4030                         trace_t trace = CL_Cache_TraceLineSurfaces(start, end, MOVE_NORMAL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT);
4031                         // not picky - if the trace ended anywhere in the box we're good
4032                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
4033                                 return true;
4034                 }
4035         }
4036         else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
4037                 return true;
4038
4039         // try various random positions
4040         for (i = 0; i < numsamples; i++)
4041         {
4042                 VectorSet(start, lhrandom(eyemins[0], eyemaxs[0]), lhrandom(eyemins[1], eyemaxs[1]), lhrandom(eyemins[2], eyemaxs[2]));
4043                 VectorSet(end, lhrandom(boxmins[0], boxmaxs[0]), lhrandom(boxmins[1], boxmaxs[1]), lhrandom(boxmins[2], boxmaxs[2]));
4044                 if (r_cullentities_trace_entityocclusion.integer)
4045                 {
4046                         trace_t trace = CL_Cache_TraceLineSurfaces(start, end, MOVE_NORMAL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT);
4047                         // not picky - if the trace ended anywhere in the box we're good
4048                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
4049                                 return true;
4050                 }
4051                 else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
4052                         return true;
4053         }
4054
4055         return false;
4056 }
4057
4058
4059 static void R_View_UpdateEntityVisible (void)
4060 {
4061         int i;
4062         int renderimask;
4063         int samples;
4064         entity_render_t *ent;
4065
4066         if (r_refdef.envmap || r_fb.water.hideplayer)
4067                 renderimask = RENDER_EXTERIORMODEL | RENDER_VIEWMODEL;
4068         else if (chase_active.integer || r_fb.water.renderingscene)
4069                 renderimask = RENDER_VIEWMODEL;
4070         else
4071                 renderimask = RENDER_EXTERIORMODEL;
4072         if (!r_drawviewmodel.integer)
4073                 renderimask |= RENDER_VIEWMODEL;
4074         if (!r_drawexteriormodel.integer)
4075                 renderimask |= RENDER_EXTERIORMODEL;
4076         memset(r_refdef.viewcache.entityvisible, 0, r_refdef.scene.numentities);
4077         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
4078         {
4079                 // worldmodel can check visibility
4080                 for (i = 0;i < r_refdef.scene.numentities;i++)
4081                 {
4082                         ent = r_refdef.scene.entities[i];
4083                         if (!(ent->flags & renderimask))
4084                         if (!R_CullBox(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4085                         if ((ent->flags & (RENDER_NODEPTHTEST | RENDER_WORLDOBJECT | RENDER_VIEWMODEL)) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs))
4086                                 r_refdef.viewcache.entityvisible[i] = true;
4087                 }
4088         }
4089         else
4090         {
4091                 // no worldmodel or it can't check visibility
4092                 for (i = 0;i < r_refdef.scene.numentities;i++)
4093                 {
4094                         ent = r_refdef.scene.entities[i];
4095                         if (!(ent->flags & renderimask))
4096                         if (!R_CullBox(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4097                                 r_refdef.viewcache.entityvisible[i] = true;
4098                 }
4099         }
4100         if (r_cullentities_trace.integer)
4101         {
4102                 for (i = 0;i < r_refdef.scene.numentities;i++)
4103                 {
4104                         if (!r_refdef.viewcache.entityvisible[i])
4105                                 continue;
4106                         ent = r_refdef.scene.entities[i];
4107                         if (!(ent->flags & (RENDER_VIEWMODEL | RENDER_WORLDOBJECT | RENDER_NODEPTHTEST)) && !(ent->model && (ent->model->name[0] == '*')))
4108                         {
4109                                 samples = ent->last_trace_visibility == 0 ? r_cullentities_trace_tempentitysamples.integer : r_cullentities_trace_samples.integer;
4110                                 if (R_CanSeeBox(samples, r_cullentities_trace_eyejitter.value, r_cullentities_trace_enlarge.value, r_cullentities_trace_expand.value, r_cullentities_trace_pad.value, r_refdef.view.origin, ent->mins, ent->maxs))
4111                                         ent->last_trace_visibility = realtime;
4112                                 if (ent->last_trace_visibility < realtime - r_cullentities_trace_delay.value)
4113                                         r_refdef.viewcache.entityvisible[i] = 0;
4114                         }
4115                 }
4116         }
4117 }
4118
4119 /// only used if skyrendermasked, and normally returns false
4120 static int R_DrawBrushModelsSky (void)
4121 {
4122         int i, sky;
4123         entity_render_t *ent;
4124
4125         sky = false;
4126         for (i = 0;i < r_refdef.scene.numentities;i++)
4127         {
4128                 if (!r_refdef.viewcache.entityvisible[i])
4129                         continue;
4130                 ent = r_refdef.scene.entities[i];
4131                 if (!ent->model || !ent->model->DrawSky)
4132                         continue;
4133                 ent->model->DrawSky(ent);
4134                 sky = true;
4135         }
4136         return sky;
4137 }
4138
4139 static void R_DrawNoModel(entity_render_t *ent);
4140 static void R_DrawModels(void)
4141 {
4142         int i;
4143         entity_render_t *ent;
4144
4145         for (i = 0;i < r_refdef.scene.numentities;i++)
4146         {
4147                 if (!r_refdef.viewcache.entityvisible[i])
4148                         continue;
4149                 ent = r_refdef.scene.entities[i];
4150                 r_refdef.stats[r_stat_entities]++;
4151                 /*
4152                 if (ent->model && !strncmp(ent->model->name, "models/proto_", 13))
4153                 {
4154                         vec3_t f, l, u, o;
4155                         Matrix4x4_ToVectors(&ent->matrix, f, l, u, o);
4156                         Con_Printf("R_DrawModels\n");
4157                         Con_Printf("model %s O %f %f %f F %f %f %f L %f %f %f U %f %f %f\n", ent->model->name, o[0], o[1], o[2], f[0], f[1], f[2], l[0], l[1], l[2], u[0], u[1], u[2]);
4158                         Con_Printf("group: %i %f %i %f %i %f %i %f\n", ent->framegroupblend[0].frame, ent->framegroupblend[0].lerp, ent->framegroupblend[1].frame, ent->framegroupblend[1].lerp, ent->framegroupblend[2].frame, ent->framegroupblend[2].lerp, ent->framegroupblend[3].frame, ent->framegroupblend[3].lerp);
4159                         Con_Printf("blend: %i %f %i %f %i %f %i %f %i %f %i %f %i %f %i %f\n", ent->frameblend[0].subframe, ent->frameblend[0].lerp, ent->frameblend[1].subframe, ent->frameblend[1].lerp, ent->frameblend[2].subframe, ent->frameblend[2].lerp, ent->frameblend[3].subframe, ent->frameblend[3].lerp, ent->frameblend[4].subframe, ent->frameblend[4].lerp, ent->frameblend[5].subframe, ent->frameblend[5].lerp, ent->frameblend[6].subframe, ent->frameblend[6].lerp, ent->frameblend[7].subframe, ent->frameblend[7].lerp);
4160                 }
4161                 */
4162                 if (ent->model && ent->model->Draw != NULL)
4163                         ent->model->Draw(ent);
4164                 else
4165                         R_DrawNoModel(ent);
4166         }
4167 }
4168
4169 static void R_DrawModelsDepth(void)
4170 {
4171         int i;
4172         entity_render_t *ent;
4173
4174         for (i = 0;i < r_refdef.scene.numentities;i++)
4175         {
4176                 if (!r_refdef.viewcache.entityvisible[i])
4177                         continue;
4178                 ent = r_refdef.scene.entities[i];
4179                 if (ent->model && ent->model->DrawDepth != NULL)
4180                         ent->model->DrawDepth(ent);
4181         }
4182 }
4183
4184 static void R_DrawModelsDebug(void)
4185 {
4186         int i;
4187         entity_render_t *ent;
4188
4189         for (i = 0;i < r_refdef.scene.numentities;i++)
4190         {
4191                 if (!r_refdef.viewcache.entityvisible[i])
4192                         continue;
4193                 ent = r_refdef.scene.entities[i];
4194                 if (ent->model && ent->model->DrawDebug != NULL)
4195                         ent->model->DrawDebug(ent);
4196         }
4197 }
4198
4199 static void R_DrawModelsAddWaterPlanes(void)
4200 {
4201         int i;
4202         entity_render_t *ent;
4203
4204         for (i = 0;i < r_refdef.scene.numentities;i++)
4205         {
4206                 if (!r_refdef.viewcache.entityvisible[i])
4207                         continue;
4208                 ent = r_refdef.scene.entities[i];
4209                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
4210                         ent->model->DrawAddWaterPlanes(ent);
4211         }
4212 }
4213
4214 static float irisvecs[7][3] = {{0, 0, 0}, {-1, 0, 0}, {1, 0, 0}, {0, -1, 0}, {0, 1, 0}, {0, 0, -1}, {0, 0, 1}};
4215
4216 void R_HDR_UpdateIrisAdaptation(const vec3_t point)
4217 {
4218         if (r_hdr_irisadaptation.integer)
4219         {
4220                 vec3_t p;
4221                 vec3_t ambient;
4222                 vec3_t diffuse;
4223                 vec3_t diffusenormal;
4224                 vec3_t forward;
4225                 vec_t brightness = 0.0f;
4226                 vec_t goal;
4227                 vec_t current;
4228                 vec_t d;
4229                 int c;
4230                 VectorCopy(r_refdef.view.forward, forward);
4231                 for (c = 0;c < (int)(sizeof(irisvecs)/sizeof(irisvecs[0]));c++)
4232                 {
4233                         p[0] = point[0] + irisvecs[c][0] * r_hdr_irisadaptation_radius.value;
4234                         p[1] = point[1] + irisvecs[c][1] * r_hdr_irisadaptation_radius.value;
4235                         p[2] = point[2] + irisvecs[c][2] * r_hdr_irisadaptation_radius.value;
4236                         R_CompleteLightPoint(ambient, diffuse, diffusenormal, p, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT, r_refdef.scene.lightmapintensity, r_refdef.scene.ambientintensity);
4237                         d = DotProduct(forward, diffusenormal);
4238                         brightness += VectorLength(ambient);
4239                         if (d > 0)
4240                                 brightness += d * VectorLength(diffuse);
4241                 }
4242                 brightness *= 1.0f / c;
4243                 brightness += 0.00001f; // make sure it's never zero
4244                 goal = r_hdr_irisadaptation_multiplier.value / brightness;
4245                 goal = bound(r_hdr_irisadaptation_minvalue.value, goal, r_hdr_irisadaptation_maxvalue.value);
4246                 current = r_hdr_irisadaptation_value.value;
4247                 if (current < goal)
4248                         current = min(current + r_hdr_irisadaptation_fade_up.value * cl.realframetime, goal);
4249                 else if (current > goal)
4250                         current = max(current - r_hdr_irisadaptation_fade_down.value * cl.realframetime, goal);
4251                 if (fabs(r_hdr_irisadaptation_value.value - current) > 0.0001f)
4252                         Cvar_SetValueQuick(&r_hdr_irisadaptation_value, current);
4253         }
4254         else if (r_hdr_irisadaptation_value.value != 1.0f)
4255                 Cvar_SetValueQuick(&r_hdr_irisadaptation_value, 1.0f);
4256 }
4257
4258 static void R_View_SetFrustum(const int *scissor)
4259 {
4260         int i;
4261         double fpx = +1, fnx = -1, fpy = +1, fny = -1;
4262         vec3_t forward, left, up, origin, v;
4263
4264         if(scissor)
4265         {
4266                 // flipped x coordinates (because x points left here)
4267                 fpx =  1.0 - 2.0 * (scissor[0]              - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4268                 fnx =  1.0 - 2.0 * (scissor[0] + scissor[2] - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4269                 // non-flipped y coordinates
4270                 fny = -1.0 + 2.0 * (scissor[1]              - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4271                 fpy = -1.0 + 2.0 * (scissor[1] + scissor[3] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4272         }
4273
4274         // we can't trust r_refdef.view.forward and friends in reflected scenes
4275         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
4276
4277 #if 0
4278         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
4279         r_refdef.view.frustum[0].normal[1] = 0 - 0;
4280         r_refdef.view.frustum[0].normal[2] = -1 - 0;
4281         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
4282         r_refdef.view.frustum[1].normal[1] = 0 + 0;
4283         r_refdef.view.frustum[1].normal[2] = -1 + 0;
4284         r_refdef.view.frustum[2].normal[0] = 0 - 0;
4285         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
4286         r_refdef.view.frustum[2].normal[2] = -1 - 0;
4287         r_refdef.view.frustum[3].normal[0] = 0 + 0;
4288         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
4289         r_refdef.view.frustum[3].normal[2] = -1 + 0;
4290 #endif
4291
4292 #if 0
4293         zNear = r_refdef.nearclip;
4294         nudge = 1.0 - 1.0 / (1<<23);
4295         r_refdef.view.frustum[4].normal[0] = 0 - 0;
4296         r_refdef.view.frustum[4].normal[1] = 0 - 0;
4297         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
4298         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
4299         r_refdef.view.frustum[5].normal[0] = 0 + 0;
4300         r_refdef.view.frustum[5].normal[1] = 0 + 0;
4301         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
4302         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
4303 #endif
4304
4305
4306
4307 #if 0
4308         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
4309         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
4310         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
4311         r_refdef.view.frustum[0].dist = m[15] - m[12];
4312
4313         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
4314         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
4315         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
4316         r_refdef.view.frustum[1].dist = m[15] + m[12];
4317
4318         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
4319         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
4320         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
4321         r_refdef.view.frustum[2].dist = m[15] - m[13];
4322
4323         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
4324         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
4325         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
4326         r_refdef.view.frustum[3].dist = m[15] + m[13];
4327
4328         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
4329         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
4330         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
4331         r_refdef.view.frustum[4].dist = m[15] - m[14];
4332
4333         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
4334         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
4335         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
4336         r_refdef.view.frustum[5].dist = m[15] + m[14];
4337 #endif
4338
4339         if (r_refdef.view.useperspective)
4340         {
4341                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
4342                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[0]);
4343                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[1]);
4344                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[2]);
4345                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[3]);
4346
4347                 // then the normals from the corners relative to origin
4348                 CrossProduct(r_refdef.view.frustumcorner[2], r_refdef.view.frustumcorner[0], r_refdef.view.frustum[0].normal);
4349                 CrossProduct(r_refdef.view.frustumcorner[1], r_refdef.view.frustumcorner[3], r_refdef.view.frustum[1].normal);
4350                 CrossProduct(r_refdef.view.frustumcorner[0], r_refdef.view.frustumcorner[1], r_refdef.view.frustum[2].normal);
4351                 CrossProduct(r_refdef.view.frustumcorner[3], r_refdef.view.frustumcorner[2], r_refdef.view.frustum[3].normal);
4352
4353                 // in a NORMAL view, forward cross left == up
4354                 // in a REFLECTED view, forward cross left == down
4355                 // so our cross products above need to be adjusted for a left handed coordinate system
4356                 CrossProduct(forward, left, v);
4357                 if(DotProduct(v, up) < 0)
4358                 {
4359                         VectorNegate(r_refdef.view.frustum[0].normal, r_refdef.view.frustum[0].normal);
4360                         VectorNegate(r_refdef.view.frustum[1].normal, r_refdef.view.frustum[1].normal);
4361                         VectorNegate(r_refdef.view.frustum[2].normal, r_refdef.view.frustum[2].normal);
4362                         VectorNegate(r_refdef.view.frustum[3].normal, r_refdef.view.frustum[3].normal);
4363                 }
4364
4365                 // Leaving those out was a mistake, those were in the old code, and they
4366                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
4367                 // I couldn't reproduce it after adding those normalizations. --blub
4368                 VectorNormalize(r_refdef.view.frustum[0].normal);
4369                 VectorNormalize(r_refdef.view.frustum[1].normal);
4370                 VectorNormalize(r_refdef.view.frustum[2].normal);
4371                 VectorNormalize(r_refdef.view.frustum[3].normal);
4372
4373                 // make the corners absolute
4374                 VectorAdd(r_refdef.view.frustumcorner[0], r_refdef.view.origin, r_refdef.view.frustumcorner[0]);
4375                 VectorAdd(r_refdef.view.frustumcorner[1], r_refdef.view.origin, r_refdef.view.frustumcorner[1]);
4376                 VectorAdd(r_refdef.view.frustumcorner[2], r_refdef.view.origin, r_refdef.view.frustumcorner[2]);
4377                 VectorAdd(r_refdef.view.frustumcorner[3], r_refdef.view.origin, r_refdef.view.frustumcorner[3]);
4378
4379                 // one more normal
4380                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
4381
4382                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
4383                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
4384                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
4385                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
4386                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
4387         }
4388         else
4389         {
4390                 VectorScale(left, -1.0f, r_refdef.view.frustum[0].normal);
4391                 VectorScale(left,  1.0f, r_refdef.view.frustum[1].normal);
4392                 VectorScale(up, -1.0f, r_refdef.view.frustum[2].normal);
4393                 VectorScale(up,  1.0f, r_refdef.view.frustum[3].normal);
4394                 VectorScale(forward, -1.0f, r_refdef.view.frustum[4].normal);
4395                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) - r_refdef.view.ortho_x;
4396                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) - r_refdef.view.ortho_x;
4397                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) - r_refdef.view.ortho_y;
4398                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) - r_refdef.view.ortho_y;
4399                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) - r_refdef.farclip;
4400         }
4401         r_refdef.view.numfrustumplanes = 5;
4402
4403         if (r_refdef.view.useclipplane)
4404         {
4405                 r_refdef.view.numfrustumplanes = 6;
4406                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
4407         }
4408
4409         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
4410                 PlaneClassify(r_refdef.view.frustum + i);
4411
4412         // LordHavoc: note to all quake engine coders, Quake had a special case
4413         // for 90 degrees which assumed a square view (wrong), so I removed it,
4414         // Quake2 has it disabled as well.
4415
4416         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
4417         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
4418         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
4419         //PlaneClassify(&frustum[0]);
4420
4421         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
4422         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
4423         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
4424         //PlaneClassify(&frustum[1]);
4425
4426         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
4427         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
4428         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
4429         //PlaneClassify(&frustum[2]);
4430
4431         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
4432         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
4433         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
4434         //PlaneClassify(&frustum[3]);
4435
4436         // nearclip plane
4437         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
4438         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
4439         //PlaneClassify(&frustum[4]);
4440 }
4441
4442 static void R_View_UpdateWithScissor(const int *myscissor)
4443 {
4444         R_Main_ResizeViewCache();
4445         R_View_SetFrustum(myscissor);
4446         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4447         R_View_UpdateEntityVisible();
4448 }
4449
4450 static void R_View_Update(void)
4451 {
4452         R_Main_ResizeViewCache();
4453         R_View_SetFrustum(NULL);
4454         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4455         R_View_UpdateEntityVisible();
4456 }
4457
4458 float viewscalefpsadjusted = 1.0f;
4459
4460 static void R_GetScaledViewSize(int width, int height, int *outwidth, int *outheight)
4461 {
4462         float scale = r_viewscale.value * sqrt(viewscalefpsadjusted);
4463         scale = bound(0.03125f, scale, 1.0f);
4464         *outwidth = (int)ceil(width * scale);
4465         *outheight = (int)ceil(height * scale);
4466 }
4467
4468 void R_SetupView(qboolean allowwaterclippingplane, int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4469 {
4470         const float *customclipplane = NULL;
4471         float plane[4];
4472         int /*rtwidth,*/ rtheight;
4473         if (r_refdef.view.useclipplane && allowwaterclippingplane)
4474         {
4475                 // LadyHavoc: couldn't figure out how to make this approach work the same in DPSOFTRAST
4476                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
4477                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
4478                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
4479                         dist = r_refdef.view.clipplane.dist;
4480                 plane[0] = r_refdef.view.clipplane.normal[0];
4481                 plane[1] = r_refdef.view.clipplane.normal[1];
4482                 plane[2] = r_refdef.view.clipplane.normal[2];
4483                 plane[3] = -dist;
4484                 customclipplane = plane;
4485         }
4486
4487         //rtwidth = viewfbo ? R_TextureWidth(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.width;
4488         rtheight = viewfbo ? R_TextureHeight(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.height;
4489
4490         if (!r_refdef.view.useperspective)
4491                 R_Viewport_InitOrtho3D(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip, customclipplane);
4492         else if (vid.stencil && r_useinfinitefarclip.integer)
4493                 R_Viewport_InitPerspectiveInfinite(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, customclipplane);
4494         else
4495                 R_Viewport_InitPerspective(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip, customclipplane);
4496         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4497         R_SetViewport(&r_refdef.view.viewport);
4498 }
4499
4500 void R_EntityMatrix(const matrix4x4_t *matrix)
4501 {
4502         if (gl_modelmatrixchanged || memcmp(matrix, &gl_modelmatrix, sizeof(matrix4x4_t)))
4503         {
4504                 gl_modelmatrixchanged = false;
4505                 gl_modelmatrix = *matrix;
4506                 Matrix4x4_Concat(&gl_modelviewmatrix, &gl_viewmatrix, &gl_modelmatrix);
4507                 Matrix4x4_Concat(&gl_modelviewprojectionmatrix, &gl_projectionmatrix, &gl_modelviewmatrix);
4508                 Matrix4x4_ToArrayFloatGL(&gl_modelviewmatrix, gl_modelview16f);
4509                 Matrix4x4_ToArrayFloatGL(&gl_modelviewprojectionmatrix, gl_modelviewprojection16f);
4510                 CHECKGLERROR
4511                 switch(vid.renderpath)
4512                 {
4513                 case RENDERPATH_GL20:
4514                 case RENDERPATH_GLES2:
4515                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
4516                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
4517                         break;
4518                 }
4519         }
4520 }
4521
4522 void R_ResetViewRendering2D_Common(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight, float x2, float y2)
4523 {
4524         r_viewport_t viewport;
4525
4526         CHECKGLERROR
4527
4528         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
4529         R_Viewport_InitOrtho(&viewport, &identitymatrix, viewx, vid.height - viewheight - viewy, viewwidth, viewheight, 0, 0, x2, y2, -10, 100, NULL);
4530         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4531         R_SetViewport(&viewport);
4532         GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
4533         GL_Color(1, 1, 1, 1);
4534         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4535         GL_BlendFunc(GL_ONE, GL_ZERO);
4536         GL_ScissorTest(false);
4537         GL_DepthMask(false);
4538         GL_DepthRange(0, 1);
4539         GL_DepthTest(false);
4540         GL_DepthFunc(GL_LEQUAL);
4541         R_EntityMatrix(&identitymatrix);
4542         R_Mesh_ResetTextureState();
4543         GL_PolygonOffset(0, 0);
4544         switch(vid.renderpath)
4545         {
4546         case RENDERPATH_GL20:
4547         case RENDERPATH_GLES2:
4548                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4549                 break;
4550         }
4551         GL_CullFace(GL_NONE);
4552
4553         CHECKGLERROR
4554 }
4555
4556 void R_ResetViewRendering2D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4557 {
4558         R_ResetViewRendering2D_Common(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight, 1.0f, 1.0f);
4559 }
4560
4561 void R_ResetViewRendering3D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4562 {
4563         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
4564         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
4565         GL_Color(1, 1, 1, 1);
4566         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4567         GL_BlendFunc(GL_ONE, GL_ZERO);
4568         GL_ScissorTest(true);
4569         GL_DepthMask(true);
4570         GL_DepthRange(0, 1);
4571         GL_DepthTest(true);
4572         GL_DepthFunc(GL_LEQUAL);
4573         R_EntityMatrix(&identitymatrix);
4574         R_Mesh_ResetTextureState();
4575         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
4576         switch(vid.renderpath)
4577         {
4578         case RENDERPATH_GL20:
4579         case RENDERPATH_GLES2:
4580                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4581                 break;
4582         }
4583         GL_CullFace(r_refdef.view.cullface_back);
4584 }
4585
4586 /*
4587 ================
4588 R_RenderView_UpdateViewVectors
4589 ================
4590 */
4591 void R_RenderView_UpdateViewVectors(void)
4592 {
4593         // break apart the view matrix into vectors for various purposes
4594         // it is important that this occurs outside the RenderScene function because that can be called from reflection renders, where the vectors come out wrong
4595         // however the r_refdef.view.origin IS updated in RenderScene intentionally - otherwise the sky renders at the wrong origin, etc
4596         Matrix4x4_ToVectors(&r_refdef.view.matrix, r_refdef.view.forward, r_refdef.view.left, r_refdef.view.up, r_refdef.view.origin);
4597         VectorNegate(r_refdef.view.left, r_refdef.view.right);
4598         // make an inverted copy of the view matrix for tracking sprites
4599         Matrix4x4_Invert_Full(&r_refdef.view.inverse_matrix, &r_refdef.view.matrix);
4600 }
4601
4602 void R_RenderTarget_FreeUnused(qboolean force)
4603 {
4604         int i, j, end;
4605         end = Mem_ExpandableArray_IndexRange(&r_fb.rendertargets);
4606         for (i = 0; i < end; i++)
4607         {
4608                 r_rendertarget_t *r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4609                 // free resources for rendertargets that have not been used for a while
4610                 // (note: this check is run after the frame render, so any targets used
4611                 // this frame will not be affected even at low framerates)
4612                 if (r && (realtime - r->lastusetime > 0.2 || force))
4613                 {
4614                         if (r->fbo)
4615                                 R_Mesh_DestroyFramebufferObject(r->fbo);
4616                         for (j = 0; j < sizeof(r->colortexture) / sizeof(r->colortexture[0]); j++)
4617                                 if (r->colortexture[j])
4618                                         R_FreeTexture(r->colortexture[j]);
4619                         if (r->depthtexture)
4620                                 R_FreeTexture(r->depthtexture);
4621                         Mem_ExpandableArray_FreeRecord(&r_fb.rendertargets, r);
4622                 }
4623         }
4624 }
4625
4626 static void R_CalcTexCoordsForView(float x, float y, float w, float h, float tw, float th, float *texcoord2f)
4627 {
4628         float iw = 1.0f / tw, ih = 1.0f / th, x1, y1, x2, y2;
4629         x1 = x * iw;
4630         x2 = (x + w) * iw;
4631         y1 = (th - y) * ih;
4632         y2 = (th - y - h) * ih;
4633         texcoord2f[0] = x1;
4634         texcoord2f[2] = x2;
4635         texcoord2f[4] = x2;
4636         texcoord2f[6] = x1;
4637         texcoord2f[1] = y1;
4638         texcoord2f[3] = y1;
4639         texcoord2f[5] = y2;
4640         texcoord2f[7] = y2;
4641 }
4642
4643 r_rendertarget_t *R_RenderTarget_Get(int texturewidth, int textureheight, textype_t depthtextype, qboolean depthisrenderbuffer, textype_t colortextype0, textype_t colortextype1, textype_t colortextype2, textype_t colortextype3)
4644 {
4645         int i, j, end;
4646         r_rendertarget_t *r = NULL;
4647         char vabuf[256];
4648         // first try to reuse an existing slot if possible
4649         end = Mem_ExpandableArray_IndexRange(&r_fb.rendertargets);
4650         for (i = 0; i < end; i++)
4651         {
4652                 r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4653                 if (r && r->lastusetime != realtime && r->texturewidth == texturewidth && r->textureheight == textureheight && r->depthtextype == depthtextype && r->colortextype[0] == colortextype0 && r->colortextype[1] == colortextype1 && r->colortextype[2] == colortextype2 && r->colortextype[3] == colortextype3)
4654                         break;
4655         }
4656         if (i == end)
4657         {
4658                 // no unused exact match found, so we have to make one in the first unused slot
4659                 r = (r_rendertarget_t *)Mem_ExpandableArray_AllocRecord(&r_fb.rendertargets);
4660                 r->texturewidth = texturewidth;
4661                 r->textureheight = textureheight;
4662                 r->colortextype[0] = colortextype0;
4663                 r->colortextype[1] = colortextype1;
4664                 r->colortextype[2] = colortextype2;
4665                 r->colortextype[3] = colortextype3;
4666                 r->depthtextype = depthtextype;
4667                 r->depthisrenderbuffer = depthisrenderbuffer;
4668                 for (j = 0; j < 4; j++)
4669                         if (r->colortextype[j])
4670                                 r->colortexture[j] = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_%i_type%i", i, j, (int)r->colortextype[j]), r->texturewidth, r->textureheight, NULL, r->colortextype[j], TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4671                 if (r->depthtextype)
4672                 {
4673                         if (r->depthisrenderbuffer)
4674                                 r->depthtexture = R_LoadTextureRenderBuffer(r_main_texturepool, va(vabuf, sizeof(vabuf), "renderbuffer%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, r->depthtextype);
4675                         else
4676                                 r->depthtexture = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_depth_type%i", i, j, (int)r->depthtextype), r->texturewidth, r->textureheight, NULL, r->depthtextype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4677                 }
4678                 r->fbo = R_Mesh_CreateFramebufferObject(r->depthtexture, r->colortexture[0], r->colortexture[1], r->colortexture[2], r->colortexture[3]);
4679         }
4680         r_refdef.stats[r_stat_rendertargets_used]++;
4681         r_refdef.stats[r_stat_rendertargets_pixels] += r->texturewidth * r->textureheight;
4682         r->lastusetime = realtime;
4683         R_CalcTexCoordsForView(0, 0, r->texturewidth, r->textureheight, r->texturewidth, r->textureheight, r->texcoord2f);
4684         return r;
4685 }
4686
4687 static void R_Water_StartFrame(void)
4688 {
4689         int waterwidth, waterheight;
4690
4691         if (vid.width > (int)vid.maxtexturesize_2d || vid.height > (int)vid.maxtexturesize_2d)
4692                 return;
4693
4694         // set waterwidth and waterheight to the water resolution that will be
4695         // used (often less than the screen resolution for faster rendering)
4696         waterwidth = (int)bound(1, r_refdef.view.width * r_water_resolutionmultiplier.value, r_refdef.view.width);
4697         waterheight = (int)bound(1, r_refdef.view.height * r_water_resolutionmultiplier.value, r_refdef.view.height);
4698         R_GetScaledViewSize(waterwidth, waterheight, &waterwidth, &waterheight);
4699
4700         if (!r_water.integer || r_showsurfaces.integer)
4701                 waterwidth = waterheight = 0;
4702
4703         // set up variables that will be used in shader setup
4704         r_fb.water.waterwidth = waterwidth;
4705         r_fb.water.waterheight = waterheight;
4706         r_fb.water.texturewidth = waterwidth;
4707         r_fb.water.textureheight = waterheight;
4708         r_fb.water.camerawidth = waterwidth;
4709         r_fb.water.cameraheight = waterheight;
4710         r_fb.water.screenscale[0] = 0.5f;
4711         r_fb.water.screenscale[1] = 0.5f;
4712         r_fb.water.screencenter[0] = 0.5f;
4713         r_fb.water.screencenter[1] = 0.5f;
4714         r_fb.water.enabled = waterwidth != 0;
4715
4716         r_fb.water.maxwaterplanes = MAX_WATERPLANES;
4717         r_fb.water.numwaterplanes = 0;
4718 }
4719
4720 void R_Water_AddWaterPlane(msurface_t *surface, int entno)
4721 {
4722         int planeindex, bestplaneindex, vertexindex;
4723         vec3_t mins, maxs, normal, center, v, n;
4724         vec_t planescore, bestplanescore;
4725         mplane_t plane;
4726         r_waterstate_waterplane_t *p;
4727         texture_t *t = R_GetCurrentTexture(surface->texture);
4728
4729         rsurface.texture = t;
4730         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS, 1, ((const msurface_t **)&surface));
4731         // if the model has no normals, it's probably off-screen and they were not generated, so don't add it anyway
4732         if (!rsurface.batchnormal3f || rsurface.batchnumvertices < 1)
4733                 return;
4734         // average the vertex normals, find the surface bounds (after deformvertexes)
4735         Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f, v);
4736         Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f, n);
4737         VectorCopy(n, normal);
4738         VectorCopy(v, mins);
4739         VectorCopy(v, maxs);
4740         for (vertexindex = 1;vertexindex < rsurface.batchnumvertices;vertexindex++)
4741         {
4742                 Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f + vertexindex*3, v);
4743                 Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f + vertexindex*3, n);
4744                 VectorAdd(normal, n, normal);
4745                 mins[0] = min(mins[0], v[0]);
4746                 mins[1] = min(mins[1], v[1]);
4747                 mins[2] = min(mins[2], v[2]);
4748                 maxs[0] = max(maxs[0], v[0]);
4749                 maxs[1] = max(maxs[1], v[1]);
4750                 maxs[2] = max(maxs[2], v[2]);
4751         }
4752         VectorNormalize(normal);
4753         VectorMAM(0.5f, mins, 0.5f, maxs, center);
4754
4755         VectorCopy(normal, plane.normal);
4756         VectorNormalize(plane.normal);
4757         plane.dist = DotProduct(center, plane.normal);
4758         PlaneClassify(&plane);
4759         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
4760         {
4761                 // skip backfaces (except if nocullface is set)
4762 //              if (!(t->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
4763 //                      return;
4764                 VectorNegate(plane.normal, plane.normal);
4765                 plane.dist *= -1;
4766                 PlaneClassify(&plane);
4767         }
4768
4769
4770         // find a matching plane if there is one
4771         bestplaneindex = -1;
4772         bestplanescore = 1048576.0f;
4773         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4774         {
4775                 if(p->camera_entity == t->camera_entity)
4776                 {
4777                         planescore = 1.0f - DotProduct(plane.normal, p->plane.normal) + fabs(plane.dist - p->plane.dist) * 0.001f;
4778                         if (bestplaneindex < 0 || bestplanescore > planescore)
4779                         {
4780                                 bestplaneindex = planeindex;
4781                                 bestplanescore = planescore;
4782                         }
4783                 }
4784         }
4785         planeindex = bestplaneindex;
4786
4787         // if this surface does not fit any known plane rendered this frame, add one
4788         if (planeindex < 0 || bestplanescore > 0.001f)
4789         {
4790                 if (r_fb.water.numwaterplanes < r_fb.water.maxwaterplanes)
4791                 {
4792                         // store the new plane
4793                         planeindex = r_fb.water.numwaterplanes++;
4794                         p = r_fb.water.waterplanes + planeindex;
4795                         p->plane = plane;
4796                         // clear materialflags and pvs
4797                         p->materialflags = 0;
4798                         p->pvsvalid = false;
4799                         p->camera_entity = t->camera_entity;
4800                         VectorCopy(mins, p->mins);
4801                         VectorCopy(maxs, p->maxs);
4802                 }
4803                 else
4804                 {
4805                         // We're totally screwed.
4806                         return;
4807                 }
4808         }
4809         else
4810         {
4811                 // merge mins/maxs when we're adding this surface to the plane
4812                 p = r_fb.water.waterplanes + planeindex;
4813                 p->mins[0] = min(p->mins[0], mins[0]);
4814                 p->mins[1] = min(p->mins[1], mins[1]);
4815                 p->mins[2] = min(p->mins[2], mins[2]);
4816                 p->maxs[0] = max(p->maxs[0], maxs[0]);
4817                 p->maxs[1] = max(p->maxs[1], maxs[1]);
4818                 p->maxs[2] = max(p->maxs[2], maxs[2]);
4819         }
4820         // merge this surface's materialflags into the waterplane
4821         p->materialflags |= t->currentmaterialflags;
4822         if(!(p->materialflags & MATERIALFLAG_CAMERA))
4823         {
4824                 // merge this surface's PVS into the waterplane
4825                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
4826                  && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
4827                 {
4828                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
4829                         p->pvsvalid = true;
4830                 }
4831         }
4832 }
4833
4834 extern cvar_t r_drawparticles;
4835 extern cvar_t r_drawdecals;
4836
4837 static void R_Water_ProcessPlanes(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int viewx, int viewy, int viewwidth, int viewheight)
4838 {
4839         int myscissor[4];
4840         r_refdef_view_t originalview;
4841         r_refdef_view_t myview;
4842         int planeindex, qualityreduction = 0, old_r_dynamic = 0, old_r_shadows = 0, old_r_worldrtlight = 0, old_r_dlight = 0, old_r_particles = 0, old_r_decals = 0;
4843         r_waterstate_waterplane_t *p;
4844         vec3_t visorigin;
4845         r_rendertarget_t *rt;
4846
4847         originalview = r_refdef.view;
4848
4849         // lowquality hack, temporarily shut down some cvars and restore afterwards
4850         qualityreduction = r_water_lowquality.integer;
4851         if (qualityreduction > 0)
4852         {
4853                 if (qualityreduction >= 1)
4854                 {
4855                         old_r_shadows = r_shadows.integer;
4856                         old_r_worldrtlight = r_shadow_realtime_world.integer;
4857                         old_r_dlight = r_shadow_realtime_dlight.integer;
4858                         Cvar_SetValueQuick(&r_shadows, 0);
4859                         Cvar_SetValueQuick(&r_shadow_realtime_world, 0);
4860                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, 0);
4861                 }
4862                 if (qualityreduction >= 2)
4863                 {
4864                         old_r_dynamic = r_dynamic.integer;
4865                         old_r_particles = r_drawparticles.integer;
4866                         old_r_decals = r_drawdecals.integer;
4867                         Cvar_SetValueQuick(&r_dynamic, 0);
4868                         Cvar_SetValueQuick(&r_drawparticles, 0);
4869                         Cvar_SetValueQuick(&r_drawdecals, 0);
4870                 }
4871         }
4872
4873         for (planeindex = 0, p = r_fb.water.waterplanes; planeindex < r_fb.water.numwaterplanes; planeindex++, p++)
4874         {
4875                 p->rt_reflection = NULL;
4876                 p->rt_refraction = NULL;
4877                 p->rt_camera = NULL;
4878         }
4879
4880         // render views
4881         r_refdef.view = originalview;
4882         r_refdef.view.showdebug = false;
4883         r_refdef.view.width = r_fb.water.waterwidth;
4884         r_refdef.view.height = r_fb.water.waterheight;
4885         r_refdef.view.useclipplane = true;
4886         myview = r_refdef.view;
4887         r_fb.water.renderingscene = true;
4888         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4889         {
4890                 if (r_water_cameraentitiesonly.value != 0 && !p->camera_entity)
4891                         continue;
4892
4893                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
4894                 {
4895                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4896                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4897                                 goto error;
4898                         r_refdef.view = myview;
4899                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
4900                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
4901                         if(r_water_scissormode.integer)
4902                         {
4903                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4904                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4905                                 {
4906                                         p->rt_reflection = NULL;
4907                                         p->rt_refraction = NULL;
4908                                         p->rt_camera = NULL;
4909                                         continue;
4910                                 }
4911                         }
4912
4913                         r_refdef.view.clipplane = p->plane;
4914                         // reflected view origin may be in solid, so don't cull with it
4915                         r_refdef.view.usevieworiginculling = false;
4916                         // reverse the cullface settings for this render
4917                         r_refdef.view.cullface_front = GL_FRONT;
4918                         r_refdef.view.cullface_back = GL_BACK;
4919                         // combined pvs (based on what can be seen from each surface center)
4920                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4921                         {
4922                                 r_refdef.view.usecustompvs = true;
4923                                 if (p->pvsvalid)
4924                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4925                                 else
4926                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4927                         }
4928
4929                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 2) && !chase_active.integer);
4930                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4931                         GL_ScissorTest(false);
4932                         R_ClearScreen(r_refdef.fogenabled);
4933                         GL_ScissorTest(true);
4934                         if(r_water_scissormode.integer & 2)
4935                                 R_View_UpdateWithScissor(myscissor);
4936                         else
4937                                 R_View_Update();
4938                         R_AnimCache_CacheVisibleEntities();
4939                         if(r_water_scissormode.integer & 1)
4940                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4941                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4942
4943                         r_fb.water.hideplayer = false;
4944                         p->rt_reflection = rt;
4945                 }
4946
4947                 // render the normal view scene and copy into texture
4948                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
4949                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
4950                 {
4951                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4952                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4953                                 goto error;
4954                         r_refdef.view = myview;
4955                         if(r_water_scissormode.integer)
4956                         {
4957                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4958                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4959                                 {
4960                                         p->rt_reflection = NULL;
4961                                         p->rt_refraction = NULL;
4962                                         p->rt_camera = NULL;
4963                                         continue;
4964                                 }
4965                         }
4966
4967                         // combined pvs (based on what can be seen from each surface center)
4968                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4969                         {
4970                                 r_refdef.view.usecustompvs = true;
4971                                 if (p->pvsvalid)
4972                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4973                                 else
4974                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4975                         }
4976
4977                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 1) && !chase_active.integer);
4978
4979                         r_refdef.view.clipplane = p->plane;
4980                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4981                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4982
4983                         if((p->materialflags & MATERIALFLAG_CAMERA) && p->camera_entity)
4984                         {
4985                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4986                                 r_fb.water.hideplayer = false; // we don't want to hide the player model from these ones
4987                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4988                                 R_RenderView_UpdateViewVectors();
4989                                 if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4990                                 {
4991                                         r_refdef.view.usecustompvs = true;
4992                                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4993                                 }
4994                         }
4995
4996                         PlaneClassify(&r_refdef.view.clipplane);
4997
4998                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4999                         GL_ScissorTest(false);
5000                         R_ClearScreen(r_refdef.fogenabled);
5001                         GL_ScissorTest(true);
5002                         if(r_water_scissormode.integer & 2)
5003                                 R_View_UpdateWithScissor(myscissor);
5004                         else
5005                                 R_View_Update();
5006                         R_AnimCache_CacheVisibleEntities();
5007                         if(r_water_scissormode.integer & 1)
5008                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
5009                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5010
5011                         r_fb.water.hideplayer = false;
5012                         p->rt_refraction = rt;
5013                 }
5014                 else if (p->materialflags & MATERIALFLAG_CAMERA)
5015                 {
5016                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5017                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
5018                                 goto error;
5019                         r_refdef.view = myview;
5020
5021                         r_refdef.view.clipplane = p->plane;
5022                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
5023                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
5024
5025                         r_refdef.view.width = r_fb.water.camerawidth;
5026                         r_refdef.view.height = r_fb.water.cameraheight;
5027                         r_refdef.view.frustum_x = 1; // tan(45 * M_PI / 180.0);
5028                         r_refdef.view.frustum_y = 1; // tan(45 * M_PI / 180.0);
5029                         r_refdef.view.ortho_x = 90; // abused as angle by VM_CL_R_SetView
5030                         r_refdef.view.ortho_y = 90; // abused as angle by VM_CL_R_SetView
5031
5032                         if(p->camera_entity)
5033                         {
5034                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
5035                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
5036                         }
5037
5038                         // note: all of the view is used for displaying... so
5039                         // there is no use in scissoring
5040
5041                         // reverse the cullface settings for this render
5042                         r_refdef.view.cullface_front = GL_FRONT;
5043                         r_refdef.view.cullface_back = GL_BACK;
5044                         // also reverse the view matrix
5045                         Matrix4x4_ConcatScale3(&r_refdef.view.matrix, 1, 1, -1); // this serves to invert texcoords in the result, as the copied texture is mapped the wrong way round
5046                         R_RenderView_UpdateViewVectors();
5047                         if(p->camera_entity && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
5048                         {
5049                                 r_refdef.view.usecustompvs = true;
5050                                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
5051                         }
5052                         
5053                         // camera needs no clipplane
5054                         r_refdef.view.useclipplane = false;
5055                         // TODO: is the camera origin always valid?  if so we don't need to clear this
5056                         r_refdef.view.usevieworiginculling = false;
5057
5058                         PlaneClassify(&r_refdef.view.clipplane);
5059
5060                         r_fb.water.hideplayer = false;
5061
5062                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5063                         GL_ScissorTest(false);
5064                         R_ClearScreen(r_refdef.fogenabled);
5065                         GL_ScissorTest(true);
5066                         R_View_Update();
5067                         R_AnimCache_CacheVisibleEntities();
5068                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5069
5070                         r_fb.water.hideplayer = false;
5071                         p->rt_camera = rt;
5072                 }
5073
5074         }
5075         r_fb.water.renderingscene = false;
5076         r_refdef.view = originalview;
5077         R_ResetViewRendering3D(fbo, depthtexture, colortexture, viewx, viewy, viewwidth, viewheight);
5078         R_View_Update();
5079         R_AnimCache_CacheVisibleEntities();
5080         goto finish;
5081 error:
5082         r_refdef.view = originalview;
5083         r_fb.water.renderingscene = false;
5084         Cvar_SetValueQuick(&r_water, 0);
5085         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
5086 finish:
5087         // lowquality hack, restore cvars
5088         if (qualityreduction > 0)
5089         {
5090                 if (qualityreduction >= 1)
5091                 {
5092                         Cvar_SetValueQuick(&r_shadows, old_r_shadows);
5093                         Cvar_SetValueQuick(&r_shadow_realtime_world, old_r_worldrtlight);
5094                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, old_r_dlight);
5095                 }
5096                 if (qualityreduction >= 2)
5097                 {
5098                         Cvar_SetValueQuick(&r_dynamic, old_r_dynamic);
5099                         Cvar_SetValueQuick(&r_drawparticles, old_r_particles);
5100                         Cvar_SetValueQuick(&r_drawdecals, old_r_decals);
5101                 }
5102         }
5103 }
5104
5105 static void R_Bloom_StartFrame(void)
5106 {
5107         int bloomtexturewidth, bloomtextureheight, screentexturewidth, screentextureheight;
5108         int viewwidth, viewheight;
5109         textype_t textype = TEXTYPE_COLORBUFFER;
5110
5111         // clear the pointers to rendertargets from last frame as they're stale
5112         r_fb.rt_screen = NULL;
5113         r_fb.rt_bloom = NULL;
5114
5115         switch (vid.renderpath)
5116         {
5117         case RENDERPATH_GL20:
5118                 r_fb.usedepthtextures = r_usedepthtextures.integer != 0;
5119                 if (r_viewfbo.integer == 2) textype = TEXTYPE_COLORBUFFER16F;
5120                 if (r_viewfbo.integer == 3) textype = TEXTYPE_COLORBUFFER32F;
5121                 break;
5122         case RENDERPATH_GLES2:
5123                 r_fb.usedepthtextures = false;
5124                 break;
5125         }
5126
5127         if (r_viewscale_fpsscaling.integer)
5128         {
5129                 double actualframetime;
5130                 double targetframetime;
5131                 double adjust;
5132                 actualframetime = r_refdef.lastdrawscreentime;
5133                 targetframetime = (1.0 / r_viewscale_fpsscaling_target.value);
5134                 adjust = (targetframetime - actualframetime) * r_viewscale_fpsscaling_multiply.value;
5135                 adjust = bound(-r_viewscale_fpsscaling_stepmax.value, adjust, r_viewscale_fpsscaling_stepmax.value);
5136                 if (r_viewscale_fpsscaling_stepsize.value > 0)
5137                         adjust = (int)(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5138                 viewscalefpsadjusted += adjust;
5139                 viewscalefpsadjusted = bound(r_viewscale_fpsscaling_min.value, viewscalefpsadjusted, 1.0f);
5140         }
5141         else
5142                 viewscalefpsadjusted = 1.0f;
5143
5144         R_GetScaledViewSize(r_refdef.view.width, r_refdef.view.height, &viewwidth, &viewheight);
5145
5146         // set bloomwidth and bloomheight to the bloom resolution that will be
5147         // used (often less than the screen resolution for faster rendering)
5148         r_fb.bloomwidth = bound(1, r_bloom_resolution.integer, vid.width);
5149         r_fb.bloomheight = r_fb.bloomwidth * vid.height / vid.width;
5150         r_fb.bloomheight = bound(1, r_fb.bloomheight, vid.height);
5151         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, (int)vid.maxtexturesize_2d);
5152         r_fb.bloomheight = bound(1, r_fb.bloomheight, (int)vid.maxtexturesize_2d);
5153
5154         // calculate desired texture sizes
5155         screentexturewidth = viewwidth;
5156         screentextureheight = viewheight;
5157         bloomtexturewidth = r_fb.bloomwidth;
5158         bloomtextureheight = r_fb.bloomheight;
5159
5160         if ((r_bloom.integer || (!R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0))) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > (int)vid.maxtexturesize_2d || r_refdef.view.height > (int)vid.maxtexturesize_2d))
5161         {
5162                 Cvar_SetValueQuick(&r_bloom, 0);
5163                 Cvar_SetValueQuick(&r_motionblur, 0);
5164                 Cvar_SetValueQuick(&r_damageblur, 0);
5165         }
5166
5167         // allocate motionblur ghost texture if needed - this is the only persistent texture and is only useful on the main view
5168         if (r_refdef.view.ismain && (r_fb.screentexturewidth != screentexturewidth || r_fb.screentextureheight != screentextureheight || r_fb.textype != textype))
5169         {
5170                 if (r_fb.ghosttexture)
5171                         R_FreeTexture(r_fb.ghosttexture);
5172                 r_fb.ghosttexture = NULL;
5173
5174                 r_fb.screentexturewidth = screentexturewidth;
5175                 r_fb.screentextureheight = screentextureheight;
5176                 r_fb.textype = textype;
5177
5178                 if (r_fb.screentexturewidth && r_fb.screentextureheight)
5179                 {
5180                         if (r_motionblur.value > 0 || r_damageblur.value > 0)
5181                                 r_fb.ghosttexture = R_LoadTexture2D(r_main_texturepool, "framebuffermotionblur", r_fb.screentexturewidth, r_fb.screentextureheight, NULL, r_fb.textype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
5182                         r_fb.ghosttexture_valid = false;
5183                 }
5184         }
5185
5186         if (r_bloom.integer)
5187         {
5188                 // bloom texture is a different resolution
5189                 r_fb.bloomwidth = bound(1, r_bloom_resolution.integer, r_refdef.view.width);
5190                 r_fb.bloomheight = r_fb.bloomwidth * r_refdef.view.height / r_refdef.view.width;
5191                 r_fb.bloomheight = bound(1, r_fb.bloomheight, r_refdef.view.height);
5192         }
5193         else
5194                 r_fb.bloomwidth = r_fb.bloomheight = 0;
5195
5196         r_fb.rt_screen = R_RenderTarget_Get(screentexturewidth, screentextureheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5197
5198         r_refdef.view.clear = true;
5199 }
5200
5201 static void R_Bloom_MakeTexture(void)
5202 {
5203         int x, range, dir;
5204         float xoffset, yoffset, r, brighten;
5205         float colorscale = r_bloom_colorscale.value;
5206         r_viewport_t bloomviewport;
5207         r_rendertarget_t *prev, *cur;
5208         textype_t textype = r_fb.rt_screen->colortextype[0];
5209
5210         r_refdef.stats[r_stat_bloom]++;
5211
5212         R_Viewport_InitOrtho(&bloomviewport, &identitymatrix, 0, 0, r_fb.bloomwidth, r_fb.bloomheight, 0, 0, 1, 1, -10, 100, NULL);
5213
5214         // scale down screen texture to the bloom texture size
5215         CHECKGLERROR
5216         prev = r_fb.rt_screen;
5217         cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5218         R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5219         R_SetViewport(&bloomviewport);
5220         GL_CullFace(GL_NONE);
5221         GL_DepthTest(false);
5222         GL_BlendFunc(GL_ONE, GL_ZERO);
5223         GL_Color(colorscale, colorscale, colorscale, 1);
5224         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5225         // TODO: do boxfilter scale-down in shader?
5226         R_SetupShader_Generic(prev->colortexture[0], false, true, true);
5227         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5228         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5229         // we now have a properly scaled bloom image
5230
5231         // multiply bloom image by itself as many times as desired to darken it
5232         // TODO: if people actually use this it could be done more quickly in the previous shader pass
5233         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
5234         {
5235                 prev = cur;
5236                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5237                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5238                 x *= 2;
5239                 r = bound(0, r_bloom_colorexponent.value / x, 1); // always 0.5 to 1
5240                 if(x <= 2)
5241                         GL_Clear(GL_COLOR_BUFFER_BIT, NULL, 1.0f, 0);
5242                 GL_BlendFunc(GL_SRC_COLOR, GL_ZERO); // square it
5243                 GL_Color(1,1,1,1); // no fix factor supported here
5244                 R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5245                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5246                 R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5247                 r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5248         }
5249
5250         range = r_bloom_blur.integer * r_fb.bloomwidth / 320;
5251         brighten = r_bloom_brighten.value;
5252         brighten = sqrt(brighten);
5253         if(range >= 1)
5254                 brighten *= (3 * range) / (2 * range - 1); // compensate for the "dot particle"
5255
5256         for (dir = 0;dir < 2;dir++)
5257         {
5258                 prev = cur;
5259                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5260                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5261                 // blend on at multiple vertical offsets to achieve a vertical blur
5262                 // TODO: do offset blends using GLSL
5263                 // TODO instead of changing the texcoords, change the target positions to prevent artifacts at edges
5264                 GL_BlendFunc(GL_ONE, GL_ZERO);
5265                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5266                 for (x = -range;x <= range;x++)
5267                 {
5268                         if (!dir){xoffset = 0;yoffset = x;}
5269                         else {xoffset = x;yoffset = 0;}
5270                         xoffset /= (float)prev->texturewidth;
5271                         yoffset /= (float)prev->textureheight;
5272                         // compute a texcoord array with the specified x and y offset
5273                         r_fb.offsettexcoord2f[0] = xoffset+prev->texcoord2f[0];
5274                         r_fb.offsettexcoord2f[1] = yoffset+prev->texcoord2f[1];
5275                         r_fb.offsettexcoord2f[2] = xoffset+prev->texcoord2f[2];
5276                         r_fb.offsettexcoord2f[3] = yoffset+prev->texcoord2f[3];
5277                         r_fb.offsettexcoord2f[4] = xoffset+prev->texcoord2f[4];
5278                         r_fb.offsettexcoord2f[5] = yoffset+prev->texcoord2f[5];
5279                         r_fb.offsettexcoord2f[6] = xoffset+prev->texcoord2f[6];
5280                         r_fb.offsettexcoord2f[7] = yoffset+prev->texcoord2f[7];
5281                         // this r value looks like a 'dot' particle, fading sharply to
5282                         // black at the edges
5283                         // (probably not realistic but looks good enough)
5284                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
5285                         //r = brighten/(range*2+1);
5286                         r = brighten / (range * 2 + 1);
5287                         if(range >= 1)
5288                                 r *= (1 - x*x/(float)((range+1)*(range+1)));
5289                         if (r <= 0)
5290                                 continue;
5291                         GL_Color(r, r, r, 1);
5292                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.offsettexcoord2f);
5293                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5294                         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5295                         GL_BlendFunc(GL_ONE, GL_ONE);
5296                 }
5297         }
5298
5299         // now we have the bloom image, so keep track of it
5300         r_fb.rt_bloom = cur;
5301 }
5302
5303 static void R_BlendView(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5304 {
5305         dpuint64 permutation;
5306         float uservecs[4][4];
5307         rtexture_t *viewtexture;
5308         rtexture_t *bloomtexture;
5309
5310         R_EntityMatrix(&identitymatrix);
5311
5312         if(r_refdef.view.ismain && !R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0) && r_fb.ghosttexture)
5313         {
5314                 // declare variables
5315                 float blur_factor, blur_mouseaccel, blur_velocity;
5316                 static float blur_average; 
5317                 static vec3_t blur_oldangles; // used to see how quickly the mouse is moving
5318
5319                 // set a goal for the factoring
5320                 blur_velocity = bound(0, (VectorLength(cl.movement_velocity) - r_motionblur_velocityfactor_minspeed.value) 
5321                         / max(1, r_motionblur_velocityfactor_maxspeed.value - r_motionblur_velocityfactor_minspeed.value), 1);
5322                 blur_mouseaccel = bound(0, ((fabs(VectorLength(cl.viewangles) - VectorLength(blur_oldangles)) * 10) - r_motionblur_mousefactor_minspeed.value) 
5323                         / max(1, r_motionblur_mousefactor_maxspeed.value - r_motionblur_mousefactor_minspeed.value), 1);
5324                 blur_factor = ((blur_velocity * r_motionblur_velocityfactor.value) 
5325                         + (blur_mouseaccel * r_motionblur_mousefactor.value));
5326
5327                 // from the goal, pick an averaged value between goal and last value
5328                 cl.motionbluralpha = bound(0, (cl.time - cl.oldtime) / max(0.001, r_motionblur_averaging.value), 1);
5329                 blur_average = blur_average * (1 - cl.motionbluralpha) + blur_factor * cl.motionbluralpha;
5330
5331                 // enforce minimum amount of blur 
5332                 blur_factor = blur_average * (1 - r_motionblur_minblur.value) + r_motionblur_minblur.value;
5333
5334                 //Con_Printf("motionblur: direct factor: %f, averaged factor: %f, velocity: %f, mouse accel: %f \n", blur_factor, blur_average, blur_velocity, blur_mouseaccel);
5335
5336                 // calculate values into a standard alpha
5337                 cl.motionbluralpha = 1 - exp(-
5338                                 (
5339                                         (r_motionblur.value * blur_factor / 80)
5340                                         +
5341                                         (r_damageblur.value * (cl.cshifts[CSHIFT_DAMAGE].percent / 1600))
5342                                 )
5343                                 /
5344                                 max(0.0001, cl.time - cl.oldtime) // fps independent
5345                                 );
5346
5347                 // randomization for the blur value to combat persistent ghosting
5348                 cl.motionbluralpha *= lhrandom(1 - r_motionblur_randomize.value, 1 + r_motionblur_randomize.value);
5349                 cl.motionbluralpha = bound(0, cl.motionbluralpha, r_motionblur_maxblur.value);
5350
5351                 // apply the blur
5352                 R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5353                 if (cl.motionbluralpha > 0 && !r_refdef.envmap && r_fb.ghosttexture_valid)
5354                 {
5355                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
5356                         GL_Color(1, 1, 1, cl.motionbluralpha);
5357                         R_CalcTexCoordsForView(0, 0, viewwidth, viewheight, viewwidth, viewheight, r_fb.ghosttexcoord2f);
5358                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.ghosttexcoord2f);
5359                         R_SetupShader_Generic(r_fb.ghosttexture, false, true, true);
5360                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5361                         r_refdef.stats[r_stat_bloom_drawpixels] += viewwidth * viewheight;
5362                 }
5363
5364                 // updates old view angles for next pass
5365                 VectorCopy(cl.viewangles, blur_oldangles);
5366
5367                 // copy view into the ghost texture
5368                 R_Mesh_CopyToTexture(r_fb.ghosttexture, 0, 0, viewx, viewy, viewwidth, viewheight);
5369                 r_refdef.stats[r_stat_bloom_copypixels] += viewwidth * viewheight;
5370                 r_fb.ghosttexture_valid = true;
5371         }
5372
5373         if (r_fb.bloomwidth)
5374         {
5375                 // make the bloom texture
5376                 R_Bloom_MakeTexture();
5377         }
5378
5379 #if _MSC_VER >= 1400
5380 #define sscanf sscanf_s
5381 #endif
5382         memset(uservecs, 0, sizeof(uservecs));
5383         if (r_glsl_postprocess_uservec1_enable.integer)
5384                 sscanf(r_glsl_postprocess_uservec1.string, "%f %f %f %f", &uservecs[0][0], &uservecs[0][1], &uservecs[0][2], &uservecs[0][3]);
5385         if (r_glsl_postprocess_uservec2_enable.integer)
5386                 sscanf(r_glsl_postprocess_uservec2.string, "%f %f %f %f", &uservecs[1][0], &uservecs[1][1], &uservecs[1][2], &uservecs[1][3]);
5387         if (r_glsl_postprocess_uservec3_enable.integer)
5388                 sscanf(r_glsl_postprocess_uservec3.string, "%f %f %f %f", &uservecs[2][0], &uservecs[2][1], &uservecs[2][2], &uservecs[2][3]);
5389         if (r_glsl_postprocess_uservec4_enable.integer)
5390                 sscanf(r_glsl_postprocess_uservec4.string, "%f %f %f %f", &uservecs[3][0], &uservecs[3][1], &uservecs[3][2], &uservecs[3][3]);
5391
5392         // render to the screen fbo
5393         R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5394         GL_Color(1, 1, 1, 1);
5395         GL_BlendFunc(GL_ONE, GL_ZERO);
5396
5397         viewtexture = r_fb.rt_screen->colortexture[0];
5398         bloomtexture = r_fb.rt_bloom ? r_fb.rt_bloom->colortexture[0] : NULL;
5399
5400         if (r_rendertarget_debug.integer >= 0)
5401         {
5402                 r_rendertarget_t *rt = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, r_rendertarget_debug.integer);
5403                 if (rt && rt->colortexture[0])
5404                 {
5405                         viewtexture = rt->colortexture[0];
5406                         bloomtexture = NULL;
5407                 }
5408         }
5409
5410         R_Mesh_PrepareVertices_Mesh_Arrays(4, r_screenvertex3f, NULL, NULL, NULL, NULL, r_fb.rt_screen->texcoord2f, bloomtexture ? r_fb.rt_bloom->texcoord2f : NULL);
5411         switch(vid.renderpath)
5412         {
5413         case RENDERPATH_GL20:
5414         case RENDERPATH_GLES2:
5415                 permutation =
5416                         (r_fb.bloomwidth ? SHADERPERMUTATION_BLOOM : 0)
5417                         | (r_refdef.viewblend[3] > 0 ? SHADERPERMUTATION_VIEWTINT : 0)
5418                         | (!vid_gammatables_trivial ? SHADERPERMUTATION_GAMMARAMPS : 0)
5419                         | (r_glsl_postprocess.integer ? SHADERPERMUTATION_POSTPROCESSING : 0)
5420                         | ((!R_Stereo_ColorMasking() && r_glsl_saturation.value != 1) ? SHADERPERMUTATION_SATURATION : 0);
5421                 R_SetupShader_SetPermutationGLSL(SHADERMODE_POSTPROCESS, permutation);
5422                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First     , viewtexture);
5423                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second    , bloomtexture);
5424                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps       );
5425                 if (r_glsl_permutation->loc_ViewTintColor           >= 0) qglUniform4f(r_glsl_permutation->loc_ViewTintColor     , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
5426                 if (r_glsl_permutation->loc_PixelSize               >= 0) qglUniform2f(r_glsl_permutation->loc_PixelSize         , 1.0/r_fb.screentexturewidth, 1.0/r_fb.screentextureheight);
5427                 if (r_glsl_permutation->loc_UserVec1                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec1          , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]);
5428                 if (r_glsl_permutation->loc_UserVec2                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec2          , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]);
5429                 if (r_glsl_permutation->loc_UserVec3                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec3          , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]);
5430                 if (r_glsl_permutation->loc_UserVec4                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec4          , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]);
5431                 if (r_glsl_permutation->loc_Saturation              >= 0) qglUniform1f(r_glsl_permutation->loc_Saturation        , r_glsl_saturation.value);
5432                 if (r_glsl_permutation->loc_PixelToScreenTexCoord   >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/vid.width, 1.0f/vid.height);
5433                 if (r_glsl_permutation->loc_BloomColorSubtract      >= 0) qglUniform4f(r_glsl_permutation->loc_BloomColorSubtract   , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f);
5434                 break;
5435         }
5436         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5437         r_refdef.stats[r_stat_bloom_drawpixels] += r_refdef.view.width * r_refdef.view.height;
5438 }
5439
5440 matrix4x4_t r_waterscrollmatrix;
5441
5442 void R_UpdateFog(void)
5443 {
5444         // Nehahra fog
5445         if (gamemode == GAME_NEHAHRA)
5446         {
5447                 if (gl_fogenable.integer)
5448                 {
5449                         r_refdef.oldgl_fogenable = true;
5450                         r_refdef.fog_density = gl_fogdensity.value;
5451                         r_refdef.fog_red = gl_fogred.value;
5452                         r_refdef.fog_green = gl_foggreen.value;
5453                         r_refdef.fog_blue = gl_fogblue.value;
5454                         r_refdef.fog_alpha = 1;
5455                         r_refdef.fog_start = 0;
5456                         r_refdef.fog_end = gl_skyclip.value;
5457                         r_refdef.fog_height = 1<<30;
5458                         r_refdef.fog_fadedepth = 128;
5459                 }
5460                 else if (r_refdef.oldgl_fogenable)
5461                 {
5462                         r_refdef.oldgl_fogenable = false;
5463                         r_refdef.fog_density = 0;
5464                         r_refdef.fog_red = 0;
5465                         r_refdef.fog_green = 0;
5466                         r_refdef.fog_blue = 0;
5467                         r_refdef.fog_alpha = 0;
5468                         r_refdef.fog_start = 0;
5469                         r_refdef.fog_end = 0;
5470                         r_refdef.fog_height = 1<<30;
5471                         r_refdef.fog_fadedepth = 128;
5472                 }
5473         }
5474
5475         // fog parms
5476         r_refdef.fog_alpha = bound(0, r_refdef.fog_alpha, 1);
5477         r_refdef.fog_start = max(0, r_refdef.fog_start);
5478         r_refdef.fog_end = max(r_refdef.fog_start + 0.01, r_refdef.fog_end);
5479
5480         if (r_refdef.fog_density && r_drawfog.integer)
5481         {
5482                 r_refdef.fogenabled = true;
5483                 // this is the point where the fog reaches 0.9986 alpha, which we
5484                 // consider a good enough cutoff point for the texture
5485                 // (0.9986 * 256 == 255.6)
5486                 if (r_fog_exp2.integer)
5487                         r_refdef.fogrange = 32 / (r_refdef.fog_density * r_refdef.fog_density) + r_refdef.fog_start;
5488                 else
5489                         r_refdef.fogrange = 2048 / r_refdef.fog_density + r_refdef.fog_start;
5490                 r_refdef.fogrange = bound(r_refdef.fog_start, r_refdef.fogrange, r_refdef.fog_end);
5491                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
5492                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
5493                 if (strcmp(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename))
5494                         R_BuildFogHeightTexture();
5495                 // fog color was already set
5496                 // update the fog texture
5497                 if (r_refdef.fogmasktable_start != r_refdef.fog_start || r_refdef.fogmasktable_alpha != r_refdef.fog_alpha || r_refdef.fogmasktable_density != r_refdef.fog_density || r_refdef.fogmasktable_range != r_refdef.fogrange)
5498                         R_BuildFogTexture();
5499                 r_refdef.fog_height_texcoordscale = 1.0f / max(0.125f, r_refdef.fog_fadedepth);
5500                 r_refdef.fog_height_tablescale = r_refdef.fog_height_tablesize * r_refdef.fog_height_texcoordscale;
5501         }
5502         else
5503                 r_refdef.fogenabled = false;
5504
5505         // fog color
5506         if (r_refdef.fog_density)
5507         {
5508                 r_refdef.fogcolor[0] = r_refdef.fog_red;
5509                 r_refdef.fogcolor[1] = r_refdef.fog_green;
5510                 r_refdef.fogcolor[2] = r_refdef.fog_blue;
5511
5512                 Vector4Set(r_refdef.fogplane, 0, 0, 1, -r_refdef.fog_height);
5513                 r_refdef.fogplaneviewdist = DotProduct(r_refdef.fogplane, r_refdef.view.origin) + r_refdef.fogplane[3];
5514                 r_refdef.fogplaneviewabove = r_refdef.fogplaneviewdist >= 0;
5515                 r_refdef.fogheightfade = -0.5f/max(0.125f, r_refdef.fog_fadedepth);
5516
5517                 {
5518                         vec3_t fogvec;
5519                         VectorCopy(r_refdef.fogcolor, fogvec);
5520                         //   color.rgb *= ContrastBoost * SceneBrightness;
5521                         VectorScale(fogvec, r_refdef.view.colorscale, fogvec);
5522                         r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f);
5523                         r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f);
5524                         r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f);
5525                 }
5526         }
5527 }
5528
5529 void R_UpdateVariables(void)
5530 {
5531         R_Textures_Frame();
5532
5533         r_refdef.scene.ambientintensity = r_ambient.value * (1.0f / 64.0f);
5534
5535         r_refdef.farclip = r_farclip_base.value;
5536         if (r_refdef.scene.worldmodel)
5537                 r_refdef.farclip += r_refdef.scene.worldmodel->radius * r_farclip_world.value * 2;
5538         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
5539
5540         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
5541                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
5542         r_refdef.polygonfactor = 0;
5543         r_refdef.polygonoffset = 0;
5544
5545         r_refdef.scene.rtworld = r_shadow_realtime_world.integer != 0;
5546         r_refdef.scene.rtworldshadows = r_shadow_realtime_world_shadows.integer && vid.stencil;
5547         r_refdef.scene.rtdlight = r_shadow_realtime_dlight.integer != 0 && !gl_flashblend.integer && r_dynamic.integer;
5548         r_refdef.scene.rtdlightshadows = r_refdef.scene.rtdlight && r_shadow_realtime_dlight_shadows.integer && vid.stencil;
5549         r_refdef.scene.lightmapintensity = r_refdef.scene.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
5550         if (FAKELIGHT_ENABLED)
5551         {
5552                 r_refdef.scene.lightmapintensity *= r_fakelight_intensity.value;
5553         }
5554         else if (r_refdef.scene.worldmodel)
5555         {
5556                 r_refdef.scene.lightmapintensity *= r_refdef.scene.worldmodel->lightmapscale;
5557         }
5558         if (r_showsurfaces.integer)
5559         {
5560                 r_refdef.scene.rtworld = false;
5561                 r_refdef.scene.rtworldshadows = false;
5562                 r_refdef.scene.rtdlight = false;
5563                 r_refdef.scene.rtdlightshadows = false;
5564                 r_refdef.scene.lightmapintensity = 0;
5565         }
5566
5567         r_gpuskeletal = false;
5568         switch(vid.renderpath)
5569         {
5570         case RENDERPATH_GL20:
5571                 r_gpuskeletal = r_glsl_skeletal.integer && !r_showsurfaces.integer;
5572         case RENDERPATH_GLES2:
5573                 if(!vid_gammatables_trivial)
5574                 {
5575                         if(!r_texture_gammaramps || vid_gammatables_serial != r_texture_gammaramps_serial)
5576                         {
5577                                 // build GLSL gamma texture
5578 #define RAMPWIDTH 256
5579                                 unsigned short ramp[RAMPWIDTH * 3];
5580                                 unsigned char rampbgr[RAMPWIDTH][4];
5581                                 int i;
5582
5583                                 r_texture_gammaramps_serial = vid_gammatables_serial;
5584
5585                                 VID_BuildGammaTables(&ramp[0], RAMPWIDTH);
5586                                 for(i = 0; i < RAMPWIDTH; ++i)
5587                                 {
5588                                         rampbgr[i][0] = (unsigned char) (ramp[i + 2 * RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5589                                         rampbgr[i][1] = (unsigned char) (ramp[i + RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5590                                         rampbgr[i][2] = (unsigned char) (ramp[i] * 255.0 / 65535.0 + 0.5);
5591                                         rampbgr[i][3] = 0;
5592                                 }
5593                                 if (r_texture_gammaramps)
5594                                 {
5595                                         R_UpdateTexture(r_texture_gammaramps, &rampbgr[0][0], 0, 0, 0, RAMPWIDTH, 1, 1);
5596                                 }
5597                                 else
5598                                 {
5599                                         r_texture_gammaramps = R_LoadTexture2D(r_main_texturepool, "gammaramps", RAMPWIDTH, 1, &rampbgr[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
5600                                 }
5601                         }
5602                 }
5603                 else
5604                 {
5605                         // remove GLSL gamma texture
5606                 }
5607                 break;
5608         }
5609 }
5610
5611 static r_refdef_scene_type_t r_currentscenetype = RST_CLIENT;
5612 static r_refdef_scene_t r_scenes_store[ RST_COUNT ];
5613 /*
5614 ================
5615 R_SelectScene
5616 ================
5617 */
5618 void R_SelectScene( r_refdef_scene_type_t scenetype ) {
5619         if( scenetype != r_currentscenetype ) {
5620                 // store the old scenetype
5621                 r_scenes_store[ r_currentscenetype ] = r_refdef.scene;
5622                 r_currentscenetype = scenetype;
5623                 // move in the new scene
5624                 r_refdef.scene = r_scenes_store[ r_currentscenetype ];
5625         }
5626 }
5627
5628 /*
5629 ================
5630 R_GetScenePointer
5631 ================
5632 */
5633 r_refdef_scene_t * R_GetScenePointer( r_refdef_scene_type_t scenetype )
5634 {
5635         // of course, we could also add a qboolean that provides a lock state and a ReleaseScenePointer function..
5636         if( scenetype == r_currentscenetype ) {
5637                 return &r_refdef.scene;
5638         } else {
5639                 return &r_scenes_store[ scenetype ];
5640         }
5641 }
5642
5643 static int R_SortEntities_Compare(const void *ap, const void *bp)
5644 {
5645         const entity_render_t *a = *(const entity_render_t **)ap;
5646         const entity_render_t *b = *(const entity_render_t **)bp;
5647
5648         // 1. compare model
5649         if(a->model < b->model)
5650                 return -1;
5651         if(a->model > b->model)
5652                 return +1;
5653
5654         // 2. compare skin
5655         // TODO possibly calculate the REAL skinnum here first using
5656         // skinscenes?
5657         if(a->skinnum < b->skinnum)
5658                 return -1;
5659         if(a->skinnum > b->skinnum)
5660                 return +1;
5661
5662         // everything we compared is equal
5663         return 0;
5664 }
5665 static void R_SortEntities(void)
5666 {
5667         // below or equal 2 ents, sorting never gains anything
5668         if(r_refdef.scene.numentities <= 2)
5669                 return;
5670         // sort
5671         qsort(r_refdef.scene.entities, r_refdef.scene.numentities, sizeof(*r_refdef.scene.entities), R_SortEntities_Compare);
5672 }
5673
5674 /*
5675 ================
5676 R_RenderView
5677 ================
5678 */
5679 extern cvar_t r_shadow_bouncegrid;
5680 extern cvar_t v_isometric;
5681 extern void V_MakeViewIsometric(void);
5682 void R_RenderView(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int x, int y, int width, int height)
5683 {
5684         matrix4x4_t originalmatrix = r_refdef.view.matrix, offsetmatrix;
5685         int viewfbo = 0;
5686         rtexture_t *viewdepthtexture = NULL;
5687         rtexture_t *viewcolortexture = NULL;
5688         int viewx = r_refdef.view.x, viewy = r_refdef.view.y, viewwidth = r_refdef.view.width, viewheight = r_refdef.view.height;
5689
5690         // finish any 2D rendering that was queued
5691         DrawQ_Finish();
5692
5693         if (r_timereport_active)
5694                 R_TimeReport("start");
5695         r_textureframe++; // used only by R_GetCurrentTexture
5696         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
5697
5698         if(R_CompileShader_CheckStaticParms())
5699                 R_GLSL_Restart_f();
5700
5701         if (!r_drawentities.integer)
5702                 r_refdef.scene.numentities = 0;
5703         else if (r_sortentities.integer)
5704                 R_SortEntities();
5705
5706         R_AnimCache_ClearCache();
5707
5708         /* adjust for stereo display */
5709         if(R_Stereo_Active())
5710         {
5711                 Matrix4x4_CreateFromQuakeEntity(&offsetmatrix, 0, r_stereo_separation.value * (0.5f - r_stereo_side), 0, 0, r_stereo_angle.value * (0.5f - r_stereo_side), 0, 1);
5712                 Matrix4x4_Concat(&r_refdef.view.matrix, &originalmatrix, &offsetmatrix);
5713         }
5714
5715         if (r_refdef.view.isoverlay)
5716         {
5717                 // TODO: FIXME: move this into its own backend function maybe? [2/5/2008 Andreas]
5718                 R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL);
5719                 GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
5720                 R_TimeReport("depthclear");
5721
5722                 r_refdef.view.showdebug = false;
5723
5724                 r_fb.water.enabled = false;
5725                 r_fb.water.numwaterplanes = 0;
5726
5727                 R_RenderScene(0, NULL, NULL, r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
5728
5729                 r_refdef.view.matrix = originalmatrix;
5730
5731                 CHECKGLERROR
5732                 return;
5733         }
5734
5735         if (!r_refdef.scene.entities || r_refdef.view.width * r_refdef.view.height == 0 || !r_renderview.integer || cl_videoplaying/* || !r_refdef.scene.worldmodel*/)
5736         {
5737                 r_refdef.view.matrix = originalmatrix;
5738                 return;
5739         }
5740
5741         r_refdef.view.usevieworiginculling = !r_trippy.value && r_refdef.view.useperspective;
5742         if (v_isometric.integer && r_refdef.view.ismain)
5743                 V_MakeViewIsometric();
5744
5745         r_refdef.view.colorscale = r_hdr_scenebrightness.value * r_hdr_irisadaptation_value.value;
5746
5747         if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
5748                 // in sRGB fallback, behave similar to true sRGB: convert this
5749                 // value from linear to sRGB
5750                 r_refdef.view.colorscale = Image_sRGBFloatFromLinearFloat(r_refdef.view.colorscale);
5751
5752         R_RenderView_UpdateViewVectors();
5753
5754         R_Shadow_UpdateWorldLightSelection();
5755
5756         // this will set up r_fb.rt_screen
5757         R_Bloom_StartFrame();
5758
5759         // apply bloom brightness offset
5760         if(r_fb.rt_bloom)
5761                 r_refdef.view.colorscale *= r_bloom_scenebrightness.value;
5762
5763         // R_Bloom_StartFrame probably set up an fbo for us to render into, it will be rendered to the window later in R_BlendView
5764         if (r_fb.rt_screen)
5765         {
5766                 viewfbo = r_fb.rt_screen->fbo;
5767                 viewdepthtexture = r_fb.rt_screen->depthtexture;
5768                 viewcolortexture = r_fb.rt_screen->colortexture[0];
5769                 viewx = 0;
5770                 viewy = 0;
5771                 viewwidth = width;
5772                 viewheight = height;
5773         }
5774
5775         R_Water_StartFrame();
5776
5777         CHECKGLERROR
5778         if (r_timereport_active)
5779                 R_TimeReport("viewsetup");
5780
5781         R_ResetViewRendering3D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5782
5783         // clear the whole fbo every frame - otherwise the driver will consider
5784         // it to be an inter-frame texture and stall in multi-gpu configurations
5785         if (r_fb.rt_screen)
5786                 GL_ScissorTest(false);
5787         R_ClearScreen(r_refdef.fogenabled);
5788         if (r_timereport_active)
5789                 R_TimeReport("viewclear");
5790
5791         r_refdef.view.clear = true;
5792
5793         r_refdef.view.showdebug = true;
5794
5795         R_View_Update();
5796         if (r_timereport_active)
5797                 R_TimeReport("visibility");
5798
5799         R_AnimCache_CacheVisibleEntities();
5800         if (r_timereport_active)
5801                 R_TimeReport("animcache");
5802
5803         R_Shadow_UpdateBounceGridTexture();
5804         if (r_timereport_active && r_shadow_bouncegrid.integer)
5805                 R_TimeReport("bouncegrid");
5806
5807         r_fb.water.numwaterplanes = 0;
5808         if (r_fb.water.enabled)
5809                 R_RenderWaterPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5810
5811         // for the actual view render we use scissoring a fair amount, so scissor
5812         // test needs to be on
5813         if (r_fb.rt_screen)
5814                 GL_ScissorTest(true);
5815         GL_Scissor(viewx, viewy, viewwidth, viewheight);
5816         R_RenderScene(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5817         r_fb.water.numwaterplanes = 0;
5818
5819         // postprocess uses textures that are not aligned with the viewport we're rendering, so no scissoring
5820         GL_ScissorTest(false);
5821
5822         R_BlendView(fbo, depthtexture, colortexture, x, y, width, height);
5823         if (r_timereport_active)
5824                 R_TimeReport("blendview");
5825
5826         r_refdef.view.matrix = originalmatrix;
5827
5828         CHECKGLERROR
5829
5830         // go back to 2d rendering
5831         DrawQ_Start();
5832 }
5833
5834 void R_RenderWaterPlanes(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5835 {
5836         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawAddWaterPlanes)
5837         {
5838                 r_refdef.scene.worldmodel->DrawAddWaterPlanes(r_refdef.scene.worldentity);
5839                 if (r_timereport_active)
5840                         R_TimeReport("waterworld");
5841         }
5842
5843         // don't let sound skip if going slow
5844         if (r_refdef.scene.extraupdate)
5845                 S_ExtraUpdate ();
5846
5847         R_DrawModelsAddWaterPlanes();
5848         if (r_timereport_active)
5849                 R_TimeReport("watermodels");
5850
5851         if (r_fb.water.numwaterplanes)
5852         {
5853                 R_Water_ProcessPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5854                 if (r_timereport_active)
5855                         R_TimeReport("waterscenes");
5856         }
5857 }
5858
5859 extern cvar_t cl_locs_show;
5860 static void R_DrawLocs(void);
5861 static void R_DrawEntityBBoxes(prvm_prog_t *prog);
5862 static void R_DrawModelDecals(void);
5863 extern cvar_t cl_decals_newsystem;
5864 extern qboolean r_shadow_usingdeferredprepass;
5865 extern int r_shadow_shadowmapatlas_modelshadows_size;
5866 void R_RenderScene(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5867 {
5868         qboolean shadowmapping = false;
5869
5870         if (r_timereport_active)
5871                 R_TimeReport("beginscene");
5872
5873         r_refdef.stats[r_stat_renders]++;
5874
5875         R_UpdateFog();
5876
5877         // don't let sound skip if going slow
5878         if (r_refdef.scene.extraupdate)
5879                 S_ExtraUpdate ();
5880
5881         R_MeshQueue_BeginScene();
5882
5883         R_SkyStartFrame();
5884
5885         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.scene.time) * 0.025 * r_waterscroll.value, sin(r_refdef.scene.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
5886
5887         if (r_timereport_active)
5888                 R_TimeReport("skystartframe");
5889
5890         if (cl.csqc_vidvars.drawworld)
5891         {
5892                 // don't let sound skip if going slow
5893                 if (r_refdef.scene.extraupdate)
5894                         S_ExtraUpdate ();
5895
5896                 if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawSky)
5897                 {
5898                         r_refdef.scene.worldmodel->DrawSky(r_refdef.scene.worldentity);
5899                         if (r_timereport_active)
5900                                 R_TimeReport("worldsky");
5901                 }
5902
5903                 if (R_DrawBrushModelsSky() && r_timereport_active)
5904                         R_TimeReport("bmodelsky");
5905
5906                 if (skyrendermasked && skyrenderlater)
5907                 {
5908                         // we have to force off the water clipping plane while rendering sky
5909                         R_SetupView(false, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5910                         R_Sky();
5911                         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5912                         if (r_timereport_active)
5913                                 R_TimeReport("sky");
5914                 }
5915         }
5916
5917         // save the framebuffer info for R_Shadow_RenderMode_Reset during this view render
5918         r_shadow_viewfbo = viewfbo;
5919         r_shadow_viewdepthtexture = viewdepthtexture;
5920         r_shadow_viewcolortexture = viewcolortexture;
5921         r_shadow_viewx = viewx;
5922         r_shadow_viewy = viewy;
5923         r_shadow_viewwidth = viewwidth;
5924         r_shadow_viewheight = viewheight;
5925
5926         R_Shadow_PrepareModelShadows();
5927         R_Shadow_PrepareLights();
5928         if (r_timereport_active)
5929                 R_TimeReport("preparelights");
5930
5931         // render all the shadowmaps that will be used for this view
5932         shadowmapping = R_Shadow_ShadowMappingEnabled();
5933         if (shadowmapping || r_shadow_shadowmapatlas_modelshadows_size)
5934         {
5935                 R_Shadow_DrawShadowMaps();
5936                 if (r_timereport_active)
5937                         R_TimeReport("shadowmaps");
5938         }
5939
5940         // render prepass deferred lighting if r_shadow_deferred is on, this produces light buffers that will be sampled in forward pass
5941         if (r_shadow_usingdeferredprepass)
5942                 R_Shadow_DrawPrepass();
5943
5944         // now we begin the forward pass of the view render
5945         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDepth)
5946         {
5947                 r_refdef.scene.worldmodel->DrawDepth(r_refdef.scene.worldentity);
5948                 if (r_timereport_active)
5949                         R_TimeReport("worlddepth");
5950         }
5951         if (r_depthfirst.integer >= 2)
5952         {
5953                 R_DrawModelsDepth();
5954                 if (r_timereport_active)
5955                         R_TimeReport("modeldepth");
5956         }
5957
5958         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->Draw)
5959         {
5960                 r_refdef.scene.worldmodel->Draw(r_refdef.scene.worldentity);
5961                 if (r_timereport_active)
5962                         R_TimeReport("world");
5963         }
5964
5965         // don't let sound skip if going slow
5966         if (r_refdef.scene.extraupdate)
5967                 S_ExtraUpdate ();
5968
5969         R_DrawModels();
5970         if (r_timereport_active)
5971                 R_TimeReport("models");
5972
5973         // don't let sound skip if going slow
5974         if (r_refdef.scene.extraupdate)
5975                 S_ExtraUpdate ();
5976
5977         if (!r_shadow_usingdeferredprepass)
5978         {
5979                 R_Shadow_DrawLights();
5980                 if (r_timereport_active)
5981                         R_TimeReport("rtlights");
5982         }
5983
5984         // don't let sound skip if going slow
5985         if (r_refdef.scene.extraupdate)
5986                 S_ExtraUpdate ();
5987
5988         if (cl.csqc_vidvars.drawworld)
5989         {
5990                 if (cl_decals_newsystem.integer)
5991                 {
5992                         R_DrawModelDecals();
5993                         if (r_timereport_active)
5994                                 R_TimeReport("modeldecals");
5995                 }
5996                 else
5997                 {
5998                         R_DrawDecals();
5999                         if (r_timereport_active)
6000                                 R_TimeReport("decals");
6001                 }
6002
6003                 R_DrawParticles();
6004                 if (r_timereport_active)
6005                         R_TimeReport("particles");
6006
6007                 R_DrawExplosions();
6008                 if (r_timereport_active)
6009                         R_TimeReport("explosions");
6010         }
6011
6012         if (r_refdef.view.showdebug)
6013         {
6014                 if (cl_locs_show.integer)
6015                 {
6016                         R_DrawLocs();
6017                         if (r_timereport_active)
6018                                 R_TimeReport("showlocs");
6019                 }
6020
6021                 if (r_drawportals.integer)
6022                 {
6023                         R_DrawPortals();
6024                         if (r_timereport_active)
6025                                 R_TimeReport("portals");
6026                 }
6027
6028                 if (r_showbboxes_client.value > 0)
6029                 {
6030                         R_DrawEntityBBoxes(CLVM_prog);
6031                         if (r_timereport_active)
6032                                 R_TimeReport("clbboxes");
6033                 }
6034                 if (r_showbboxes.value > 0)
6035                 {
6036                         R_DrawEntityBBoxes(SVVM_prog);
6037                         if (r_timereport_active)
6038                                 R_TimeReport("svbboxes");
6039                 }
6040         }
6041
6042         if (r_transparent.integer)
6043         {
6044                 R_MeshQueue_RenderTransparent();
6045                 if (r_timereport_active)
6046                         R_TimeReport("drawtrans");
6047         }
6048
6049         if (r_refdef.view.showdebug && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value != 0 || r_showcollisionbrushes.value > 0 || r_showoverdraw.value > 0))
6050         {
6051                 r_refdef.scene.worldmodel->DrawDebug(r_refdef.scene.worldentity);
6052                 if (r_timereport_active)
6053                         R_TimeReport("worlddebug");
6054                 R_DrawModelsDebug();
6055                 if (r_timereport_active)
6056                         R_TimeReport("modeldebug");
6057         }
6058
6059         if (cl.csqc_vidvars.drawworld)
6060         {
6061                 R_Shadow_DrawCoronas();
6062                 if (r_timereport_active)
6063                         R_TimeReport("coronas");
6064         }
6065
6066         // don't let sound skip if going slow
6067         if (r_refdef.scene.extraupdate)
6068                 S_ExtraUpdate ();
6069 }
6070
6071 static const unsigned short bboxelements[36] =
6072 {
6073         5, 1, 3, 5, 3, 7,
6074         6, 2, 0, 6, 0, 4,
6075         7, 3, 2, 7, 2, 6,
6076         4, 0, 1, 4, 1, 5,
6077         4, 5, 7, 4, 7, 6,
6078         1, 0, 2, 1, 2, 3,
6079 };
6080
6081 #define BBOXEDGES 13
6082 static const float bboxedges[BBOXEDGES][6] = 
6083 {
6084         // whole box
6085         { 0, 0, 0, 1, 1, 1 },
6086         // bottom edges
6087         { 0, 0, 0, 0, 1, 0 },
6088         { 0, 0, 0, 1, 0, 0 },
6089         { 0, 1, 0, 1, 1, 0 },
6090         { 1, 0, 0, 1, 1, 0 },
6091         // top edges
6092         { 0, 0, 1, 0, 1, 1 },
6093         { 0, 0, 1, 1, 0, 1 },
6094         { 0, 1, 1, 1, 1, 1 },
6095         { 1, 0, 1, 1, 1, 1 },
6096         // vertical edges
6097         { 0, 0, 0, 0, 0, 1 },
6098         { 1, 0, 0, 1, 0, 1 },
6099         { 0, 1, 0, 0, 1, 1 },
6100         { 1, 1, 0, 1, 1, 1 },
6101 };
6102
6103 static void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
6104 {
6105         int numvertices = BBOXEDGES * 8;
6106         float vertex3f[BBOXEDGES * 8 * 3], color4f[BBOXEDGES * 8 * 4];
6107         int numtriangles = BBOXEDGES * 12;
6108         unsigned short elements[BBOXEDGES * 36];
6109         int i, edge;
6110         float *v, *c, f1, f2, edgemins[3], edgemaxs[3];
6111
6112         RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);
6113
6114         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6115         GL_DepthMask(false);
6116         GL_DepthRange(0, 1);
6117         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
6118
6119         for (edge = 0; edge < BBOXEDGES; edge++)
6120         {
6121                 for (i = 0; i < 3; i++)
6122                 {
6123                         edgemins[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][i] - 0.25f;
6124                         edgemaxs[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][3 + i] + 0.25f;
6125                 }
6126                 vertex3f[edge * 24 + 0] = edgemins[0]; vertex3f[edge * 24 + 1] = edgemins[1]; vertex3f[edge * 24 + 2] = edgemins[2];
6127                 vertex3f[edge * 24 + 3] = edgemaxs[0]; vertex3f[edge * 24 + 4] = edgemins[1]; vertex3f[edge * 24 + 5] = edgemins[2];
6128                 vertex3f[edge * 24 + 6] = edgemins[0]; vertex3f[edge * 24 + 7] = edgemaxs[1]; vertex3f[edge * 24 + 8] = edgemins[2];
6129                 vertex3f[edge * 24 + 9] = edgemaxs[0]; vertex3f[edge * 24 + 10] = edgemaxs[1]; vertex3f[edge * 24 + 11] = edgemins[2];
6130                 vertex3f[edge * 24 + 12] = edgemins[0]; vertex3f[edge * 24 + 13] = edgemins[1]; vertex3f[edge * 24 + 14] = edgemaxs[2];
6131                 vertex3f[edge * 24 + 15] = edgemaxs[0]; vertex3f[edge * 24 + 16] = edgemins[1]; vertex3f[edge * 24 + 17] = edgemaxs[2];
6132                 vertex3f[edge * 24 + 18] = edgemins[0]; vertex3f[edge * 24 + 19] = edgemaxs[1]; vertex3f[edge * 24 + 20] = edgemaxs[2];
6133                 vertex3f[edge * 24 + 21] = edgemaxs[0]; vertex3f[edge * 24 + 22] = edgemaxs[1]; vertex3f[edge * 24 + 23] = edgemaxs[2];
6134                 for (i = 0; i < 36; i++)
6135                         elements[edge * 36 + i] = edge * 8 + bboxelements[i];
6136         }
6137         R_FillColors(color4f, numvertices, cr, cg, cb, ca);
6138         if (r_refdef.fogenabled)
6139         {
6140                 for (i = 0, v = vertex3f, c = color4f; i < numvertices; i++, v += 3, c += 4)
6141                 {
6142                         f1 = RSurf_FogVertex(v);
6143                         f2 = 1 - f1;
6144                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
6145                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
6146                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
6147                 }
6148         }
6149         R_Mesh_PrepareVertices_Generic_Arrays(numvertices, vertex3f, color4f, NULL);
6150         R_Mesh_ResetTextureState();
6151         R_SetupShader_Generic_NoTexture(false, false);
6152         R_Mesh_Draw(0, numvertices, 0, numtriangles, NULL, NULL, 0, elements, NULL, 0);
6153 }
6154
6155 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6156 {
6157         // hacky overloading of the parameters
6158         prvm_prog_t *prog = (prvm_prog_t *)rtlight;
6159         int i;
6160         float color[4];
6161         prvm_edict_t *edict;
6162
6163         GL_CullFace(GL_NONE);
6164         R_SetupShader_Generic_NoTexture(false, false);
6165
6166         for (i = 0;i < numsurfaces;i++)
6167         {
6168                 edict = PRVM_EDICT_NUM(surfacelist[i]);
6169                 switch ((int)PRVM_serveredictfloat(edict, solid))
6170                 {
6171                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
6172                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
6173                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
6174                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
6175                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
6176                         case SOLID_CORPSE:   Vector4Set(color, 1, 0.5, 0, 0.05);break;
6177                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
6178                 }
6179                 if (prog == CLVM_prog)
6180                         color[3] *= r_showbboxes_client.value;
6181                 else
6182                         color[3] *= r_showbboxes.value;
6183                 color[3] = bound(0, color[3], 1);
6184                 GL_DepthTest(!r_showdisabledepthtest.integer);
6185                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
6186         }
6187 }
6188
6189 static void R_DrawEntityBBoxes(prvm_prog_t *prog)
6190 {
6191         int i;
6192         prvm_edict_t *edict;
6193         vec3_t center;
6194
6195         if (prog == NULL)
6196                 return;
6197
6198         for (i = 0; i < prog->num_edicts; i++)
6199         {
6200                 edict = PRVM_EDICT_NUM(i);
6201                 if (edict->priv.server->free)
6202                         continue;
6203                 // exclude the following for now, as they don't live in world coordinate space and can't be solid:
6204                 if (PRVM_serveredictedict(edict, tag_entity) != 0)
6205                         continue;
6206                 if (PRVM_serveredictedict(edict, viewmodelforclient) != 0)
6207                         continue;
6208                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
6209                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)prog);
6210         }
6211 }
6212
6213 static const int nomodelelement3i[24] =
6214 {
6215         5, 2, 0,
6216         5, 1, 2,
6217         5, 0, 3,
6218         5, 3, 1,
6219         0, 2, 4,
6220         2, 1, 4,
6221         3, 0, 4,
6222         1, 3, 4
6223 };
6224
6225 static const unsigned short nomodelelement3s[24] =
6226 {
6227         5, 2, 0,
6228         5, 1, 2,
6229         5, 0, 3,
6230         5, 3, 1,
6231         0, 2, 4,
6232         2, 1, 4,
6233         3, 0, 4,
6234         1, 3, 4
6235 };
6236
6237 static const float nomodelvertex3f[6*3] =
6238 {
6239         -16,   0,   0,
6240          16,   0,   0,
6241           0, -16,   0,
6242           0,  16,   0,
6243           0,   0, -16,
6244           0,   0,  16
6245 };
6246
6247 static const float nomodelcolor4f[6*4] =
6248 {
6249         0.0f, 0.0f, 0.5f, 1.0f,
6250         0.0f, 0.0f, 0.5f, 1.0f,
6251         0.0f, 0.5f, 0.0f, 1.0f,
6252         0.0f, 0.5f, 0.0f, 1.0f,
6253         0.5f, 0.0f, 0.0f, 1.0f,
6254         0.5f, 0.0f, 0.0f, 1.0f
6255 };
6256
6257 static void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6258 {
6259         int i;
6260         float f1, f2, *c;
6261         float color4f[6*4];
6262
6263         RSurf_ActiveCustomEntity(&ent->matrix, &ent->inversematrix, ent->flags, ent->shadertime, ent->colormod[0], ent->colormod[1], ent->colormod[2], ent->alpha, 6, nomodelvertex3f, NULL, NULL, NULL, NULL, nomodelcolor4f, 8, nomodelelement3i, nomodelelement3s, false, false);
6264
6265         // this is only called once per entity so numsurfaces is always 1, and
6266         // surfacelist is always {0}, so this code does not handle batches
6267
6268         if (rsurface.ent_flags & RENDER_ADDITIVE)
6269         {
6270                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
6271                 GL_DepthMask(false);
6272         }
6273         else if (ent->alpha < 1)
6274         {
6275                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6276                 GL_DepthMask(false);
6277         }
6278         else
6279         {
6280                 GL_BlendFunc(GL_ONE, GL_ZERO);
6281                 GL_DepthMask(true);
6282         }
6283         GL_DepthRange(0, (rsurface.ent_flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
6284         GL_PolygonOffset(rsurface.basepolygonfactor, rsurface.basepolygonoffset);
6285         GL_DepthTest(!(rsurface.ent_flags & RENDER_NODEPTHTEST));
6286         GL_CullFace((rsurface.ent_flags & RENDER_DOUBLESIDED) ? GL_NONE : r_refdef.view.cullface_back);
6287         memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
6288         for (i = 0, c = color4f;i < 6;i++, c += 4)
6289         {
6290                 c[0] *= ent->render_fullbright[0] * r_refdef.view.colorscale;
6291                 c[1] *= ent->render_fullbright[1] * r_refdef.view.colorscale;
6292                 c[2] *= ent->render_fullbright[2] * r_refdef.view.colorscale;
6293                 c[3] *= ent->alpha;
6294         }
6295         if (r_refdef.fogenabled)
6296         {
6297                 for (i = 0, c = color4f;i < 6;i++, c += 4)
6298                 {
6299                         f1 = RSurf_FogVertex(nomodelvertex3f + 3*i);
6300                         f2 = 1 - f1;
6301                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
6302                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
6303                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
6304                 }
6305         }
6306 //      R_Mesh_ResetTextureState();
6307         R_SetupShader_Generic_NoTexture(false, false);
6308         R_Mesh_PrepareVertices_Generic_Arrays(6, nomodelvertex3f, color4f, NULL);
6309         R_Mesh_Draw(0, 6, 0, 8, nomodelelement3i, NULL, 0, nomodelelement3s, NULL, 0);
6310 }
6311
6312 void R_DrawNoModel(entity_render_t *ent)
6313 {
6314         vec3_t org;
6315         Matrix4x4_OriginFromMatrix(&ent->matrix, org);
6316         if ((ent->flags & RENDER_ADDITIVE) || (ent->alpha < 1))
6317                 R_MeshQueue_AddTransparent((ent->flags & RENDER_NODEPTHTEST) ? TRANSPARENTSORT_HUD : TRANSPARENTSORT_DISTANCE, org, R_DrawNoModel_TransparentCallback, ent, 0, rsurface.rtlight);
6318         else
6319                 R_DrawNoModel_TransparentCallback(ent, rsurface.rtlight, 0, NULL);
6320 }
6321
6322 void R_CalcBeam_Vertex3f (float *vert, const float *org1, const float *org2, float width)
6323 {
6324         vec3_t right1, right2, diff, normal;
6325
6326         VectorSubtract (org2, org1, normal);
6327
6328         // calculate 'right' vector for start
6329         VectorSubtract (r_refdef.view.origin, org1, diff);
6330         CrossProduct (normal, diff, right1);
6331         VectorNormalize (right1);
6332
6333         // calculate 'right' vector for end
6334         VectorSubtract (r_refdef.view.origin, org2, diff);
6335         CrossProduct (normal, diff, right2);
6336         VectorNormalize (right2);
6337
6338         vert[ 0] = org1[0] + width * right1[0];
6339         vert[ 1] = org1[1] + width * right1[1];
6340         vert[ 2] = org1[2] + width * right1[2];
6341         vert[ 3] = org1[0] - width * right1[0];
6342         vert[ 4] = org1[1] - width * right1[1];
6343         vert[ 5] = org1[2] - width * right1[2];
6344         vert[ 6] = org2[0] - width * right2[0];
6345         vert[ 7] = org2[1] - width * right2[1];
6346         vert[ 8] = org2[2] - width * right2[2];
6347         vert[ 9] = org2[0] + width * right2[0];
6348         vert[10] = org2[1] + width * right2[1];
6349         vert[11] = org2[2] + width * right2[2];
6350 }
6351
6352 void R_CalcSprite_Vertex3f(float *vertex3f, const vec3_t origin, const vec3_t left, const vec3_t up, float scalex1, float scalex2, float scaley1, float scaley2)
6353 {
6354         vertex3f[ 0] = origin[0] + left[0] * scalex2 + up[0] * scaley1;
6355         vertex3f[ 1] = origin[1] + left[1] * scalex2 + up[1] * scaley1;
6356         vertex3f[ 2] = origin[2] + left[2] * scalex2 + up[2] * scaley1;
6357         vertex3f[ 3] = origin[0] + left[0] * scalex2 + up[0] * scaley2;
6358         vertex3f[ 4] = origin[1] + left[1] * scalex2 + up[1] * scaley2;
6359         vertex3f[ 5] = origin[2] + left[2] * scalex2 + up[2] * scaley2;
6360         vertex3f[ 6] = origin[0] + left[0] * scalex1 + up[0] * scaley2;
6361         vertex3f[ 7] = origin[1] + left[1] * scalex1 + up[1] * scaley2;
6362         vertex3f[ 8] = origin[2] + left[2] * scalex1 + up[2] * scaley2;
6363         vertex3f[ 9] = origin[0] + left[0] * scalex1 + up[0] * scaley1;
6364         vertex3f[10] = origin[1] + left[1] * scalex1 + up[1] * scaley1;
6365         vertex3f[11] = origin[2] + left[2] * scalex1 + up[2] * scaley1;
6366 }
6367
6368 static int R_Mesh_AddVertex(rmesh_t *mesh, float x, float y, float z)
6369 {
6370         int i;
6371         float *vertex3f;
6372         float v[3];
6373         VectorSet(v, x, y, z);
6374         for (i = 0, vertex3f = mesh->vertex3f;i < mesh->numvertices;i++, vertex3f += 3)
6375                 if (VectorDistance2(v, vertex3f) < mesh->epsilon2)
6376                         break;
6377         if (i == mesh->numvertices)
6378         {
6379                 if (mesh->numvertices < mesh->maxvertices)
6380                 {
6381                         VectorCopy(v, vertex3f);
6382                         mesh->numvertices++;
6383                 }
6384                 return mesh->numvertices;
6385         }
6386         else
6387                 return i;
6388 }
6389
6390 void R_Mesh_AddPolygon3f(rmesh_t *mesh, int numvertices, float *vertex3f)
6391 {
6392         int i;
6393         int *e, element[3];
6394         element[0] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6395         element[1] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6396         e = mesh->element3i + mesh->numtriangles * 3;
6397         for (i = 0;i < numvertices - 2;i++, vertex3f += 3)
6398         {
6399                 element[2] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);
6400                 if (mesh->numtriangles < mesh->maxtriangles)
6401                 {
6402                         *e++ = element[0];
6403                         *e++ = element[1];
6404                         *e++ = element[2];
6405                         mesh->numtriangles++;
6406                 }
6407                 element[1] = element[2];
6408         }
6409 }
6410
6411 static void R_Mesh_AddPolygon3d(rmesh_t *mesh, int numvertices, double *vertex3d)
6412 {
6413         int i;
6414         int *e, element[3];
6415         element[0] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6416         element[1] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6417         e = mesh->element3i + mesh->numtriangles * 3;
6418         for (i = 0;i < numvertices - 2;i++, vertex3d += 3)
6419         {
6420                 element[2] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);
6421                 if (mesh->numtriangles < mesh->maxtriangles)
6422                 {
6423                         *e++ = element[0];
6424                         *e++ = element[1];
6425                         *e++ = element[2];
6426                         mesh->numtriangles++;
6427                 }
6428                 element[1] = element[2];
6429         }
6430 }
6431
6432 #define R_MESH_PLANE_DIST_EPSILON (1.0 / 32.0)
6433 void R_Mesh_AddBrushMeshFromPlanes(rmesh_t *mesh, int numplanes, mplane_t *planes)
6434 {
6435         int planenum, planenum2;
6436         int w;
6437         int tempnumpoints;
6438         mplane_t *plane, *plane2;
6439         double maxdist;
6440         double temppoints[2][256*3];
6441         // figure out how large a bounding box we need to properly compute this brush
6442         maxdist = 0;
6443         for (w = 0;w < numplanes;w++)
6444                 maxdist = max(maxdist, fabs(planes[w].dist));
6445         // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
6446         maxdist = floor(maxdist * (4.0 / 1024.0) + 1) * 1024.0;
6447         for (planenum = 0, plane = planes;planenum < numplanes;planenum++, plane++)
6448         {
6449                 w = 0;
6450                 tempnumpoints = 4;
6451                 PolygonD_QuadForPlane(temppoints[w], plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, maxdist);
6452                 for (planenum2 = 0, plane2 = planes;planenum2 < numplanes && tempnumpoints >= 3;planenum2++, plane2++)
6453                 {
6454                         if (planenum2 == planenum)
6455                                 continue;
6456                         PolygonD_Divide(tempnumpoints, temppoints[w], plane2->normal[0], plane2->normal[1], plane2->normal[2], plane2->dist, R_MESH_PLANE_DIST_EPSILON, 0, NULL, NULL, 256, temppoints[!w], &tempnumpoints, NULL);
6457                         w = !w;
6458                 }
6459                 if (tempnumpoints < 3)
6460                         continue;
6461                 // generate elements forming a triangle fan for this polygon
6462                 R_Mesh_AddPolygon3d(mesh, tempnumpoints, temppoints[w]);
6463         }
6464 }
6465
6466 static void R_Texture_AddLayer(texture_t *t, qboolean depthmask, int blendfunc1, int blendfunc2, texturelayertype_t type, rtexture_t *texture, const matrix4x4_t *matrix, float r, float g, float b, float a)
6467 {
6468         texturelayer_t *layer;
6469         layer = t->currentlayers + t->currentnumlayers++;
6470         layer->type = type;
6471         layer->depthmask = depthmask;
6472         layer->blendfunc1 = blendfunc1;
6473         layer->blendfunc2 = blendfunc2;
6474         layer->texture = texture;
6475         layer->texmatrix = *matrix;
6476         layer->color[0] = r;
6477         layer->color[1] = g;
6478         layer->color[2] = b;
6479         layer->color[3] = a;
6480 }
6481
6482 static qboolean R_TestQ3WaveFunc(q3wavefunc_t func, const float *parms)
6483 {
6484         if(parms[0] == 0 && parms[1] == 0)
6485                 return false;
6486         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6487                 if(rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)] == 0)
6488                         return false;
6489         return true;
6490 }
6491
6492 static float R_EvaluateQ3WaveFunc(q3wavefunc_t func, const float *parms)
6493 {
6494         double index, f;
6495         index = parms[2] + rsurface.shadertime * parms[3];
6496         index -= floor(index);
6497         switch (func & ((1 << Q3WAVEFUNC_USER_SHIFT) - 1))
6498         {
6499         default:
6500         case Q3WAVEFUNC_NONE:
6501         case Q3WAVEFUNC_NOISE:
6502         case Q3WAVEFUNC_COUNT:
6503                 f = 0;
6504                 break;
6505         case Q3WAVEFUNC_SIN: f = sin(index * M_PI * 2);break;
6506         case Q3WAVEFUNC_SQUARE: f = index < 0.5 ? 1 : -1;break;
6507         case Q3WAVEFUNC_SAWTOOTH: f = index;break;
6508         case Q3WAVEFUNC_INVERSESAWTOOTH: f = 1 - index;break;
6509         case Q3WAVEFUNC_TRIANGLE:
6510                 index *= 4;
6511                 f = index - floor(index);
6512                 if (index < 1)
6513                 {
6514                         // f = f;
6515                 }
6516                 else if (index < 2)
6517                         f = 1 - f;
6518                 else if (index < 3)
6519                         f = -f;
6520                 else
6521                         f = -(1 - f);
6522                 break;
6523         }
6524         f = parms[0] + parms[1] * f;
6525         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6526                 f *= rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)];
6527         return (float) f;
6528 }
6529
6530 static void R_tcMod_ApplyToMatrix(matrix4x4_t *texmatrix, q3shaderinfo_layer_tcmod_t *tcmod, int currentmaterialflags)
6531 {
6532         int w, h, idx;
6533         float shadertime;
6534         float f;
6535         float offsetd[2];
6536         float tcmat[12];
6537         matrix4x4_t matrix, temp;
6538         // if shadertime exceeds about 9 hours (32768 seconds), just wrap it,
6539         // it's better to have one huge fixup every 9 hours than gradual
6540         // degradation over time which looks consistently bad after many hours.
6541         //
6542         // tcmod scroll in particular suffers from this degradation which can't be
6543         // effectively worked around even with floor() tricks because we don't
6544         // know if tcmod scroll is the last tcmod being applied, and for clampmap
6545         // a workaround involving floor() would be incorrect anyway...
6546         shadertime = rsurface.shadertime;
6547         if (shadertime >= 32768.0f)
6548                 shadertime -= floor(rsurface.shadertime * (1.0f / 32768.0f)) * 32768.0f;
6549         switch(tcmod->tcmod)
6550         {
6551                 case Q3TCMOD_COUNT:
6552                 case Q3TCMOD_NONE:
6553                         if (currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6554                                 matrix = r_waterscrollmatrix;
6555                         else
6556                                 matrix = identitymatrix;
6557                         break;
6558                 case Q3TCMOD_ENTITYTRANSLATE:
6559                         // this is used in Q3 to allow the gamecode to control texcoord
6560                         // scrolling on the entity, which is not supported in darkplaces yet.
6561                         Matrix4x4_CreateTranslate(&matrix, 0, 0, 0);
6562                         break;
6563                 case Q3TCMOD_ROTATE:
6564                         Matrix4x4_CreateTranslate(&matrix, 0.5, 0.5, 0);
6565                         Matrix4x4_ConcatRotate(&matrix, tcmod->parms[0] * rsurface.shadertime, 0, 0, 1);
6566                         Matrix4x4_ConcatTranslate(&matrix, -0.5, -0.5, 0);
6567                         break;
6568                 case Q3TCMOD_SCALE:
6569                         Matrix4x4_CreateScale3(&matrix, tcmod->parms[0], tcmod->parms[1], 1);
6570                         break;
6571                 case Q3TCMOD_SCROLL:
6572                         // this particular tcmod is a "bug for bug" compatible one with regards to
6573                         // Quake3, the wrapping is unnecessary with our shadetime fix but quake3
6574                         // specifically did the wrapping and so we must mimic that...
6575                         offsetd[0] = tcmod->parms[0] * rsurface.shadertime;
6576                         offsetd[1] = tcmod->parms[1] * rsurface.shadertime;
6577                         Matrix4x4_CreateTranslate(&matrix, offsetd[0] - floor(offsetd[0]), offsetd[1] - floor(offsetd[1]), 0);
6578                         break;
6579                 case Q3TCMOD_PAGE: // poor man's animmap (to store animations into a single file, useful for HTTP downloaded textures)
6580                         w = (int) tcmod->parms[0];
6581                         h = (int) tcmod->parms[1];
6582                         f = rsurface.shadertime / (tcmod->parms[2] * w * h);
6583                         f = f - floor(f);
6584                         idx = (int) floor(f * w * h);
6585                         Matrix4x4_CreateTranslate(&matrix, (idx % w) / tcmod->parms[0], (idx / w) / tcmod->parms[1], 0);
6586                         break;
6587                 case Q3TCMOD_STRETCH:
6588                         f = 1.0f / R_EvaluateQ3WaveFunc(tcmod->wavefunc, tcmod->waveparms);
6589                         Matrix4x4_CreateFromQuakeEntity(&matrix, 0.5f * (1 - f), 0.5 * (1 - f), 0, 0, 0, 0, f);
6590                         break;
6591                 case Q3TCMOD_TRANSFORM:
6592                         VectorSet(tcmat +  0, tcmod->parms[0], tcmod->parms[1], 0);
6593                         VectorSet(tcmat +  3, tcmod->parms[2], tcmod->parms[3], 0);
6594                         VectorSet(tcmat +  6, 0                   , 0                , 1);
6595                         VectorSet(tcmat +  9, tcmod->parms[4], tcmod->parms[5], 0);
6596                         Matrix4x4_FromArray12FloatGL(&matrix, tcmat);
6597                         break;
6598                 case Q3TCMOD_TURBULENT:
6599                         // this is handled in the RSurf_PrepareVertices function
6600                         matrix = identitymatrix;
6601                         break;
6602         }
6603         temp = *texmatrix;
6604         Matrix4x4_Concat(texmatrix, &matrix, &temp);
6605 }
6606
6607 static void R_LoadQWSkin(r_qwskincache_t *cache, const char *skinname)
6608 {
6609         int textureflags = (r_mipskins.integer ? TEXF_MIPMAP : 0) | TEXF_PICMIP;
6610         char name[MAX_QPATH];
6611         skinframe_t *skinframe;
6612         unsigned char pixels[296*194];
6613         strlcpy(cache->name, skinname, sizeof(cache->name));
6614         dpsnprintf(name, sizeof(name), "skins/%s.pcx", cache->name);
6615         if (developer_loading.integer)
6616                 Con_Printf("loading %s\n", name);
6617         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
6618         if (!skinframe || !skinframe->base)
6619         {
6620                 unsigned char *f;
6621                 fs_offset_t filesize;
6622                 skinframe = NULL;
6623                 f = FS_LoadFile(name, tempmempool, true, &filesize);
6624                 if (f)
6625                 {
6626                         if (LoadPCX_QWSkin(f, (int)filesize, pixels, 296, 194))
6627                                 skinframe = R_SkinFrame_LoadInternalQuake(name, textureflags, true, r_fullbrights.integer, pixels, image_width, image_height);
6628                         Mem_Free(f);
6629                 }
6630         }
6631         cache->skinframe = skinframe;
6632 }
6633
6634 texture_t *R_GetCurrentTexture(texture_t *t)
6635 {
6636         int i, q;
6637         const entity_render_t *ent = rsurface.entity;
6638         dp_model_t *model = ent->model; // when calling this, ent must not be NULL
6639         q3shaderinfo_layer_tcmod_t *tcmod;
6640         float specularscale = 0.0f;
6641
6642         if (t->update_lastrenderframe == r_textureframe && t->update_lastrenderentity == (void *)ent && !rsurface.forcecurrenttextureupdate)
6643                 return t->currentframe;
6644         t->update_lastrenderframe = r_textureframe;
6645         t->update_lastrenderentity = (void *)ent;
6646
6647         if(ent->entitynumber >= MAX_EDICTS && ent->entitynumber < 2 * MAX_EDICTS)
6648                 t->camera_entity = ent->entitynumber;
6649         else
6650                 t->camera_entity = 0;
6651
6652         // switch to an alternate material if this is a q1bsp animated material
6653         {
6654                 texture_t *texture = t;
6655                 int s = rsurface.ent_skinnum;
6656                 if ((unsigned int)s >= (unsigned int)model->numskins)
6657                         s = 0;
6658                 if (model->skinscenes)
6659                 {
6660                         if (model->skinscenes[s].framecount > 1)
6661                                 s = model->skinscenes[s].firstframe + (unsigned int) (rsurface.shadertime * model->skinscenes[s].framerate) % model->skinscenes[s].framecount;
6662                         else
6663                                 s = model->skinscenes[s].firstframe;
6664                 }
6665                 if (s > 0)
6666                         t = t + s * model->num_surfaces;
6667                 if (t->animated)
6668                 {
6669                         // use an alternate animation if the entity's frame is not 0,
6670                         // and only if the texture has an alternate animation
6671                         if (t->animated == 2) // q2bsp
6672                                 t = t->anim_frames[0][ent->framegroupblend[0].frame % t->anim_total[0]];
6673                         else if (rsurface.ent_alttextures && t->anim_total[1])
6674                                 t = t->anim_frames[1][(t->anim_total[1] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[1]) : 0];
6675                         else
6676                                 t = t->anim_frames[0][(t->anim_total[0] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[0]) : 0];
6677                 }
6678                 texture->currentframe = t;
6679         }
6680
6681         // update currentskinframe to be a qw skin or animation frame
6682         if (rsurface.ent_qwskin >= 0)
6683         {
6684                 i = rsurface.ent_qwskin;
6685                 if (!r_qwskincache || r_qwskincache_size != cl.maxclients)
6686                 {
6687                         r_qwskincache_size = cl.maxclients;
6688                         if (r_qwskincache)
6689                                 Mem_Free(r_qwskincache);
6690                         r_qwskincache = (r_qwskincache_t *)Mem_Alloc(r_main_mempool, sizeof(*r_qwskincache) * r_qwskincache_size);
6691                 }
6692                 if (strcmp(r_qwskincache[i].name, cl.scores[i].qw_skin))
6693                         R_LoadQWSkin(&r_qwskincache[i], cl.scores[i].qw_skin);
6694                 t->currentskinframe = r_qwskincache[i].skinframe;
6695                 if (t->materialshaderpass && t->currentskinframe == NULL)
6696                         t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6697         }
6698         else if (t->materialshaderpass && t->materialshaderpass->numframes >= 2)
6699                 t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6700         if (t->backgroundshaderpass && t->backgroundshaderpass->numframes >= 2)
6701                 t->backgroundcurrentskinframe = t->backgroundshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->backgroundshaderpass->framerate, t->backgroundshaderpass->numframes)];
6702
6703         t->currentmaterialflags = t->basematerialflags;
6704         t->currentalpha = rsurface.entity->alpha * t->basealpha;
6705         if (t->basematerialflags & MATERIALFLAG_WATERALPHA && (model->brush.supportwateralpha || r_water.integer || r_novis.integer || r_trippy.integer))
6706                 t->currentalpha *= r_wateralpha.value;
6707         if(t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay)
6708                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; // we apply wateralpha later
6709         if(!r_fb.water.enabled || r_refdef.view.isoverlay)
6710                 t->currentmaterialflags &= ~(MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA);
6711
6712         // decide on which type of lighting to use for this surface
6713         if (rsurface.entity->render_modellight_forced)
6714                 t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT;
6715         if (rsurface.entity->render_rtlight_disabled)
6716                 t->currentmaterialflags |= MATERIALFLAG_NORTLIGHT;
6717         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND && !(R_BlendFuncFlags(t->customblendfunc[0], t->customblendfunc[1]) & BLENDFUNC_ALLOWS_COLORMOD))
6718         {
6719                 // some CUSTOMBLEND blendfuncs are too weird, we have to ignore colormod and view colorscale
6720                 t->currentmaterialflags = t->currentmaterialflags | MATERIALFLAG_NORTLIGHT;
6721                 for (q = 0; q < 3; q++)
6722                 {
6723                         t->render_glowmod[q] = rsurface.entity->glowmod[q];
6724                         t->render_modellight_lightdir[q] = q == 2;
6725                         t->render_modellight_ambient[q] = 1;
6726                         t->render_modellight_diffuse[q] = 0;
6727                         t->render_modellight_specular[q] = 0;
6728                         t->render_lightmap_ambient[q] = 0;
6729                         t->render_lightmap_diffuse[q] = 0;
6730                         t->render_lightmap_specular[q] = 0;
6731                         t->render_rtlight_diffuse[q] = 0;
6732                         t->render_rtlight_specular[q] = 0;
6733                 }
6734         }
6735         else if ((t->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) || !(rsurface.ent_flags & RENDER_LIGHT))
6736         {
6737                 // fullbright is basically MATERIALFLAG_MODELLIGHT but with ambient locked to 1,1,1 and no shading
6738                 t->currentmaterialflags = t->currentmaterialflags | MATERIALFLAG_NORTLIGHT | MATERIALFLAG_MODELLIGHT;
6739                 for (q = 0; q < 3; q++)
6740                 {
6741                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6742                         t->render_modellight_ambient[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6743                         t->render_modellight_lightdir[q] = q == 2;
6744                         t->render_modellight_diffuse[q] = 0;
6745                         t->render_modellight_specular[q] = 0;
6746                         t->render_lightmap_ambient[q] = 0;
6747                         t->render_lightmap_diffuse[q] = 0;
6748                         t->render_lightmap_specular[q] = 0;
6749                         t->render_rtlight_diffuse[q] = 0;
6750                         t->render_rtlight_specular[q] = 0;
6751                 }
6752         }
6753         else if (FAKELIGHT_ENABLED)
6754         {
6755                 // no modellight if using fakelight for the map
6756                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_NORTLIGHT) & ~(MATERIALFLAG_MODELLIGHT);
6757                 for (q = 0; q < 3; q++)
6758                 {
6759                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6760                         t->render_modellight_lightdir[q] = rsurface.entity->render_modellight_lightdir[q];
6761                         t->render_modellight_ambient[q] = rsurface.entity->render_modellight_ambient[q] * r_refdef.view.colorscale;
6762                         t->render_modellight_diffuse[q] = rsurface.entity->render_modellight_diffuse[q] * r_refdef.view.colorscale;
6763                         t->render_modellight_specular[q] = rsurface.entity->render_modellight_specular[q] * r_refdef.view.colorscale;
6764                         t->render_lightmap_ambient[q] = 0;
6765                         t->render_lightmap_diffuse[q] = 0;
6766                         t->render_lightmap_specular[q] = 0;
6767                         t->render_rtlight_diffuse[q] = 0;
6768                         t->render_rtlight_specular[q] = 0;
6769                 }
6770         }
6771         else if ((rsurface.ent_flags & (RENDER_DYNAMICMODELLIGHT | RENDER_CUSTOMIZEDMODELLIGHT)) || rsurface.modeltexcoordlightmap2f == NULL)
6772         {
6773                 // ambient + single direction light (modellight)
6774                 t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT;
6775                 for (q = 0; q < 3; q++)
6776                 {
6777                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6778                         t->render_modellight_lightdir[q] = rsurface.entity->render_modellight_lightdir[q];
6779                         t->render_modellight_ambient[q] = rsurface.entity->render_modellight_ambient[q] * r_refdef.view.colorscale;
6780                         t->render_modellight_diffuse[q] = rsurface.entity->render_modellight_diffuse[q] * r_refdef.view.colorscale;
6781                         t->render_modellight_specular[q] = rsurface.entity->render_modellight_specular[q] * r_refdef.view.colorscale;
6782                         t->render_lightmap_ambient[q] = 0;
6783                         t->render_lightmap_diffuse[q] = 0;
6784                         t->render_lightmap_specular[q] = 0;
6785                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6786                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6787                 }
6788         }
6789         else
6790         {
6791                 // lightmap - 2x diffuse and specular brightness because bsp files have 0-2 colors as 0-1
6792                 for (q = 0; q < 3; q++)
6793                 {
6794                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6795                         t->render_modellight_lightdir[q] = q == 2;
6796                         t->render_modellight_ambient[q] = 0;
6797                         t->render_modellight_diffuse[q] = 0;
6798                         t->render_modellight_specular[q] = 0;
6799                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6800                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6801                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6802                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6803                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6804                 }
6805         }
6806
6807         if (t->currentmaterialflags & MATERIALFLAG_VERTEXCOLOR)
6808         {
6809                 // since MATERIALFLAG_VERTEXCOLOR uses the lightmapcolor4f vertex
6810                 // attribute, we punt it to the lightmap path and hope for the best,
6811                 // but lighting doesn't work.
6812                 //
6813                 // FIXME: this is fine for effects but CSQC polygons should be subject
6814                 // to lighting.
6815                 t->currentmaterialflags &= ~MATERIALFLAG_MODELLIGHT;
6816                 for (q = 0; q < 3; q++)
6817                 {
6818                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6819                         t->render_modellight_lightdir[q] = q == 2;
6820                         t->render_modellight_ambient[q] = 0;
6821                         t->render_modellight_diffuse[q] = 0;
6822                         t->render_modellight_specular[q] = 0;
6823                         t->render_lightmap_ambient[q] = 0;
6824                         t->render_lightmap_diffuse[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6825                         t->render_lightmap_specular[q] = 0;
6826                         t->render_rtlight_diffuse[q] = 0;
6827                         t->render_rtlight_specular[q] = 0;
6828                 }
6829         }
6830
6831         for (q = 0; q < 3; q++)
6832         {
6833                 t->render_colormap_pants[q] = rsurface.entity->colormap_pantscolor[q];
6834                 t->render_colormap_shirt[q] = rsurface.entity->colormap_shirtcolor[q];
6835         }
6836
6837         if (rsurface.ent_flags & RENDER_ADDITIVE)
6838                 t->currentmaterialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6839         else if (t->currentalpha < 1)
6840                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6841         // LordHavoc: prevent bugs where code checks add or alpha at higher priority than customblend by clearing these flags
6842         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6843                 t->currentmaterialflags &= ~(MATERIALFLAG_ADD | MATERIALFLAG_ALPHA);
6844         if (rsurface.ent_flags & RENDER_DOUBLESIDED)
6845                 t->currentmaterialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_NOCULLFACE;
6846         if (rsurface.ent_flags & (RENDER_NODEPTHTEST | RENDER_VIEWMODEL))
6847                 t->currentmaterialflags |= MATERIALFLAG_SHORTDEPTHRANGE;
6848         if (t->backgroundshaderpass)
6849                 t->currentmaterialflags |= MATERIALFLAG_VERTEXTEXTUREBLEND;
6850         if (t->currentmaterialflags & MATERIALFLAG_BLENDED)
6851         {
6852                 if (t->currentmaterialflags & (MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA))
6853                         t->currentmaterialflags &= ~MATERIALFLAG_BLENDED;
6854         }
6855         else
6856                 t->currentmaterialflags &= ~(MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA);
6857         if (vid.allowalphatocoverage && r_transparent_alphatocoverage.integer >= 2 && ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA | MATERIALFLAG_ADD | MATERIALFLAG_CUSTOMBLEND)) == (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)))
6858         {
6859                 // promote alphablend to alphatocoverage (a type of alphatest) if antialiasing is on
6860                 t->currentmaterialflags = (t->currentmaterialflags & ~(MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)) | MATERIALFLAG_ALPHATEST;
6861         }
6862         if ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST)) == MATERIALFLAG_BLENDED && r_transparentdepthmasking.integer && !(t->basematerialflags & MATERIALFLAG_BLENDED))
6863                 t->currentmaterialflags |= MATERIALFLAG_TRANSDEPTH;
6864
6865         // there is no tcmod
6866         if (t->currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6867         {
6868                 t->currenttexmatrix = r_waterscrollmatrix;
6869                 t->currentbackgroundtexmatrix = r_waterscrollmatrix;
6870         }
6871         else if (!(t->currentmaterialflags & MATERIALFLAG_CUSTOMSURFACE))
6872         {
6873                 Matrix4x4_CreateIdentity(&t->currenttexmatrix);
6874                 Matrix4x4_CreateIdentity(&t->currentbackgroundtexmatrix);
6875         }
6876
6877         if (t->materialshaderpass)
6878                 for (i = 0, tcmod = t->materialshaderpass->tcmods;i < Q3MAXTCMODS && tcmod->tcmod;i++, tcmod++)
6879                         R_tcMod_ApplyToMatrix(&t->currenttexmatrix, tcmod, t->currentmaterialflags);
6880
6881         t->colormapping = VectorLength2(t->render_colormap_pants) + VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f);
6882         if (t->currentskinframe->qpixels)
6883                 R_SkinFrame_GenerateTexturesFromQPixels(t->currentskinframe, t->colormapping);
6884         t->basetexture = (!t->colormapping && t->currentskinframe->merged) ? t->currentskinframe->merged : t->currentskinframe->base;
6885         if (!t->basetexture)
6886                 t->basetexture = r_texture_notexture;
6887         t->pantstexture = t->colormapping ? t->currentskinframe->pants : NULL;
6888         t->shirttexture = t->colormapping ? t->currentskinframe->shirt : NULL;
6889         t->nmaptexture = t->currentskinframe->nmap;
6890         if (!t->nmaptexture)
6891                 t->nmaptexture = r_texture_blanknormalmap;
6892         t->glosstexture = r_texture_black;
6893         t->glowtexture = t->currentskinframe->glow;
6894         t->fogtexture = t->currentskinframe->fog;
6895         t->reflectmasktexture = t->currentskinframe->reflect;
6896         if (t->backgroundshaderpass)
6897         {
6898                 for (i = 0, tcmod = t->backgroundshaderpass->tcmods; i < Q3MAXTCMODS && tcmod->tcmod; i++, tcmod++)
6899                         R_tcMod_ApplyToMatrix(&t->currentbackgroundtexmatrix, tcmod, t->currentmaterialflags);
6900                 t->backgroundbasetexture = (!t->colormapping && t->backgroundcurrentskinframe->merged) ? t->backgroundcurrentskinframe->merged : t->backgroundcurrentskinframe->base;
6901                 t->backgroundnmaptexture = t->backgroundcurrentskinframe->nmap;
6902                 t->backgroundglosstexture = r_texture_black;
6903                 t->backgroundglowtexture = t->backgroundcurrentskinframe->glow;
6904                 if (!t->backgroundnmaptexture)
6905                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6906                 // make sure that if glow is going to be used, both textures are not NULL
6907                 if (!t->backgroundglowtexture && t->glowtexture)
6908                         t->backgroundglowtexture = r_texture_black;
6909                 if (!t->glowtexture && t->backgroundglowtexture)
6910                         t->glowtexture = r_texture_black;
6911         }
6912         else
6913         {
6914                 t->backgroundbasetexture = r_texture_white;
6915                 t->backgroundnmaptexture = r_texture_blanknormalmap;
6916                 t->backgroundglosstexture = r_texture_black;
6917                 t->backgroundglowtexture = NULL;
6918         }
6919         t->specularpower = r_shadow_glossexponent.value;
6920         // TODO: store reference values for these in the texture?
6921         if (r_shadow_gloss.integer > 0)
6922         {
6923                 if (t->currentskinframe->gloss || (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss))
6924                 {
6925                         if (r_shadow_glossintensity.value > 0)
6926                         {
6927                                 t->glosstexture = t->currentskinframe->gloss ? t->currentskinframe->gloss : r_texture_white;
6928                                 t->backgroundglosstexture = (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss) ? t->backgroundcurrentskinframe->gloss : r_texture_white;
6929                                 specularscale = r_shadow_glossintensity.value;
6930                         }
6931                 }
6932                 else if (r_shadow_gloss.integer >= 2 && r_shadow_gloss2intensity.value > 0)
6933                 {
6934                         t->glosstexture = r_texture_white;
6935                         t->backgroundglosstexture = r_texture_white;
6936                         specularscale = r_shadow_gloss2intensity.value;
6937                         t->specularpower = r_shadow_gloss2exponent.value;
6938                 }
6939         }
6940         specularscale *= t->specularscalemod;
6941         t->specularpower *= t->specularpowermod;
6942
6943         // lightmaps mode looks bad with dlights using actual texturing, so turn
6944         // off the colormap and glossmap, but leave the normalmap on as it still
6945         // accurately represents the shading involved
6946         if (gl_lightmaps.integer)
6947         {
6948                 t->basetexture = r_texture_grey128;
6949                 t->pantstexture = r_texture_black;
6950                 t->shirttexture = r_texture_black;
6951                 if (gl_lightmaps.integer < 2)
6952                         t->nmaptexture = r_texture_blanknormalmap;
6953                 t->glosstexture = r_texture_black;
6954                 t->glowtexture = NULL;
6955                 t->fogtexture = NULL;
6956                 t->reflectmasktexture = NULL;
6957                 t->backgroundbasetexture = NULL;
6958                 if (gl_lightmaps.integer < 2)
6959                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6960                 t->backgroundglosstexture = r_texture_black;
6961                 t->backgroundglowtexture = NULL;
6962                 specularscale = 0;
6963                 t->currentmaterialflags = MATERIALFLAG_WALL | (t->currentmaterialflags & (MATERIALFLAG_NOCULLFACE | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SHORTDEPTHRANGE));
6964         }
6965
6966         if (specularscale != 1.0f)
6967         {
6968                 for (q = 0; q < 3; q++)
6969                 {
6970                         t->render_modellight_specular[q] *= specularscale;
6971                         t->render_lightmap_specular[q] *= specularscale;
6972                         t->render_rtlight_specular[q] *= specularscale;
6973                 }
6974         }
6975
6976         t->currentnumlayers = 0;
6977         if (t->currentmaterialflags & MATERIALFLAG_WALL)
6978         {
6979                 int blendfunc1, blendfunc2;
6980                 qboolean depthmask;
6981                 if (t->currentmaterialflags & MATERIALFLAG_ADD)
6982                 {
6983                         blendfunc1 = GL_SRC_ALPHA;
6984                         blendfunc2 = GL_ONE;
6985                 }
6986                 else if (t->currentmaterialflags & MATERIALFLAG_ALPHA)
6987                 {
6988                         blendfunc1 = GL_SRC_ALPHA;
6989                         blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
6990                 }
6991                 else if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6992                 {
6993                         blendfunc1 = t->customblendfunc[0];
6994                         blendfunc2 = t->customblendfunc[1];
6995                 }
6996                 else
6997                 {
6998                         blendfunc1 = GL_ONE;
6999                         blendfunc2 = GL_ZERO;
7000                 }
7001                 depthmask = !(t->currentmaterialflags & MATERIALFLAG_BLENDED);
7002                 if (t->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
7003                 {
7004                         // basic lit geometry
7005                         R_Texture_AddLayer(t, depthmask, blendfunc1, blendfunc2, TEXTURELAYERTYPE_LITTEXTURE, t->basetexture, &t->currenttexmatrix, 2, 2, 2, t->currentalpha);
7006                         // add pants/shirt if needed
7007                         if (VectorLength2(t->render_colormap_pants) >= (1.0f / 1048576.0f) && t->pantstexture)
7008                                 R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_LITTEXTURE, t->pantstexture, &t->currenttexmatrix, 2 * t->render_colormap_pants[0], 2 * t->render_colormap_pants[1], 2 * t->render_colormap_pants[2], t->currentalpha);
7009                         if (VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f) && t->shirttexture)
7010                                 R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_LITTEXTURE, t->shirttexture, &t->currenttexmatrix, 2 * t->render_colormap_shirt[0], 2 * t->render_colormap_shirt[1], 2 * t->render_colormap_shirt[2], t->currentalpha);
7011                 }
7012                 else
7013                 {
7014                         // basic lit geometry
7015                         R_Texture_AddLayer(t, depthmask, blendfunc1, blendfunc2, TEXTURELAYERTYPE_LITTEXTURE, t->basetexture, &t->currenttexmatrix, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2], t->currentalpha);
7016                         // add pants/shirt if needed
7017                         if (VectorLength2(t->render_colormap_pants) >= (1.0f / 1048576.0f) && t->pantstexture)
7018                                 R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_LITTEXTURE, t->pantstexture, &t->currenttexmatrix, t->render_colormap_pants[0] * t->render_lightmap_diffuse[0], t->render_colormap_pants[1] * t->render_lightmap_diffuse[1], t->render_colormap_pants[2]  * t->render_lightmap_diffuse[2], t->currentalpha);
7019                         if (VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f) && t->shirttexture)
7020                                 R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_LITTEXTURE, t->shirttexture, &t->currenttexmatrix, t->render_colormap_shirt[0] * t->render_lightmap_diffuse[0], t->render_colormap_shirt[1] * t->render_lightmap_diffuse[1], t->render_colormap_shirt[2] * t->render_lightmap_diffuse[2], t->currentalpha);
7021                         // now add ambient passes if needed
7022                         if (VectorLength2(t->render_lightmap_ambient) >= (1.0f/1048576.0f))
7023                         {
7024                                 R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->basetexture, &t->currenttexmatrix, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2], t->currentalpha);
7025                                 if (VectorLength2(t->render_colormap_pants) >= (1.0f / 1048576.0f) && t->pantstexture)
7026                                         R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->pantstexture, &t->currenttexmatrix, t->render_colormap_pants[0] * t->render_lightmap_ambient[0], t->render_colormap_pants[1] * t->render_lightmap_ambient[1], t->render_colormap_pants[2] * t->render_lightmap_ambient[2], t->currentalpha);
7027                                 if (VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f) && t->shirttexture)
7028                                         R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->shirttexture, &t->currenttexmatrix, t->render_colormap_shirt[0] * t->render_lightmap_ambient[0], t->render_colormap_shirt[1] * t->render_lightmap_ambient[1], t->render_colormap_shirt[2] * t->render_lightmap_ambient[2], t->currentalpha);
7029                         }
7030                 }
7031                 if (t->glowtexture != NULL && !gl_lightmaps.integer)
7032                         R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->glowtexture, &t->currenttexmatrix, t->render_glowmod[0], t->render_glowmod[1], t->render_glowmod[2], t->currentalpha);
7033                 if (r_refdef.fogenabled && !(t->currentmaterialflags & MATERIALFLAG_ADD))
7034                 {
7035                         // if this is opaque use alpha blend which will darken the earlier
7036                         // passes cheaply.
7037                         //
7038                         // if this is an alpha blended material, all the earlier passes
7039                         // were darkened by fog already, so we only need to add the fog
7040                         // color ontop through the fog mask texture
7041                         //
7042                         // if this is an additive blended material, all the earlier passes
7043                         // were darkened by fog already, and we should not add fog color
7044                         // (because the background was not darkened, there is no fog color
7045                         // that was lost behind it).
7046                         R_Texture_AddLayer(t, false, GL_SRC_ALPHA, (t->currentmaterialflags & MATERIALFLAG_BLENDED) ? GL_ONE : GL_ONE_MINUS_SRC_ALPHA, TEXTURELAYERTYPE_FOG, t->fogtexture, &t->currenttexmatrix, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], t->currentalpha);
7047                 }
7048         }
7049
7050         return t;
7051 }
7052
7053 rsurfacestate_t rsurface;
7054
7055 void RSurf_ActiveModelEntity(const entity_render_t *ent, qboolean wantnormals, qboolean wanttangents, qboolean prepass)
7056 {
7057         dp_model_t *model = ent->model;
7058         //if (rsurface.entity == ent && (!model->surfmesh.isanimated || (!wantnormals && !wanttangents)))
7059         //      return;
7060         rsurface.entity = (entity_render_t *)ent;
7061         rsurface.skeleton = ent->skeleton;
7062         memcpy(rsurface.userwavefunc_param, ent->userwavefunc_param, sizeof(rsurface.userwavefunc_param));
7063         rsurface.ent_skinnum = ent->skinnum;
7064         rsurface.ent_qwskin = (ent->entitynumber <= cl.maxclients && ent->entitynumber >= 1 && cls.protocol == PROTOCOL_QUAKEWORLD && cl.scores[ent->entitynumber - 1].qw_skin[0] && !strcmp(ent->model->name, "progs/player.mdl")) ? (ent->entitynumber - 1) : -1;
7065         rsurface.ent_flags = ent->flags;
7066         if (r_fullbright_directed.integer && (r_fullbright.integer || !model->lit))
7067                 rsurface.ent_flags |= RENDER_LIGHT | RENDER_DYNAMICMODELLIGHT;
7068         rsurface.shadertime = r_refdef.scene.time - ent->shadertime;
7069         rsurface.matrix = ent->matrix;
7070         rsurface.inversematrix = ent->inversematrix;
7071         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
7072         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
7073         R_EntityMatrix(&rsurface.matrix);
7074         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
7075         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
7076         rsurface.fogplaneviewdist = r_refdef.fogplaneviewdist * rsurface.inversematrixscale;
7077         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
7078         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
7079         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
7080         memcpy(rsurface.frameblend, ent->frameblend, sizeof(ent->frameblend));
7081         rsurface.ent_alttextures = ent->framegroupblend[0].frame != 0;
7082         rsurface.basepolygonfactor = r_refdef.polygonfactor;
7083         rsurface.basepolygonoffset = r_refdef.polygonoffset;
7084         if (ent->model->brush.submodel && !prepass)
7085         {
7086                 rsurface.basepolygonfactor += r_polygonoffset_submodel_factor.value;
7087                 rsurface.basepolygonoffset += r_polygonoffset_submodel_offset.value;
7088         }
7089         // if the animcache code decided it should use the shader path, skip the deform step
7090         rsurface.entityskeletaltransform3x4 = ent->animcache_skeletaltransform3x4;
7091         rsurface.entityskeletaltransform3x4buffer = ent->animcache_skeletaltransform3x4buffer;
7092         rsurface.entityskeletaltransform3x4offset = ent->animcache_skeletaltransform3x4offset;
7093         rsurface.entityskeletaltransform3x4size = ent->animcache_skeletaltransform3x4size;
7094         rsurface.entityskeletalnumtransforms = rsurface.entityskeletaltransform3x4 ? model->num_bones : 0;
7095         if (model->surfmesh.isanimated && model->AnimateVertices && !rsurface.entityskeletaltransform3x4)
7096         {
7097                 if (ent->animcache_vertex3f)
7098                 {
7099                         r_refdef.stats[r_stat_batch_entitycache_count]++;
7100                         r_refdef.stats[r_stat_batch_entitycache_surfaces] += model->num_surfaces;
7101                         r_refdef.stats[r_stat_batch_entitycache_vertices] += model->surfmesh.num_vertices;
7102                         r_refdef.stats[r_stat_batch_entitycache_triangles] += model->surfmesh.num_triangles;
7103                         rsurface.modelvertex3f = ent->animcache_vertex3f;
7104                         rsurface.modelvertex3f_vertexbuffer = ent->animcache_vertex3f_vertexbuffer;
7105                         rsurface.modelvertex3f_bufferoffset = ent->animcache_vertex3f_bufferoffset;
7106                         rsurface.modelsvector3f = wanttangents ? ent->animcache_svector3f : NULL;
7107                         rsurface.modelsvector3f_vertexbuffer = wanttangents ? ent->animcache_svector3f_vertexbuffer : NULL;
7108                         rsurface.modelsvector3f_bufferoffset = wanttangents ? ent->animcache_svector3f_bufferoffset : 0;
7109                         rsurface.modeltvector3f = wanttangents ? ent->animcache_tvector3f : NULL;
7110                         rsurface.modeltvector3f_vertexbuffer = wanttangents ? ent->animcache_tvector3f_vertexbuffer : NULL;
7111                         rsurface.modeltvector3f_bufferoffset = wanttangents ? ent->animcache_tvector3f_bufferoffset : 0;
7112                         rsurface.modelnormal3f = wantnormals ? ent->animcache_normal3f : NULL;
7113                         rsurface.modelnormal3f_vertexbuffer = wantnormals ? ent->animcache_normal3f_vertexbuffer : NULL;
7114                         rsurface.modelnormal3f_bufferoffset = wantnormals ? ent->animcache_normal3f_bufferoffset : 0;
7115                 }
7116                 else if (wanttangents)
7117                 {
7118                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7119                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7120                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7121                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7122                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7123                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7124                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7125                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7126                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, rsurface.modelsvector3f, rsurface.modeltvector3f);
7127                         rsurface.modelvertex3f_vertexbuffer = NULL;
7128                         rsurface.modelvertex3f_bufferoffset = 0;
7129                         rsurface.modelvertex3f_vertexbuffer = 0;
7130                         rsurface.modelvertex3f_bufferoffset = 0;
7131                         rsurface.modelsvector3f_vertexbuffer = 0;
7132                         rsurface.modelsvector3f_bufferoffset = 0;
7133                         rsurface.modeltvector3f_vertexbuffer = 0;
7134                         rsurface.modeltvector3f_bufferoffset = 0;
7135                         rsurface.modelnormal3f_vertexbuffer = 0;
7136                         rsurface.modelnormal3f_bufferoffset = 0;
7137                 }
7138                 else if (wantnormals)
7139                 {
7140                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7141                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7142                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7143                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7144                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7145                         rsurface.modelsvector3f = NULL;
7146                         rsurface.modeltvector3f = NULL;
7147                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7148                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, NULL, NULL);
7149                         rsurface.modelvertex3f_vertexbuffer = NULL;
7150                         rsurface.modelvertex3f_bufferoffset = 0;
7151                         rsurface.modelvertex3f_vertexbuffer = 0;
7152                         rsurface.modelvertex3f_bufferoffset = 0;
7153                         rsurface.modelsvector3f_vertexbuffer = 0;
7154                         rsurface.modelsvector3f_bufferoffset = 0;
7155                         rsurface.modeltvector3f_vertexbuffer = 0;
7156                         rsurface.modeltvector3f_bufferoffset = 0;
7157                         rsurface.modelnormal3f_vertexbuffer = 0;
7158                         rsurface.modelnormal3f_bufferoffset = 0;
7159                 }
7160                 else
7161                 {
7162                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7163                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7164                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7165                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7166                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7167                         rsurface.modelsvector3f = NULL;
7168                         rsurface.modeltvector3f = NULL;
7169                         rsurface.modelnormal3f = NULL;
7170                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, NULL, NULL, NULL);
7171                         rsurface.modelvertex3f_vertexbuffer = NULL;
7172                         rsurface.modelvertex3f_bufferoffset = 0;
7173                         rsurface.modelvertex3f_vertexbuffer = 0;
7174                         rsurface.modelvertex3f_bufferoffset = 0;
7175                         rsurface.modelsvector3f_vertexbuffer = 0;
7176                         rsurface.modelsvector3f_bufferoffset = 0;
7177                         rsurface.modeltvector3f_vertexbuffer = 0;
7178                         rsurface.modeltvector3f_bufferoffset = 0;
7179                         rsurface.modelnormal3f_vertexbuffer = 0;
7180                         rsurface.modelnormal3f_bufferoffset = 0;
7181                 }
7182                 rsurface.modelgeneratedvertex = true;
7183         }
7184         else
7185         {
7186                 if (rsurface.entityskeletaltransform3x4)
7187                 {
7188                         r_refdef.stats[r_stat_batch_entityskeletal_count]++;
7189                         r_refdef.stats[r_stat_batch_entityskeletal_surfaces] += model->num_surfaces;
7190                         r_refdef.stats[r_stat_batch_entityskeletal_vertices] += model->surfmesh.num_vertices;
7191                         r_refdef.stats[r_stat_batch_entityskeletal_triangles] += model->surfmesh.num_triangles;
7192                 }
7193                 else
7194                 {
7195                         r_refdef.stats[r_stat_batch_entitystatic_count]++;
7196                         r_refdef.stats[r_stat_batch_entitystatic_surfaces] += model->num_surfaces;
7197                         r_refdef.stats[r_stat_batch_entitystatic_vertices] += model->surfmesh.num_vertices;
7198                         r_refdef.stats[r_stat_batch_entitystatic_triangles] += model->surfmesh.num_triangles;
7199                 }
7200                 rsurface.modelvertex3f  = model->surfmesh.data_vertex3f;
7201                 rsurface.modelvertex3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7202                 rsurface.modelvertex3f_bufferoffset = model->surfmesh.vbooffset_vertex3f;
7203                 rsurface.modelsvector3f = model->surfmesh.data_svector3f;
7204                 rsurface.modelsvector3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7205                 rsurface.modelsvector3f_bufferoffset = model->surfmesh.vbooffset_svector3f;
7206                 rsurface.modeltvector3f = model->surfmesh.data_tvector3f;
7207                 rsurface.modeltvector3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7208                 rsurface.modeltvector3f_bufferoffset = model->surfmesh.vbooffset_tvector3f;
7209                 rsurface.modelnormal3f  = model->surfmesh.data_normal3f;
7210                 rsurface.modelnormal3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7211                 rsurface.modelnormal3f_bufferoffset = model->surfmesh.vbooffset_normal3f;
7212                 rsurface.modelgeneratedvertex = false;
7213         }
7214         rsurface.modellightmapcolor4f  = model->surfmesh.data_lightmapcolor4f;
7215         rsurface.modellightmapcolor4f_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7216         rsurface.modellightmapcolor4f_bufferoffset = model->surfmesh.vbooffset_lightmapcolor4f;
7217         rsurface.modeltexcoordtexture2f  = model->surfmesh.data_texcoordtexture2f;
7218         rsurface.modeltexcoordtexture2f_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7219         rsurface.modeltexcoordtexture2f_bufferoffset = model->surfmesh.vbooffset_texcoordtexture2f;
7220         rsurface.modeltexcoordlightmap2f  = model->surfmesh.data_texcoordlightmap2f;
7221         rsurface.modeltexcoordlightmap2f_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7222         rsurface.modeltexcoordlightmap2f_bufferoffset = model->surfmesh.vbooffset_texcoordlightmap2f;
7223         rsurface.modelskeletalindex4ub = model->surfmesh.data_skeletalindex4ub;
7224         rsurface.modelskeletalindex4ub_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7225         rsurface.modelskeletalindex4ub_bufferoffset = model->surfmesh.vbooffset_skeletalindex4ub;
7226         rsurface.modelskeletalweight4ub = model->surfmesh.data_skeletalweight4ub;
7227         rsurface.modelskeletalweight4ub_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
7228         rsurface.modelskeletalweight4ub_bufferoffset = model->surfmesh.vbooffset_skeletalweight4ub;
7229         rsurface.modelelement3i = model->surfmesh.data_element3i;
7230         rsurface.modelelement3i_indexbuffer = model->surfmesh.data_element3i_indexbuffer;
7231         rsurface.modelelement3i_bufferoffset = model->surfmesh.data_element3i_bufferoffset;
7232         rsurface.modelelement3s = model->surfmesh.data_element3s;
7233         rsurface.modelelement3s_indexbuffer = model->surfmesh.data_element3s_indexbuffer;
7234         rsurface.modelelement3s_bufferoffset = model->surfmesh.data_element3s_bufferoffset;
7235         rsurface.modellightmapoffsets = model->surfmesh.data_lightmapoffsets;
7236         rsurface.modelnumvertices = model->surfmesh.num_vertices;
7237         rsurface.modelnumtriangles = model->surfmesh.num_triangles;
7238         rsurface.modelsurfaces = model->data_surfaces;
7239         rsurface.batchgeneratedvertex = false;
7240         rsurface.batchfirstvertex = 0;
7241         rsurface.batchnumvertices = 0;
7242         rsurface.batchfirsttriangle = 0;
7243         rsurface.batchnumtriangles = 0;
7244         rsurface.batchvertex3f  = NULL;
7245         rsurface.batchvertex3f_vertexbuffer = NULL;
7246         rsurface.batchvertex3f_bufferoffset = 0;
7247         rsurface.batchsvector3f = NULL;
7248         rsurface.batchsvector3f_vertexbuffer = NULL;
7249         rsurface.batchsvector3f_bufferoffset = 0;
7250         rsurface.batchtvector3f = NULL;
7251         rsurface.batchtvector3f_vertexbuffer = NULL;
7252         rsurface.batchtvector3f_bufferoffset = 0;
7253         rsurface.batchnormal3f  = NULL;
7254         rsurface.batchnormal3f_vertexbuffer = NULL;
7255         rsurface.batchnormal3f_bufferoffset = 0;
7256         rsurface.batchlightmapcolor4f = NULL;
7257         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7258         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7259         rsurface.batchtexcoordtexture2f = NULL;
7260         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7261         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7262         rsurface.batchtexcoordlightmap2f = NULL;
7263         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7264         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7265         rsurface.batchskeletalindex4ub = NULL;
7266         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7267         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7268         rsurface.batchskeletalweight4ub = NULL;
7269         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7270         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7271         rsurface.batchelement3i = NULL;
7272         rsurface.batchelement3i_indexbuffer = NULL;
7273         rsurface.batchelement3i_bufferoffset = 0;
7274         rsurface.batchelement3s = NULL;
7275         rsurface.batchelement3s_indexbuffer = NULL;
7276         rsurface.batchelement3s_bufferoffset = 0;
7277         rsurface.forcecurrenttextureupdate = false;
7278 }
7279
7280 void RSurf_ActiveCustomEntity(const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, int entflags, double shadertime, float r, float g, float b, float a, int numvertices, const float *vertex3f, const float *texcoord2f, const float *normal3f, const float *svector3f, const float *tvector3f, const float *color4f, int numtriangles, const int *element3i, const unsigned short *element3s, qboolean wantnormals, qboolean wanttangents)
7281 {
7282         rsurface.entity = r_refdef.scene.worldentity;
7283         rsurface.skeleton = NULL;
7284         rsurface.ent_skinnum = 0;
7285         rsurface.ent_qwskin = -1;
7286         rsurface.ent_flags = entflags;
7287         rsurface.shadertime = r_refdef.scene.time - shadertime;
7288         rsurface.modelnumvertices = numvertices;
7289         rsurface.modelnumtriangles = numtriangles;
7290         rsurface.matrix = *matrix;
7291         rsurface.inversematrix = *inversematrix;
7292         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
7293         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
7294         R_EntityMatrix(&rsurface.matrix);
7295         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
7296         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
7297         rsurface.fogplaneviewdist *= rsurface.inversematrixscale;
7298         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
7299         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
7300         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
7301         memset(rsurface.frameblend, 0, sizeof(rsurface.frameblend));
7302         rsurface.frameblend[0].lerp = 1;
7303         rsurface.ent_alttextures = false;
7304         rsurface.basepolygonfactor = r_refdef.polygonfactor;
7305         rsurface.basepolygonoffset = r_refdef.polygonoffset;
7306         rsurface.entityskeletaltransform3x4 = NULL;
7307         rsurface.entityskeletaltransform3x4buffer = NULL;
7308         rsurface.entityskeletaltransform3x4offset = 0;
7309         rsurface.entityskeletaltransform3x4size = 0;
7310         rsurface.entityskeletalnumtransforms = 0;
7311         r_refdef.stats[r_stat_batch_entitycustom_count]++;
7312         r_refdef.stats[r_stat_batch_entitycustom_surfaces] += 1;
7313         r_refdef.stats[r_stat_batch_entitycustom_vertices] += rsurface.modelnumvertices;
7314         r_refdef.stats[r_stat_batch_entitycustom_triangles] += rsurface.modelnumtriangles;
7315         if (wanttangents)
7316         {
7317                 rsurface.modelvertex3f = (float *)vertex3f;
7318                 rsurface.modelsvector3f = svector3f ? (float *)svector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7319                 rsurface.modeltvector3f = tvector3f ? (float *)tvector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7320                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7321         }
7322         else if (wantnormals)
7323         {
7324                 rsurface.modelvertex3f = (float *)vertex3f;
7325                 rsurface.modelsvector3f = NULL;
7326                 rsurface.modeltvector3f = NULL;
7327                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7328         }
7329         else
7330         {
7331                 rsurface.modelvertex3f = (float *)vertex3f;
7332                 rsurface.modelsvector3f = NULL;
7333                 rsurface.modeltvector3f = NULL;
7334                 rsurface.modelnormal3f = NULL;
7335         }
7336         rsurface.modelvertex3f_vertexbuffer = 0;
7337         rsurface.modelvertex3f_bufferoffset = 0;
7338         rsurface.modelsvector3f_vertexbuffer = 0;
7339         rsurface.modelsvector3f_bufferoffset = 0;
7340         rsurface.modeltvector3f_vertexbuffer = 0;
7341         rsurface.modeltvector3f_bufferoffset = 0;
7342         rsurface.modelnormal3f_vertexbuffer = 0;
7343         rsurface.modelnormal3f_bufferoffset = 0;
7344         rsurface.modelgeneratedvertex = true;
7345         rsurface.modellightmapcolor4f  = (float *)color4f;
7346         rsurface.modellightmapcolor4f_vertexbuffer = 0;
7347         rsurface.modellightmapcolor4f_bufferoffset = 0;
7348         rsurface.modeltexcoordtexture2f  = (float *)texcoord2f;
7349         rsurface.modeltexcoordtexture2f_vertexbuffer = 0;
7350         rsurface.modeltexcoordtexture2f_bufferoffset = 0;
7351         rsurface.modeltexcoordlightmap2f  = NULL;
7352         rsurface.modeltexcoordlightmap2f_vertexbuffer = 0;
7353         rsurface.modeltexcoordlightmap2f_bufferoffset = 0;
7354         rsurface.modelskeletalindex4ub = NULL;
7355         rsurface.modelskeletalindex4ub_vertexbuffer = NULL;
7356         rsurface.modelskeletalindex4ub_bufferoffset = 0;
7357         rsurface.modelskeletalweight4ub = NULL;
7358         rsurface.modelskeletalweight4ub_vertexbuffer = NULL;
7359         rsurface.modelskeletalweight4ub_bufferoffset = 0;
7360         rsurface.modelelement3i = (int *)element3i;
7361         rsurface.modelelement3i_indexbuffer = NULL;
7362         rsurface.modelelement3i_bufferoffset = 0;
7363         rsurface.modelelement3s = (unsigned short *)element3s;
7364         rsurface.modelelement3s_indexbuffer = NULL;
7365         rsurface.modelelement3s_bufferoffset = 0;
7366         rsurface.modellightmapoffsets = NULL;
7367         rsurface.modelsurfaces = NULL;
7368         rsurface.batchgeneratedvertex = false;
7369         rsurface.batchfirstvertex = 0;
7370         rsurface.batchnumvertices = 0;
7371         rsurface.batchfirsttriangle = 0;
7372         rsurface.batchnumtriangles = 0;
7373         rsurface.batchvertex3f  = NULL;
7374         rsurface.batchvertex3f_vertexbuffer = NULL;
7375         rsurface.batchvertex3f_bufferoffset = 0;
7376         rsurface.batchsvector3f = NULL;
7377         rsurface.batchsvector3f_vertexbuffer = NULL;
7378         rsurface.batchsvector3f_bufferoffset = 0;
7379         rsurface.batchtvector3f = NULL;
7380         rsurface.batchtvector3f_vertexbuffer = NULL;
7381         rsurface.batchtvector3f_bufferoffset = 0;
7382         rsurface.batchnormal3f  = NULL;
7383         rsurface.batchnormal3f_vertexbuffer = NULL;
7384         rsurface.batchnormal3f_bufferoffset = 0;
7385         rsurface.batchlightmapcolor4f = NULL;
7386         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7387         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7388         rsurface.batchtexcoordtexture2f = NULL;
7389         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7390         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7391         rsurface.batchtexcoordlightmap2f = NULL;
7392         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7393         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7394         rsurface.batchskeletalindex4ub = NULL;
7395         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7396         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7397         rsurface.batchskeletalweight4ub = NULL;
7398         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7399         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7400         rsurface.batchelement3i = NULL;
7401         rsurface.batchelement3i_indexbuffer = NULL;
7402         rsurface.batchelement3i_bufferoffset = 0;
7403         rsurface.batchelement3s = NULL;
7404         rsurface.batchelement3s_indexbuffer = NULL;
7405         rsurface.batchelement3s_bufferoffset = 0;
7406         rsurface.forcecurrenttextureupdate = true;
7407
7408         if (rsurface.modelnumvertices && rsurface.modelelement3i)
7409         {
7410                 if ((wantnormals || wanttangents) && !normal3f)
7411                 {
7412                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7413                         Mod_BuildNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modelelement3i, rsurface.modelnormal3f, r_smoothnormals_areaweighting.integer != 0);
7414                 }
7415                 if (wanttangents && !svector3f)
7416                 {
7417                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7418                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7419                         Mod_BuildTextureVectorsFromNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modeltexcoordtexture2f, rsurface.modelnormal3f, rsurface.modelelement3i, rsurface.modelsvector3f, rsurface.modeltvector3f, r_smoothnormals_areaweighting.integer != 0);
7420                 }
7421         }
7422 }
7423
7424 float RSurf_FogPoint(const float *v)
7425 {
7426         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7427         float FogPlaneViewDist = r_refdef.fogplaneviewdist;
7428         float FogPlaneVertexDist = DotProduct(r_refdef.fogplane, v) + r_refdef.fogplane[3];
7429         float FogHeightFade = r_refdef.fogheightfade;
7430         float fogfrac;
7431         unsigned int fogmasktableindex;
7432         if (r_refdef.fogplaneviewabove)
7433                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7434         else
7435                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7436         fogmasktableindex = (unsigned int)(VectorDistance(r_refdef.view.origin, v) * fogfrac * r_refdef.fogmasktabledistmultiplier);
7437         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7438 }
7439
7440 float RSurf_FogVertex(const float *v)
7441 {
7442         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7443         float FogPlaneViewDist = rsurface.fogplaneviewdist;
7444         float FogPlaneVertexDist = DotProduct(rsurface.fogplane, v) + rsurface.fogplane[3];
7445         float FogHeightFade = rsurface.fogheightfade;
7446         float fogfrac;
7447         unsigned int fogmasktableindex;
7448         if (r_refdef.fogplaneviewabove)
7449                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7450         else
7451                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7452         fogmasktableindex = (unsigned int)(VectorDistance(rsurface.localvieworigin, v) * fogfrac * rsurface.fogmasktabledistmultiplier);
7453         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7454 }
7455
7456 static void RSurf_RenumberElements(const int *inelement3i, int *outelement3i, int numelements, int adjust)
7457 {
7458         int i;
7459         for (i = 0;i < numelements;i++)
7460                 outelement3i[i] = inelement3i[i] + adjust;
7461 }
7462
7463 static const int quadedges[6][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}};
7464 void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const msurface_t **texturesurfacelist)
7465 {
7466         int deformindex;
7467         int firsttriangle;
7468         int numtriangles;
7469         int firstvertex;
7470         int endvertex;
7471         int numvertices;
7472         int surfacefirsttriangle;
7473         int surfacenumtriangles;
7474         int surfacefirstvertex;
7475         int surfaceendvertex;
7476         int surfacenumvertices;
7477         int batchnumsurfaces = texturenumsurfaces;
7478         int batchnumvertices;
7479         int batchnumtriangles;
7480         int i, j;
7481         qboolean gaps;
7482         qboolean dynamicvertex;
7483         float amplitude;
7484         float animpos;
7485         float center[3], forward[3], right[3], up[3], v[3], newforward[3], newright[3], newup[3];
7486         float waveparms[4];
7487         unsigned char *ub;
7488         q3shaderinfo_deform_t *deform;
7489         const msurface_t *surface, *firstsurface;
7490         if (!texturenumsurfaces)
7491                 return;
7492         // find vertex range of this surface batch
7493         gaps = false;
7494         firstsurface = texturesurfacelist[0];
7495         firsttriangle = firstsurface->num_firsttriangle;
7496         batchnumvertices = 0;
7497         batchnumtriangles = 0;
7498         firstvertex = endvertex = firstsurface->num_firstvertex;
7499         for (i = 0;i < texturenumsurfaces;i++)
7500         {
7501                 surface = texturesurfacelist[i];
7502                 if (surface != firstsurface + i)
7503                         gaps = true;
7504                 surfacefirstvertex = surface->num_firstvertex;
7505                 surfaceendvertex = surfacefirstvertex + surface->num_vertices;
7506                 surfacenumvertices = surface->num_vertices;
7507                 surfacenumtriangles = surface->num_triangles;
7508                 if (firstvertex > surfacefirstvertex)
7509                         firstvertex = surfacefirstvertex;
7510                 if (endvertex < surfaceendvertex)
7511                         endvertex = surfaceendvertex;
7512                 batchnumvertices += surfacenumvertices;
7513                 batchnumtriangles += surfacenumtriangles;
7514         }
7515
7516         r_refdef.stats[r_stat_batch_batches]++;
7517         if (gaps)
7518                 r_refdef.stats[r_stat_batch_withgaps]++;
7519         r_refdef.stats[r_stat_batch_surfaces] += batchnumsurfaces;
7520         r_refdef.stats[r_stat_batch_vertices] += batchnumvertices;
7521         r_refdef.stats[r_stat_batch_triangles] += batchnumtriangles;
7522
7523         // we now know the vertex range used, and if there are any gaps in it
7524         rsurface.batchfirstvertex = firstvertex;
7525         rsurface.batchnumvertices = endvertex - firstvertex;
7526         rsurface.batchfirsttriangle = firsttriangle;
7527         rsurface.batchnumtriangles = batchnumtriangles;
7528
7529         // check if any dynamic vertex processing must occur
7530         dynamicvertex = false;
7531
7532         // a cvar to force the dynamic vertex path to be taken, for debugging
7533         if (r_batch_debugdynamicvertexpath.integer)
7534         {
7535                 if (!dynamicvertex)
7536                 {
7537                         r_refdef.stats[r_stat_batch_dynamic_batches_because_cvar] += 1;
7538                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_cvar] += batchnumsurfaces;
7539                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_cvar] += batchnumvertices;
7540                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_cvar] += batchnumtriangles;
7541                 }
7542                 dynamicvertex = true;
7543         }
7544
7545         // if there is a chance of animated vertex colors, it's a dynamic batch
7546         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
7547         {
7548                 if (!dynamicvertex)
7549                 {
7550                         r_refdef.stats[r_stat_batch_dynamic_batches_because_lightmapvertex] += 1;
7551                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_lightmapvertex] += batchnumsurfaces;
7552                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_lightmapvertex] += batchnumvertices;
7553                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_lightmapvertex] += batchnumtriangles;
7554                 }
7555                 dynamicvertex = true;
7556         }
7557
7558         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
7559         {
7560                 switch (deform->deform)
7561                 {
7562                 default:
7563                 case Q3DEFORM_PROJECTIONSHADOW:
7564                 case Q3DEFORM_TEXT0:
7565                 case Q3DEFORM_TEXT1:
7566                 case Q3DEFORM_TEXT2:
7567                 case Q3DEFORM_TEXT3:
7568                 case Q3DEFORM_TEXT4:
7569                 case Q3DEFORM_TEXT5:
7570                 case Q3DEFORM_TEXT6:
7571                 case Q3DEFORM_TEXT7:
7572                 case Q3DEFORM_NONE:
7573                         break;
7574                 case Q3DEFORM_AUTOSPRITE:
7575                         if (!dynamicvertex)
7576                         {
7577                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite] += 1;
7578                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite] += batchnumsurfaces;
7579                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite] += batchnumvertices;
7580                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite] += batchnumtriangles;
7581                         }
7582                         dynamicvertex = true;
7583                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_TEXCOORD;
7584                         break;
7585                 case Q3DEFORM_AUTOSPRITE2:
7586                         if (!dynamicvertex)
7587                         {
7588                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite2] += 1;
7589                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite2] += batchnumsurfaces;
7590                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite2] += batchnumvertices;
7591                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite2] += batchnumtriangles;
7592                         }
7593                         dynamicvertex = true;
7594                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7595                         break;
7596                 case Q3DEFORM_NORMAL:
7597                         if (!dynamicvertex)
7598                         {
7599                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_normal] += 1;
7600                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_normal] += batchnumsurfaces;
7601                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_normal] += batchnumvertices;
7602                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_normal] += batchnumtriangles;
7603                         }
7604                         dynamicvertex = true;
7605                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7606                         break;
7607                 case Q3DEFORM_WAVE:
7608                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7609                                 break; // if wavefunc is a nop, ignore this transform
7610                         if (!dynamicvertex)
7611                         {
7612                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_wave] += 1;
7613                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_wave] += batchnumsurfaces;
7614                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_wave] += batchnumvertices;
7615                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_wave] += batchnumtriangles;
7616                         }
7617                         dynamicvertex = true;
7618                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7619                         break;
7620                 case Q3DEFORM_BULGE:
7621                         if (!dynamicvertex)
7622                         {
7623                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_bulge] += 1;
7624                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_bulge] += batchnumsurfaces;
7625                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_bulge] += batchnumvertices;
7626                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_bulge] += batchnumtriangles;
7627                         }
7628                         dynamicvertex = true;
7629                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7630                         break;
7631                 case Q3DEFORM_MOVE:
7632                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7633                                 break; // if wavefunc is a nop, ignore this transform
7634                         if (!dynamicvertex)
7635                         {
7636                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_move] += 1;
7637                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_move] += batchnumsurfaces;
7638                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_move] += batchnumvertices;
7639                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_move] += batchnumtriangles;
7640                         }
7641                         dynamicvertex = true;
7642                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7643                         break;
7644                 }
7645         }
7646         if (rsurface.texture->materialshaderpass)
7647         {
7648                 switch (rsurface.texture->materialshaderpass->tcgen.tcgen)
7649                 {
7650                 default:
7651                 case Q3TCGEN_TEXTURE:
7652                         break;
7653                 case Q3TCGEN_LIGHTMAP:
7654                         if (!dynamicvertex)
7655                         {
7656                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_lightmap] += 1;
7657                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_lightmap] += batchnumsurfaces;
7658                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_lightmap] += batchnumvertices;
7659                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_lightmap] += batchnumtriangles;
7660                         }
7661                         dynamicvertex = true;
7662                         batchneed |= BATCHNEED_ARRAY_LIGHTMAP;
7663                         break;
7664                 case Q3TCGEN_VECTOR:
7665                         if (!dynamicvertex)
7666                         {
7667                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_vector] += 1;
7668                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_vector] += batchnumsurfaces;
7669                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_vector] += batchnumvertices;
7670                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_vector] += batchnumtriangles;
7671                         }
7672                         dynamicvertex = true;
7673                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7674                         break;
7675                 case Q3TCGEN_ENVIRONMENT:
7676                         if (!dynamicvertex)
7677                         {
7678                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_environment] += 1;
7679                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_environment] += batchnumsurfaces;
7680                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_environment] += batchnumvertices;
7681                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_environment] += batchnumtriangles;
7682                         }
7683                         dynamicvertex = true;
7684                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL;
7685                         break;
7686                 }
7687                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
7688                 {
7689                         if (!dynamicvertex)
7690                         {
7691                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcmod_turbulent] += 1;
7692                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcmod_turbulent] += batchnumsurfaces;
7693                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcmod_turbulent] += batchnumvertices;
7694                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcmod_turbulent] += batchnumtriangles;
7695                         }
7696                         dynamicvertex = true;
7697                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7698                 }
7699         }
7700
7701         // the caller can specify BATCHNEED_NOGAPS to force a batch with
7702         // firstvertex = 0 and endvertex = numvertices (no gaps, no firstvertex),
7703         // we ensure this by treating the vertex batch as dynamic...
7704         if ((batchneed & BATCHNEED_ALWAYSCOPY) || ((batchneed & BATCHNEED_NOGAPS) && (gaps || firstvertex > 0)))
7705         {
7706                 if (!dynamicvertex)
7707                 {
7708                         r_refdef.stats[r_stat_batch_dynamic_batches_because_nogaps] += 1;
7709                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_nogaps] += batchnumsurfaces;
7710                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_nogaps] += batchnumvertices;
7711                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_nogaps] += batchnumtriangles;
7712                 }
7713                 dynamicvertex = true;
7714         }
7715
7716         // if we're going to have to apply the skeletal transform manually, we need to batch the skeletal data
7717         if (dynamicvertex && rsurface.entityskeletaltransform3x4)
7718                 batchneed |= BATCHNEED_ARRAY_SKELETAL;
7719
7720         rsurface.batchvertex3f = rsurface.modelvertex3f;
7721         rsurface.batchvertex3f_vertexbuffer = rsurface.modelvertex3f_vertexbuffer;
7722         rsurface.batchvertex3f_bufferoffset = rsurface.modelvertex3f_bufferoffset;
7723         rsurface.batchsvector3f = rsurface.modelsvector3f;
7724         rsurface.batchsvector3f_vertexbuffer = rsurface.modelsvector3f_vertexbuffer;
7725         rsurface.batchsvector3f_bufferoffset = rsurface.modelsvector3f_bufferoffset;
7726         rsurface.batchtvector3f = rsurface.modeltvector3f;
7727         rsurface.batchtvector3f_vertexbuffer = rsurface.modeltvector3f_vertexbuffer;
7728         rsurface.batchtvector3f_bufferoffset = rsurface.modeltvector3f_bufferoffset;
7729         rsurface.batchnormal3f = rsurface.modelnormal3f;
7730         rsurface.batchnormal3f_vertexbuffer = rsurface.modelnormal3f_vertexbuffer;
7731         rsurface.batchnormal3f_bufferoffset = rsurface.modelnormal3f_bufferoffset;
7732         rsurface.batchlightmapcolor4f = rsurface.modellightmapcolor4f;
7733         rsurface.batchlightmapcolor4f_vertexbuffer  = rsurface.modellightmapcolor4f_vertexbuffer;
7734         rsurface.batchlightmapcolor4f_bufferoffset  = rsurface.modellightmapcolor4f_bufferoffset;
7735         rsurface.batchtexcoordtexture2f = rsurface.modeltexcoordtexture2f;
7736         rsurface.batchtexcoordtexture2f_vertexbuffer  = rsurface.modeltexcoordtexture2f_vertexbuffer;
7737         rsurface.batchtexcoordtexture2f_bufferoffset  = rsurface.modeltexcoordtexture2f_bufferoffset;
7738         rsurface.batchtexcoordlightmap2f = rsurface.modeltexcoordlightmap2f;
7739         rsurface.batchtexcoordlightmap2f_vertexbuffer = rsurface.modeltexcoordlightmap2f_vertexbuffer;
7740         rsurface.batchtexcoordlightmap2f_bufferoffset = rsurface.modeltexcoordlightmap2f_bufferoffset;
7741         rsurface.batchskeletalindex4ub = rsurface.modelskeletalindex4ub;
7742         rsurface.batchskeletalindex4ub_vertexbuffer = rsurface.modelskeletalindex4ub_vertexbuffer;
7743         rsurface.batchskeletalindex4ub_bufferoffset = rsurface.modelskeletalindex4ub_bufferoffset;
7744         rsurface.batchskeletalweight4ub = rsurface.modelskeletalweight4ub;
7745         rsurface.batchskeletalweight4ub_vertexbuffer = rsurface.modelskeletalweight4ub_vertexbuffer;
7746         rsurface.batchskeletalweight4ub_bufferoffset = rsurface.modelskeletalweight4ub_bufferoffset;
7747         rsurface.batchelement3i = rsurface.modelelement3i;
7748         rsurface.batchelement3i_indexbuffer = rsurface.modelelement3i_indexbuffer;
7749         rsurface.batchelement3i_bufferoffset = rsurface.modelelement3i_bufferoffset;
7750         rsurface.batchelement3s = rsurface.modelelement3s;
7751         rsurface.batchelement3s_indexbuffer = rsurface.modelelement3s_indexbuffer;
7752         rsurface.batchelement3s_bufferoffset = rsurface.modelelement3s_bufferoffset;
7753         rsurface.batchskeletaltransform3x4 = rsurface.entityskeletaltransform3x4;
7754         rsurface.batchskeletaltransform3x4buffer = rsurface.entityskeletaltransform3x4buffer;
7755         rsurface.batchskeletaltransform3x4offset = rsurface.entityskeletaltransform3x4offset;
7756         rsurface.batchskeletaltransform3x4size = rsurface.entityskeletaltransform3x4size;
7757         rsurface.batchskeletalnumtransforms = rsurface.entityskeletalnumtransforms;
7758
7759         // if any dynamic vertex processing has to occur in software, we copy the
7760         // entire surface list together before processing to rebase the vertices
7761         // to start at 0 (otherwise we waste a lot of room in a vertex buffer).
7762         //
7763         // if any gaps exist and we do not have a static vertex buffer, we have to
7764         // copy the surface list together to avoid wasting upload bandwidth on the
7765         // vertices in the gaps.
7766         //
7767         // if gaps exist and we have a static vertex buffer, we can choose whether
7768         // to combine the index buffer ranges into one dynamic index buffer or
7769         // simply issue multiple glDrawElements calls (BATCHNEED_ALLOWMULTIDRAW).
7770         //
7771         // in many cases the batch is reduced to one draw call.
7772
7773         rsurface.batchmultidraw = false;
7774         rsurface.batchmultidrawnumsurfaces = 0;
7775         rsurface.batchmultidrawsurfacelist = NULL;
7776
7777         if (!dynamicvertex)
7778         {
7779                 // static vertex data, just set pointers...
7780                 rsurface.batchgeneratedvertex = false;
7781                 // if there are gaps, we want to build a combined index buffer,
7782                 // otherwise use the original static buffer with an appropriate offset
7783                 if (gaps)
7784                 {
7785                         r_refdef.stats[r_stat_batch_copytriangles_batches] += 1;
7786                         r_refdef.stats[r_stat_batch_copytriangles_surfaces] += batchnumsurfaces;
7787                         r_refdef.stats[r_stat_batch_copytriangles_vertices] += batchnumvertices;
7788                         r_refdef.stats[r_stat_batch_copytriangles_triangles] += batchnumtriangles;
7789                         if ((batchneed & BATCHNEED_ALLOWMULTIDRAW) && r_batch_multidraw.integer && batchnumtriangles >= r_batch_multidraw_mintriangles.integer)
7790                         {
7791                                 rsurface.batchmultidraw = true;
7792                                 rsurface.batchmultidrawnumsurfaces = texturenumsurfaces;
7793                                 rsurface.batchmultidrawsurfacelist = texturesurfacelist;
7794                                 return;
7795                         }
7796                         // build a new triangle elements array for this batch
7797                         rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7798                         rsurface.batchfirsttriangle = 0;
7799                         numtriangles = 0;
7800                         for (i = 0;i < texturenumsurfaces;i++)
7801                         {
7802                                 surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7803                                 surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7804                                 memcpy(rsurface.batchelement3i + 3*numtriangles, rsurface.modelelement3i + 3*surfacefirsttriangle, surfacenumtriangles*sizeof(int[3]));
7805                                 numtriangles += surfacenumtriangles;
7806                         }
7807                         rsurface.batchelement3i_indexbuffer = NULL;
7808                         rsurface.batchelement3i_bufferoffset = 0;
7809                         rsurface.batchelement3s = NULL;
7810                         rsurface.batchelement3s_indexbuffer = NULL;
7811                         rsurface.batchelement3s_bufferoffset = 0;
7812                         if (endvertex <= 65536)
7813                         {
7814                                 // make a 16bit (unsigned short) index array if possible
7815                                 rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7816                                 for (i = 0;i < numtriangles*3;i++)
7817                                         rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7818                         }
7819                         // upload buffer data for the copytriangles batch
7820                         if (rsurface.batchelement3s)
7821                                 rsurface.batchelement3s_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(short[3]), rsurface.batchelement3s, R_BUFFERDATA_INDEX16, &rsurface.batchelement3s_bufferoffset);
7822                         else if (rsurface.batchelement3i)
7823                                 rsurface.batchelement3i_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(int[3]), rsurface.batchelement3i, R_BUFFERDATA_INDEX32, &rsurface.batchelement3i_bufferoffset);
7824                 }
7825                 else
7826                 {
7827                         r_refdef.stats[r_stat_batch_fast_batches] += 1;
7828                         r_refdef.stats[r_stat_batch_fast_surfaces] += batchnumsurfaces;
7829                         r_refdef.stats[r_stat_batch_fast_vertices] += batchnumvertices;
7830                         r_refdef.stats[r_stat_batch_fast_triangles] += batchnumtriangles;
7831                 }
7832                 return;
7833         }
7834
7835         // something needs software processing, do it for real...
7836         // we only directly handle separate array data in this case and then
7837         // generate interleaved data if needed...
7838         rsurface.batchgeneratedvertex = true;
7839         r_refdef.stats[r_stat_batch_dynamic_batches] += 1;
7840         r_refdef.stats[r_stat_batch_dynamic_surfaces] += batchnumsurfaces;
7841         r_refdef.stats[r_stat_batch_dynamic_vertices] += batchnumvertices;
7842         r_refdef.stats[r_stat_batch_dynamic_triangles] += batchnumtriangles;
7843
7844         // now copy the vertex data into a combined array and make an index array
7845         // (this is what Quake3 does all the time)
7846         // we also apply any skeletal animation here that would have been done in
7847         // the vertex shader, because most of the dynamic vertex animation cases
7848         // need actual vertex positions and normals
7849         //if (dynamicvertex)
7850         {
7851                 rsurface.batchvertex3f = NULL;
7852                 rsurface.batchvertex3f_vertexbuffer = NULL;
7853                 rsurface.batchvertex3f_bufferoffset = 0;
7854                 rsurface.batchsvector3f = NULL;
7855                 rsurface.batchsvector3f_vertexbuffer = NULL;
7856                 rsurface.batchsvector3f_bufferoffset = 0;
7857                 rsurface.batchtvector3f = NULL;
7858                 rsurface.batchtvector3f_vertexbuffer = NULL;
7859                 rsurface.batchtvector3f_bufferoffset = 0;
7860                 rsurface.batchnormal3f = NULL;
7861                 rsurface.batchnormal3f_vertexbuffer = NULL;
7862                 rsurface.batchnormal3f_bufferoffset = 0;
7863                 rsurface.batchlightmapcolor4f = NULL;
7864                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7865                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
7866                 rsurface.batchtexcoordtexture2f = NULL;
7867                 rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7868                 rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7869                 rsurface.batchtexcoordlightmap2f = NULL;
7870                 rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7871                 rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7872                 rsurface.batchskeletalindex4ub = NULL;
7873                 rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7874                 rsurface.batchskeletalindex4ub_bufferoffset = 0;
7875                 rsurface.batchskeletalweight4ub = NULL;
7876                 rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7877                 rsurface.batchskeletalweight4ub_bufferoffset = 0;
7878                 rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7879                 rsurface.batchelement3i_indexbuffer = NULL;
7880                 rsurface.batchelement3i_bufferoffset = 0;
7881                 rsurface.batchelement3s = NULL;
7882                 rsurface.batchelement3s_indexbuffer = NULL;
7883                 rsurface.batchelement3s_bufferoffset = 0;
7884                 rsurface.batchskeletaltransform3x4buffer = NULL;
7885                 rsurface.batchskeletaltransform3x4offset = 0;
7886                 rsurface.batchskeletaltransform3x4size = 0;
7887                 // we'll only be setting up certain arrays as needed
7888                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7889                         rsurface.batchvertex3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7890                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7891                         rsurface.batchnormal3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7892                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7893                 {
7894                         rsurface.batchsvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7895                         rsurface.batchtvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7896                 }
7897                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7898                         rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
7899                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7900                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7901                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7902                         rsurface.batchtexcoordlightmap2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7903                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7904                 {
7905                         rsurface.batchskeletalindex4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7906                         rsurface.batchskeletalweight4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7907                 }
7908                 numvertices = 0;
7909                 numtriangles = 0;
7910                 for (i = 0;i < texturenumsurfaces;i++)
7911                 {
7912                         surfacefirstvertex = texturesurfacelist[i]->num_firstvertex;
7913                         surfacenumvertices = texturesurfacelist[i]->num_vertices;
7914                         surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7915                         surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7916                         // copy only the data requested
7917                         if (batchneed & (BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ARRAY_LIGHTMAP))
7918                         {
7919                                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7920                                 {
7921                                         if (rsurface.batchvertex3f)
7922                                                 memcpy(rsurface.batchvertex3f + 3*numvertices, rsurface.modelvertex3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7923                                         else
7924                                                 memset(rsurface.batchvertex3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7925                                 }
7926                                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7927                                 {
7928                                         if (rsurface.modelnormal3f)
7929                                                 memcpy(rsurface.batchnormal3f + 3*numvertices, rsurface.modelnormal3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7930                                         else
7931                                                 memset(rsurface.batchnormal3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7932                                 }
7933                                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7934                                 {
7935                                         if (rsurface.modelsvector3f)
7936                                         {
7937                                                 memcpy(rsurface.batchsvector3f + 3*numvertices, rsurface.modelsvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7938                                                 memcpy(rsurface.batchtvector3f + 3*numvertices, rsurface.modeltvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7939                                         }
7940                                         else
7941                                         {
7942                                                 memset(rsurface.batchsvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7943                                                 memset(rsurface.batchtvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7944                                         }
7945                                 }
7946                                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7947                                 {
7948                                         if (rsurface.modellightmapcolor4f)
7949                                                 memcpy(rsurface.batchlightmapcolor4f + 4*numvertices, rsurface.modellightmapcolor4f + 4*surfacefirstvertex, surfacenumvertices * sizeof(float[4]));
7950                                         else
7951                                                 memset(rsurface.batchlightmapcolor4f + 4*numvertices, 0, surfacenumvertices * sizeof(float[4]));
7952                                 }
7953                                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7954                                 {
7955                                         if (rsurface.modeltexcoordtexture2f)
7956                                                 memcpy(rsurface.batchtexcoordtexture2f + 2*numvertices, rsurface.modeltexcoordtexture2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7957                                         else
7958                                                 memset(rsurface.batchtexcoordtexture2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7959                                 }
7960                                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7961                                 {
7962                                         if (rsurface.modeltexcoordlightmap2f)
7963                                                 memcpy(rsurface.batchtexcoordlightmap2f + 2*numvertices, rsurface.modeltexcoordlightmap2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7964                                         else
7965                                                 memset(rsurface.batchtexcoordlightmap2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7966                                 }
7967                                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7968                                 {
7969                                         if (rsurface.modelskeletalindex4ub)
7970                                         {
7971                                                 memcpy(rsurface.batchskeletalindex4ub + 4*numvertices, rsurface.modelskeletalindex4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7972                                                 memcpy(rsurface.batchskeletalweight4ub + 4*numvertices, rsurface.modelskeletalweight4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7973                                         }
7974                                         else
7975                                         {
7976                                                 memset(rsurface.batchskeletalindex4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7977                                                 memset(rsurface.batchskeletalweight4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7978                                                 ub = rsurface.batchskeletalweight4ub + 4*numvertices;
7979                                                 for (j = 0;j < surfacenumvertices;j++)
7980                                                         ub[j*4] = 255;
7981                                         }
7982                                 }
7983                         }
7984                         RSurf_RenumberElements(rsurface.modelelement3i + 3*surfacefirsttriangle, rsurface.batchelement3i + 3*numtriangles, 3*surfacenumtriangles, numvertices - surfacefirstvertex);
7985                         numvertices += surfacenumvertices;
7986                         numtriangles += surfacenumtriangles;
7987                 }
7988
7989                 // generate a 16bit index array as well if possible
7990                 // (in general, dynamic batches fit)
7991                 if (numvertices <= 65536)
7992                 {
7993                         rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7994                         for (i = 0;i < numtriangles*3;i++)
7995                                 rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7996                 }
7997
7998                 // since we've copied everything, the batch now starts at 0
7999                 rsurface.batchfirstvertex = 0;
8000                 rsurface.batchnumvertices = batchnumvertices;
8001                 rsurface.batchfirsttriangle = 0;
8002                 rsurface.batchnumtriangles = batchnumtriangles;
8003         }
8004
8005         // apply skeletal animation that would have been done in the vertex shader
8006         if (rsurface.batchskeletaltransform3x4)
8007         {
8008                 const unsigned char *si;
8009                 const unsigned char *sw;
8010                 const float *t[4];
8011                 const float *b = rsurface.batchskeletaltransform3x4;
8012                 float *vp, *vs, *vt, *vn;
8013                 float w[4];
8014                 float m[3][4], n[3][4];
8015                 float tp[3], ts[3], tt[3], tn[3];
8016                 r_refdef.stats[r_stat_batch_dynamicskeletal_batches] += 1;
8017                 r_refdef.stats[r_stat_batch_dynamicskeletal_surfaces] += batchnumsurfaces;
8018                 r_refdef.stats[r_stat_batch_dynamicskeletal_vertices] += batchnumvertices;
8019                 r_refdef.stats[r_stat_batch_dynamicskeletal_triangles] += batchnumtriangles;
8020                 si = rsurface.batchskeletalindex4ub;
8021                 sw = rsurface.batchskeletalweight4ub;
8022                 vp = rsurface.batchvertex3f;
8023                 vs = rsurface.batchsvector3f;
8024                 vt = rsurface.batchtvector3f;
8025                 vn = rsurface.batchnormal3f;
8026                 memset(m[0], 0, sizeof(m));
8027                 memset(n[0], 0, sizeof(n));
8028                 for (i = 0;i < batchnumvertices;i++)
8029                 {
8030                         t[0] = b + si[0]*12;
8031                         if (sw[0] == 255)
8032                         {
8033                                 // common case - only one matrix
8034                                 m[0][0] = t[0][ 0];
8035                                 m[0][1] = t[0][ 1];
8036                                 m[0][2] = t[0][ 2];
8037                                 m[0][3] = t[0][ 3];
8038                                 m[1][0] = t[0][ 4];
8039                                 m[1][1] = t[0][ 5];
8040                                 m[1][2] = t[0][ 6];
8041                                 m[1][3] = t[0][ 7];
8042                                 m[2][0] = t[0][ 8];
8043                                 m[2][1] = t[0][ 9];
8044                                 m[2][2] = t[0][10];
8045                                 m[2][3] = t[0][11];
8046                         }
8047                         else if (sw[2] + sw[3])
8048                         {
8049                                 // blend 4 matrices
8050                                 t[1] = b + si[1]*12;
8051                                 t[2] = b + si[2]*12;
8052                                 t[3] = b + si[3]*12;
8053                                 w[0] = sw[0] * (1.0f / 255.0f);
8054                                 w[1] = sw[1] * (1.0f / 255.0f);
8055                                 w[2] = sw[2] * (1.0f / 255.0f);
8056                                 w[3] = sw[3] * (1.0f / 255.0f);
8057                                 // blend the matrices
8058                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1] + t[2][ 0] * w[2] + t[3][ 0] * w[3];
8059                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1] + t[2][ 1] * w[2] + t[3][ 1] * w[3];
8060                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1] + t[2][ 2] * w[2] + t[3][ 2] * w[3];
8061                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1] + t[2][ 3] * w[2] + t[3][ 3] * w[3];
8062                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1] + t[2][ 4] * w[2] + t[3][ 4] * w[3];
8063                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1] + t[2][ 5] * w[2] + t[3][ 5] * w[3];
8064                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1] + t[2][ 6] * w[2] + t[3][ 6] * w[3];
8065                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1] + t[2][ 7] * w[2] + t[3][ 7] * w[3];
8066                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1] + t[2][ 8] * w[2] + t[3][ 8] * w[3];
8067                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1] + t[2][ 9] * w[2] + t[3][ 9] * w[3];
8068                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1] + t[2][10] * w[2] + t[3][10] * w[3];
8069                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1] + t[2][11] * w[2] + t[3][11] * w[3];
8070                         }
8071                         else
8072                         {
8073                                 // blend 2 matrices
8074                                 t[1] = b + si[1]*12;
8075                                 w[0] = sw[0] * (1.0f / 255.0f);
8076                                 w[1] = sw[1] * (1.0f / 255.0f);
8077                                 // blend the matrices
8078                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1];
8079                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1];
8080                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1];
8081                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1];
8082                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1];
8083                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1];
8084                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1];
8085                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1];
8086                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1];
8087                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1];
8088                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1];
8089                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1];
8090                         }
8091                         si += 4;
8092                         sw += 4;
8093                         // modify the vertex
8094                         VectorCopy(vp, tp);
8095                         vp[0] = tp[0] * m[0][0] + tp[1] * m[0][1] + tp[2] * m[0][2] + m[0][3];
8096                         vp[1] = tp[0] * m[1][0] + tp[1] * m[1][1] + tp[2] * m[1][2] + m[1][3];
8097                         vp[2] = tp[0] * m[2][0] + tp[1] * m[2][1] + tp[2] * m[2][2] + m[2][3];
8098                         vp += 3;
8099                         if (vn)
8100                         {
8101                                 // the normal transformation matrix is a set of cross products...
8102                                 CrossProduct(m[1], m[2], n[0]);
8103                                 CrossProduct(m[2], m[0], n[1]);
8104                                 CrossProduct(m[0], m[1], n[2]); // is actually transpose(inverse(m)) * det(m)
8105                                 VectorCopy(vn, tn);
8106                                 vn[0] = tn[0] * n[0][0] + tn[1] * n[0][1] + tn[2] * n[0][2];
8107                                 vn[1] = tn[0] * n[1][0] + tn[1] * n[1][1] + tn[2] * n[1][2];
8108                                 vn[2] = tn[0] * n[2][0] + tn[1] * n[2][1] + tn[2] * n[2][2];
8109                                 VectorNormalize(vn);
8110                                 vn += 3;
8111                                 if (vs)
8112                                 {
8113                                         VectorCopy(vs, ts);
8114                                         vs[0] = ts[0] * n[0][0] + ts[1] * n[0][1] + ts[2] * n[0][2];
8115                                         vs[1] = ts[0] * n[1][0] + ts[1] * n[1][1] + ts[2] * n[1][2];
8116                                         vs[2] = ts[0] * n[2][0] + ts[1] * n[2][1] + ts[2] * n[2][2];
8117                                         VectorNormalize(vs);
8118                                         vs += 3;
8119                                         VectorCopy(vt, tt);
8120                                         vt[0] = tt[0] * n[0][0] + tt[1] * n[0][1] + tt[2] * n[0][2];
8121                                         vt[1] = tt[0] * n[1][0] + tt[1] * n[1][1] + tt[2] * n[1][2];
8122                                         vt[2] = tt[0] * n[2][0] + tt[1] * n[2][1] + tt[2] * n[2][2];
8123                                         VectorNormalize(vt);
8124                                         vt += 3;
8125                                 }
8126                         }
8127                 }
8128                 rsurface.batchskeletaltransform3x4 = NULL;
8129                 rsurface.batchskeletalnumtransforms = 0;
8130         }
8131
8132         // q1bsp surfaces rendered in vertex color mode have to have colors
8133         // calculated based on lightstyles
8134         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
8135         {
8136                 // generate color arrays for the surfaces in this list
8137                 int c[4];
8138                 int scale;
8139                 int size3;
8140                 const int *offsets;
8141                 const unsigned char *lm;
8142                 rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
8143                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
8144                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
8145                 numvertices = 0;
8146                 for (i = 0;i < texturenumsurfaces;i++)
8147                 {
8148                         surface = texturesurfacelist[i];
8149                         offsets = rsurface.modellightmapoffsets + surface->num_firstvertex;
8150                         surfacenumvertices = surface->num_vertices;
8151                         if (surface->lightmapinfo->samples)
8152                         {
8153                                 for (j = 0;j < surfacenumvertices;j++)
8154                                 {
8155                                         lm = surface->lightmapinfo->samples + offsets[j];
8156                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[0]];
8157                                         VectorScale(lm, scale, c);
8158                                         if (surface->lightmapinfo->styles[1] != 255)
8159                                         {
8160                                                 size3 = ((surface->lightmapinfo->extents[0]>>4)+1)*((surface->lightmapinfo->extents[1]>>4)+1)*3;
8161                                                 lm += size3;
8162                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[1]];
8163                                                 VectorMA(c, scale, lm, c);
8164                                                 if (surface->lightmapinfo->styles[2] != 255)
8165                                                 {
8166                                                         lm += size3;
8167                                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[2]];
8168                                                         VectorMA(c, scale, lm, c);
8169                                                         if (surface->lightmapinfo->styles[3] != 255)
8170                                                         {
8171                                                                 lm += size3;
8172                                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[3]];
8173                                                                 VectorMA(c, scale, lm, c);
8174                                                         }
8175                                                 }
8176                                         }
8177                                         c[0] >>= 7;
8178                                         c[1] >>= 7;
8179                                         c[2] >>= 7;
8180                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, min(c[0], 255) * (1.0f / 255.0f), min(c[1], 255) * (1.0f / 255.0f), min(c[2], 255) * (1.0f / 255.0f), 1);
8181                                         numvertices++;
8182                                 }
8183                         }
8184                         else
8185                         {
8186                                 for (j = 0;j < surfacenumvertices;j++)
8187                                 {
8188                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, 0, 0, 0, 1);
8189                                         numvertices++;
8190                                 }
8191                         }
8192                 }
8193         }
8194
8195         // if vertices are deformed (sprite flares and things in maps, possibly
8196         // water waves, bulges and other deformations), modify the copied vertices
8197         // in place
8198         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
8199         {
8200                 float scale;
8201                 switch (deform->deform)
8202                 {
8203                 default:
8204                 case Q3DEFORM_PROJECTIONSHADOW:
8205                 case Q3DEFORM_TEXT0:
8206                 case Q3DEFORM_TEXT1:
8207                 case Q3DEFORM_TEXT2:
8208                 case Q3DEFORM_TEXT3:
8209                 case Q3DEFORM_TEXT4:
8210                 case Q3DEFORM_TEXT5:
8211                 case Q3DEFORM_TEXT6:
8212                 case Q3DEFORM_TEXT7:
8213                 case Q3DEFORM_NONE:
8214                         break;
8215                 case Q3DEFORM_AUTOSPRITE:
8216                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8217                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8218                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8219                         VectorNormalize(newforward);
8220                         VectorNormalize(newright);
8221                         VectorNormalize(newup);
8222 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8223 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8224 //                      rsurface.batchvertex3f_bufferoffset = 0;
8225 //                      rsurface.batchsvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f);
8226 //                      rsurface.batchsvector3f_vertexbuffer = NULL;
8227 //                      rsurface.batchsvector3f_bufferoffset = 0;
8228 //                      rsurface.batchtvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f);
8229 //                      rsurface.batchtvector3f_vertexbuffer = NULL;
8230 //                      rsurface.batchtvector3f_bufferoffset = 0;
8231 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8232 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8233 //                      rsurface.batchnormal3f_bufferoffset = 0;
8234                         // sometimes we're on a renderpath that does not use vectors (GL11/GL13/GLES1)
8235                         if (!VectorLength2(rsurface.batchnormal3f + 3*rsurface.batchfirstvertex))
8236                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8237                         if (!VectorLength2(rsurface.batchsvector3f + 3*rsurface.batchfirstvertex))
8238                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8239                         // a single autosprite surface can contain multiple sprites...
8240                         for (j = 0;j < batchnumvertices - 3;j += 4)
8241                         {
8242                                 VectorClear(center);
8243                                 for (i = 0;i < 4;i++)
8244                                         VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8245                                 VectorScale(center, 0.25f, center);
8246                                 VectorCopy(rsurface.batchnormal3f + 3*j, forward);
8247                                 VectorCopy(rsurface.batchsvector3f + 3*j, right);
8248                                 VectorCopy(rsurface.batchtvector3f + 3*j, up);
8249                                 for (i = 0;i < 4;i++)
8250                                 {
8251                                         VectorSubtract(rsurface.batchvertex3f + 3*(j+i), center, v);
8252                                         VectorMAMAMAM(1, center, DotProduct(forward, v), newforward, DotProduct(right, v), newright, DotProduct(up, v), newup, rsurface.batchvertex3f + 3*(j+i));
8253                                 }
8254                         }
8255                         // if we get here, BATCHNEED_ARRAY_NORMAL and BATCHNEED_ARRAY_VECTOR are in batchneed, so no need to check
8256                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8257                         Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8258                         break;
8259                 case Q3DEFORM_AUTOSPRITE2:
8260                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8261                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8262                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8263                         VectorNormalize(newforward);
8264                         VectorNormalize(newright);
8265                         VectorNormalize(newup);
8266 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8267 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8268 //                      rsurface.batchvertex3f_bufferoffset = 0;
8269                         {
8270                                 const float *v1, *v2;
8271                                 vec3_t start, end;
8272                                 float f, l;
8273                                 struct
8274                                 {
8275                                         float length2;
8276                                         const float *v1;
8277                                         const float *v2;
8278                                 }
8279                                 shortest[2];
8280                                 memset(shortest, 0, sizeof(shortest));
8281                                 // a single autosprite surface can contain multiple sprites...
8282                                 for (j = 0;j < batchnumvertices - 3;j += 4)
8283                                 {
8284                                         VectorClear(center);
8285                                         for (i = 0;i < 4;i++)
8286                                                 VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8287                                         VectorScale(center, 0.25f, center);
8288                                         // find the two shortest edges, then use them to define the
8289                                         // axis vectors for rotating around the central axis
8290                                         for (i = 0;i < 6;i++)
8291                                         {
8292                                                 v1 = rsurface.batchvertex3f + 3*(j+quadedges[i][0]);
8293                                                 v2 = rsurface.batchvertex3f + 3*(j+quadedges[i][1]);
8294                                                 l = VectorDistance2(v1, v2);
8295                                                 // this length bias tries to make sense of square polygons, assuming they are meant to be upright
8296                                                 if (v1[2] != v2[2])
8297                                                         l += (1.0f / 1024.0f);
8298                                                 if (shortest[0].length2 > l || i == 0)
8299                                                 {
8300                                                         shortest[1] = shortest[0];
8301                                                         shortest[0].length2 = l;
8302                                                         shortest[0].v1 = v1;
8303                                                         shortest[0].v2 = v2;
8304                                                 }
8305                                                 else if (shortest[1].length2 > l || i == 1)
8306                                                 {
8307                                                         shortest[1].length2 = l;
8308                                                         shortest[1].v1 = v1;
8309                                                         shortest[1].v2 = v2;
8310                                                 }
8311                                         }
8312                                         VectorLerp(shortest[0].v1, 0.5f, shortest[0].v2, start);
8313                                         VectorLerp(shortest[1].v1, 0.5f, shortest[1].v2, end);
8314                                         // this calculates the right vector from the shortest edge
8315                                         // and the up vector from the edge midpoints
8316                                         VectorSubtract(shortest[0].v1, shortest[0].v2, right);
8317                                         VectorNormalize(right);
8318                                         VectorSubtract(end, start, up);
8319                                         VectorNormalize(up);
8320                                         // calculate a forward vector to use instead of the original plane normal (this is how we get a new right vector)
8321                                         VectorSubtract(rsurface.localvieworigin, center, forward);
8322                                         //Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, forward);
8323                                         VectorNegate(forward, forward);
8324                                         VectorReflect(forward, 0, up, forward);
8325                                         VectorNormalize(forward);
8326                                         CrossProduct(up, forward, newright);
8327                                         VectorNormalize(newright);
8328                                         // rotate the quad around the up axis vector, this is made
8329                                         // especially easy by the fact we know the quad is flat,
8330                                         // so we only have to subtract the center position and
8331                                         // measure distance along the right vector, and then
8332                                         // multiply that by the newright vector and add back the
8333                                         // center position
8334                                         // we also need to subtract the old position to undo the
8335                                         // displacement from the center, which we do with a
8336                                         // DotProduct, the subtraction/addition of center is also
8337                                         // optimized into DotProducts here
8338                                         l = DotProduct(right, center);
8339                                         for (i = 0;i < 4;i++)
8340                                         {
8341                                                 v1 = rsurface.batchvertex3f + 3*(j+i);
8342                                                 f = DotProduct(right, v1) - l;
8343                                                 VectorMAMAM(1, v1, -f, right, f, newright, rsurface.batchvertex3f + 3*(j+i));
8344                                         }
8345                                 }
8346                         }
8347                         if(batchneed & (BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR)) // otherwise these can stay NULL
8348                         {
8349 //                              rsurface.batchnormal3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8350 //                              rsurface.batchnormal3f_vertexbuffer = NULL;
8351 //                              rsurface.batchnormal3f_bufferoffset = 0;
8352                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8353                         }
8354                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8355                         {
8356 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8357 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8358 //                              rsurface.batchsvector3f_bufferoffset = 0;
8359 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8360 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8361 //                              rsurface.batchtvector3f_bufferoffset = 0;
8362                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8363                         }
8364                         break;
8365                 case Q3DEFORM_NORMAL:
8366                         // deform the normals to make reflections wavey
8367                         rsurface.batchnormal3f = (float *)R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8368                         rsurface.batchnormal3f_vertexbuffer = NULL;
8369                         rsurface.batchnormal3f_bufferoffset = 0;
8370                         for (j = 0;j < batchnumvertices;j++)
8371                         {
8372                                 float vertex[3];
8373                                 float *normal = rsurface.batchnormal3f + 3*j;
8374                                 VectorScale(rsurface.batchvertex3f + 3*j, 0.98f, vertex);
8375                                 normal[0] = rsurface.batchnormal3f[j*3+0] + deform->parms[0] * noise4f(      vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8376                                 normal[1] = rsurface.batchnormal3f[j*3+1] + deform->parms[0] * noise4f( 98 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8377                                 normal[2] = rsurface.batchnormal3f[j*3+2] + deform->parms[0] * noise4f(196 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8378                                 VectorNormalize(normal);
8379                         }
8380                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8381                         {
8382 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8383 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8384 //                              rsurface.batchsvector3f_bufferoffset = 0;
8385 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8386 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8387 //                              rsurface.batchtvector3f_bufferoffset = 0;
8388                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8389                         }
8390                         break;
8391                 case Q3DEFORM_WAVE:
8392                         // deform vertex array to make wavey water and flags and such
8393                         waveparms[0] = deform->waveparms[0];
8394                         waveparms[1] = deform->waveparms[1];
8395                         waveparms[2] = deform->waveparms[2];
8396                         waveparms[3] = deform->waveparms[3];
8397                         if(!R_TestQ3WaveFunc(deform->wavefunc, waveparms))
8398                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8399                         // this is how a divisor of vertex influence on deformation
8400                         animpos = deform->parms[0] ? 1.0f / deform->parms[0] : 100.0f;
8401                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8402 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8403 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8404 //                      rsurface.batchvertex3f_bufferoffset = 0;
8405 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8406 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8407 //                      rsurface.batchnormal3f_bufferoffset = 0;
8408                         for (j = 0;j < batchnumvertices;j++)
8409                         {
8410                                 // if the wavefunc depends on time, evaluate it per-vertex
8411                                 if (waveparms[3])
8412                                 {
8413                                         waveparms[2] = deform->waveparms[2] + (rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+1] + rsurface.batchvertex3f[j*3+2]) * animpos;
8414                                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8415                                 }
8416                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8417                         }
8418                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8419                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8420                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8421                         {
8422 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8423 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8424 //                              rsurface.batchsvector3f_bufferoffset = 0;
8425 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8426 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8427 //                              rsurface.batchtvector3f_bufferoffset = 0;
8428                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8429                         }
8430                         break;
8431                 case Q3DEFORM_BULGE:
8432                         // deform vertex array to make the surface have moving bulges
8433 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8434 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8435 //                      rsurface.batchvertex3f_bufferoffset = 0;
8436 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8437 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8438 //                      rsurface.batchnormal3f_bufferoffset = 0;
8439                         for (j = 0;j < batchnumvertices;j++)
8440                         {
8441                                 scale = sin(rsurface.batchtexcoordtexture2f[j*2+0] * deform->parms[0] + rsurface.shadertime * deform->parms[2]) * deform->parms[1];
8442                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8443                         }
8444                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8445                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8446                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8447                         {
8448 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8449 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8450 //                              rsurface.batchsvector3f_bufferoffset = 0;
8451 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8452 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8453 //                              rsurface.batchtvector3f_bufferoffset = 0;
8454                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8455                         }
8456                         break;
8457                 case Q3DEFORM_MOVE:
8458                         // deform vertex array
8459                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
8460                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8461                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, deform->waveparms);
8462                         VectorScale(deform->parms, scale, waveparms);
8463 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8464 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8465 //                      rsurface.batchvertex3f_bufferoffset = 0;
8466                         for (j = 0;j < batchnumvertices;j++)
8467                                 VectorAdd(rsurface.batchvertex3f + 3*j, waveparms, rsurface.batchvertex3f + 3*j);
8468                         break;
8469                 }
8470         }
8471
8472         if (rsurface.batchtexcoordtexture2f && rsurface.texture->materialshaderpass)
8473         {
8474         // generate texcoords based on the chosen texcoord source
8475                 switch(rsurface.texture->materialshaderpass->tcgen.tcgen)
8476                 {
8477                 default:
8478                 case Q3TCGEN_TEXTURE:
8479                         break;
8480                 case Q3TCGEN_LIGHTMAP:
8481         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8482         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8483         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8484                         if (rsurface.batchtexcoordlightmap2f)
8485                                 memcpy(rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordlightmap2f, batchnumvertices * sizeof(float[2]));
8486                         break;
8487                 case Q3TCGEN_VECTOR:
8488         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8489         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8490         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8491                         for (j = 0;j < batchnumvertices;j++)
8492                         {
8493                                 rsurface.batchtexcoordtexture2f[j*2+0] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms);
8494                                 rsurface.batchtexcoordtexture2f[j*2+1] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms + 3);
8495                         }
8496                         break;
8497                 case Q3TCGEN_ENVIRONMENT:
8498                         // make environment reflections using a spheremap
8499                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8500                         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8501                         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8502                         for (j = 0;j < batchnumvertices;j++)
8503                         {
8504                                 // identical to Q3A's method, but executed in worldspace so
8505                                 // carried models can be shiny too
8506
8507                                 float viewer[3], d, reflected[3], worldreflected[3];
8508
8509                                 VectorSubtract(rsurface.localvieworigin, rsurface.batchvertex3f + 3*j, viewer);
8510                                 // VectorNormalize(viewer);
8511
8512                                 d = DotProduct(rsurface.batchnormal3f + 3*j, viewer);
8513
8514                                 reflected[0] = rsurface.batchnormal3f[j*3+0]*2*d - viewer[0];
8515                                 reflected[1] = rsurface.batchnormal3f[j*3+1]*2*d - viewer[1];
8516                                 reflected[2] = rsurface.batchnormal3f[j*3+2]*2*d - viewer[2];
8517                                 // note: this is proportinal to viewer, so we can normalize later
8518
8519                                 Matrix4x4_Transform3x3(&rsurface.matrix, reflected, worldreflected);
8520                                 VectorNormalize(worldreflected);
8521
8522                                 // note: this sphere map only uses world x and z!
8523                                 // so positive and negative y will LOOK THE SAME.
8524                                 rsurface.batchtexcoordtexture2f[j*2+0] = 0.5 + 0.5 * worldreflected[1];
8525                                 rsurface.batchtexcoordtexture2f[j*2+1] = 0.5 - 0.5 * worldreflected[2];
8526                         }
8527                         break;
8528                 }
8529                 // the only tcmod that needs software vertex processing is turbulent, so
8530                 // check for it here and apply the changes if needed
8531                 // and we only support that as the first one
8532                 // (handling a mixture of turbulent and other tcmods would be problematic
8533                 //  without punting it entirely to a software path)
8534                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
8535                 {
8536                         amplitude = rsurface.texture->materialshaderpass->tcmods[0].parms[1];
8537                         animpos = rsurface.texture->materialshaderpass->tcmods[0].parms[2] + rsurface.shadertime * rsurface.texture->materialshaderpass->tcmods[0].parms[3];
8538         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8539         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8540         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8541                         for (j = 0;j < batchnumvertices;j++)
8542                         {
8543                                 rsurface.batchtexcoordtexture2f[j*2+0] += amplitude * sin(((rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+2]) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8544                                 rsurface.batchtexcoordtexture2f[j*2+1] += amplitude * sin(((rsurface.batchvertex3f[j*3+1]                                ) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8545                         }
8546                 }
8547         }
8548
8549         // upload buffer data for the dynamic batch
8550         if (rsurface.batchvertex3f)
8551                 rsurface.batchvertex3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f, R_BUFFERDATA_VERTEX, &rsurface.batchvertex3f_bufferoffset);
8552         if (rsurface.batchsvector3f)
8553                 rsurface.batchsvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchsvector3f_bufferoffset);
8554         if (rsurface.batchtvector3f)
8555                 rsurface.batchtvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchtvector3f_bufferoffset);
8556         if (rsurface.batchnormal3f)
8557                 rsurface.batchnormal3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f, R_BUFFERDATA_VERTEX, &rsurface.batchnormal3f_bufferoffset);
8558         if (rsurface.batchlightmapcolor4f)
8559                 rsurface.batchlightmapcolor4f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[4]), rsurface.batchlightmapcolor4f, R_BUFFERDATA_VERTEX, &rsurface.batchlightmapcolor4f_bufferoffset);
8560         if (rsurface.batchtexcoordtexture2f)
8561                 rsurface.batchtexcoordtexture2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordtexture2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordtexture2f_bufferoffset);
8562         if (rsurface.batchtexcoordlightmap2f)
8563                 rsurface.batchtexcoordlightmap2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordlightmap2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordlightmap2f_bufferoffset);
8564         if (rsurface.batchskeletalindex4ub)
8565                 rsurface.batchskeletalindex4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalindex4ub_bufferoffset);
8566         if (rsurface.batchskeletalweight4ub)
8567                 rsurface.batchskeletalweight4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalweight4ub_bufferoffset);
8568         if (rsurface.batchelement3s)
8569                 rsurface.batchelement3s_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(short[3]), rsurface.batchelement3s, R_BUFFERDATA_INDEX16, &rsurface.batchelement3s_bufferoffset);
8570         else if (rsurface.batchelement3i)
8571                 rsurface.batchelement3i_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(int[3]), rsurface.batchelement3i, R_BUFFERDATA_INDEX32, &rsurface.batchelement3i_bufferoffset);
8572 }
8573
8574 void RSurf_DrawBatch(void)
8575 {
8576         // sometimes a zero triangle surface (usually a degenerate patch) makes it
8577         // through the pipeline, killing it earlier in the pipeline would have
8578         // per-surface overhead rather than per-batch overhead, so it's best to
8579         // reject it here, before it hits glDraw.
8580         if (rsurface.batchnumtriangles == 0)
8581                 return;
8582 #if 0
8583         // batch debugging code
8584         if (r_test.integer && rsurface.entity == r_refdef.scene.worldentity && rsurface.batchvertex3f == r_refdef.scene.worldentity->model->surfmesh.data_vertex3f)
8585         {
8586                 int i;
8587                 int j;
8588                 int c;
8589                 const int *e;
8590                 e = rsurface.batchelement3i + rsurface.batchfirsttriangle*3;
8591                 for (i = 0;i < rsurface.batchnumtriangles*3;i++)
8592                 {
8593                         c = e[i];
8594                         for (j = 0;j < rsurface.entity->model->num_surfaces;j++)
8595                         {
8596                                 if (c >= rsurface.modelsurfaces[j].num_firstvertex && c < (rsurface.modelsurfaces[j].num_firstvertex + rsurface.modelsurfaces[j].num_vertices))
8597                                 {
8598                                         if (rsurface.modelsurfaces[j].texture != rsurface.texture)
8599                                                 Sys_Error("RSurf_DrawBatch: index %i uses different texture (%s) than surface %i which it belongs to (which uses %s)\n", c, rsurface.texture->name, j, rsurface.modelsurfaces[j].texture->name);
8600                                         break;
8601                                 }
8602                         }
8603                 }
8604         }
8605 #endif
8606         if (rsurface.batchmultidraw)
8607         {
8608                 // issue multiple draws rather than copying index data
8609                 int numsurfaces = rsurface.batchmultidrawnumsurfaces;
8610                 const msurface_t **surfacelist = rsurface.batchmultidrawsurfacelist;
8611                 int i, j, k, firstvertex, endvertex, firsttriangle, endtriangle;
8612                 for (i = 0;i < numsurfaces;)
8613                 {
8614                         // combine consecutive surfaces as one draw
8615                         for (k = i, j = i + 1;j < numsurfaces;k = j, j++)
8616                                 if (surfacelist[j] != surfacelist[k] + 1)
8617                                         break;
8618                         firstvertex = surfacelist[i]->num_firstvertex;
8619                         endvertex = surfacelist[k]->num_firstvertex + surfacelist[k]->num_vertices;
8620                         firsttriangle = surfacelist[i]->num_firsttriangle;
8621                         endtriangle = surfacelist[k]->num_firsttriangle + surfacelist[k]->num_triangles;
8622                         R_Mesh_Draw(firstvertex, endvertex - firstvertex, firsttriangle, endtriangle - firsttriangle, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8623                         i = j;
8624                 }
8625         }
8626         else
8627         {
8628                 // there is only one consecutive run of index data (may have been combined)
8629                 R_Mesh_Draw(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchfirsttriangle, rsurface.batchnumtriangles, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8630         }
8631 }
8632
8633 static int RSurf_FindWaterPlaneForSurface(const msurface_t *surface)
8634 {
8635         // pick the closest matching water plane
8636         int planeindex, vertexindex, bestplaneindex = -1;
8637         float d, bestd;
8638         vec3_t vert;
8639         const float *v;
8640         r_waterstate_waterplane_t *p;
8641         qboolean prepared = false;
8642         bestd = 0;
8643         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
8644         {
8645                 if(p->camera_entity != rsurface.texture->camera_entity)
8646                         continue;
8647                 d = 0;
8648                 if(!prepared)
8649                 {
8650                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX, 1, &surface);
8651                         prepared = true;
8652                         if(rsurface.batchnumvertices == 0)
8653                                 break;
8654                 }
8655                 for (vertexindex = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3;vertexindex < rsurface.batchnumvertices;vertexindex++, v += 3)
8656                 {
8657                         Matrix4x4_Transform(&rsurface.matrix, v, vert);
8658                         d += fabs(PlaneDiff(vert, &p->plane));
8659                 }
8660                 if (bestd > d || bestplaneindex < 0)
8661                 {
8662                         bestd = d;
8663                         bestplaneindex = planeindex;
8664                 }
8665         }
8666         return bestplaneindex;
8667         // NOTE: this MAY return a totally unrelated water plane; we can ignore
8668         // this situation though, as it might be better to render single larger
8669         // batches with useless stuff (backface culled for example) than to
8670         // render multiple smaller batches
8671 }
8672
8673 void RSurf_SetupDepthAndCulling(void)
8674 {
8675         // submodels are biased to avoid z-fighting with world surfaces that they
8676         // may be exactly overlapping (avoids z-fighting artifacts on certain
8677         // doors and things in Quake maps)
8678         GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1);
8679         GL_PolygonOffset(rsurface.basepolygonfactor + rsurface.texture->biaspolygonfactor, rsurface.basepolygonoffset + rsurface.texture->biaspolygonoffset);
8680         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST));
8681         GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
8682 }
8683
8684 static void R_DrawTextureSurfaceList_Sky(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8685 {
8686         int i, j;
8687         // transparent sky would be ridiculous
8688         if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8689                 return;
8690         R_SetupShader_Generic_NoTexture(false, false);
8691         skyrenderlater = true;
8692         RSurf_SetupDepthAndCulling();
8693         GL_DepthMask(true);
8694
8695         // add the vertices of the surfaces to a world bounding box so we can scissor the sky render later
8696         if (r_sky_scissor.integer)
8697         {
8698                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8699                 for (i = 0; i < texturenumsurfaces; i++)
8700                 {
8701                         const msurface_t *surf = texturesurfacelist[i];
8702                         const float *v;
8703                         float p[3];
8704                         float mins[3], maxs[3];
8705                         int scissor[4];
8706                         for (j = 0, v = rsurface.batchvertex3f + 3 * surf->num_firstvertex; j < surf->num_vertices; j++, v += 3)
8707                         {
8708                                 Matrix4x4_Transform(&rsurface.matrix, v, p);
8709                                 if (j > 0)
8710                                 {
8711                                         if (mins[0] > p[0]) mins[0] = p[0];
8712                                         if (mins[1] > p[1]) mins[1] = p[1];
8713                                         if (mins[2] > p[2]) mins[2] = p[2];
8714                                         if (maxs[0] < p[0]) maxs[0] = p[0];
8715                                         if (maxs[1] < p[1]) maxs[1] = p[1];
8716                                         if (maxs[2] < p[2]) maxs[2] = p[2];
8717                                 }
8718                                 else
8719                                 {
8720                                         VectorCopy(p, mins);
8721                                         VectorCopy(p, maxs);
8722                                 }
8723                         }
8724                         if (!R_ScissorForBBox(mins, maxs, scissor))
8725                         {
8726                                 if (skyscissor[2])
8727                                 {
8728                                         if (skyscissor[0] > scissor[0])
8729                                         {
8730                                                 skyscissor[2] += skyscissor[0] - scissor[0];
8731                                                 skyscissor[0] = scissor[0];
8732                                         }
8733                                         if (skyscissor[1] > scissor[1])
8734                                         {
8735                                                 skyscissor[3] += skyscissor[1] - scissor[1];
8736                                                 skyscissor[1] = scissor[1];
8737                                         }
8738                                         if (skyscissor[0] + skyscissor[2] < scissor[0] + scissor[2])
8739                                                 skyscissor[2] = scissor[0] + scissor[2] - skyscissor[0];
8740                                         if (skyscissor[1] + skyscissor[3] < scissor[1] + scissor[3])
8741                                                 skyscissor[3] = scissor[1] + scissor[3] - skyscissor[1];
8742                                 }
8743                                 else
8744                                         Vector4Copy(scissor, skyscissor);
8745                         }
8746                 }
8747         }
8748
8749         // LadyHavoc: HalfLife maps have freaky skypolys so don't use
8750         // skymasking on them, and Quake3 never did sky masking (unlike
8751         // software Quake and software Quake2), so disable the sky masking
8752         // in Quake3 maps as it causes problems with q3map2 sky tricks,
8753         // and skymasking also looks very bad when noclipping outside the
8754         // level, so don't use it then either.
8755         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.skymasking && (r_refdef.scene.worldmodel->brush.isq3bsp ? r_q3bsp_renderskydepth.integer : r_q1bsp_skymasking.integer) && !r_refdef.viewcache.world_novis && !r_trippy.integer)
8756         {
8757                 R_Mesh_ResetTextureState();
8758                 if (skyrendermasked)
8759                 {
8760                         R_SetupShader_DepthOrShadow(false, false, false);
8761                         // depth-only (masking)
8762                         GL_ColorMask(0, 0, 0, 0);
8763                         // just to make sure that braindead drivers don't draw
8764                         // anything despite that colormask...
8765                         GL_BlendFunc(GL_ZERO, GL_ONE);
8766                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8767                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8768                 }
8769                 else
8770                 {
8771                         R_SetupShader_Generic_NoTexture(false, false);
8772                         // fog sky
8773                         GL_BlendFunc(GL_ONE, GL_ZERO);
8774                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8775                         GL_Color(r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], 1);
8776                         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
8777                 }
8778                 RSurf_DrawBatch();
8779                 if (skyrendermasked)
8780                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8781         }
8782         R_Mesh_ResetTextureState();
8783         GL_Color(1, 1, 1, 1);
8784 }
8785
8786 extern rtexture_t *r_shadow_prepasslightingdiffusetexture;
8787 extern rtexture_t *r_shadow_prepasslightingspeculartexture;
8788 static void R_DrawTextureSurfaceList_GL20(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth, qboolean prepass)
8789 {
8790         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)))
8791                 return;
8792         if (prepass)
8793         {
8794                 // render screenspace normalmap to texture
8795                 GL_DepthMask(true);
8796                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_DEFERREDGEOMETRY, texturenumsurfaces, texturesurfacelist, NULL, false);
8797                 RSurf_DrawBatch();
8798                 return;
8799         }
8800
8801         // bind lightmap texture
8802
8803         // water/refraction/reflection/camera surfaces have to be handled specially
8804         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA | MATERIALFLAG_REFLECTION)))
8805         {
8806                 int start, end, startplaneindex;
8807                 for (start = 0;start < texturenumsurfaces;start = end)
8808                 {
8809                         startplaneindex = RSurf_FindWaterPlaneForSurface(texturesurfacelist[start]);
8810                         if(startplaneindex < 0)
8811                         {
8812                                 // this happens if the plane e.g. got backface culled and thus didn't get a water plane. We can just ignore this.
8813                                 // Con_Printf("No matching water plane for surface with material flags 0x%08x - PLEASE DEBUG THIS\n", rsurface.texture->currentmaterialflags);
8814                                 end = start + 1;
8815                                 continue;
8816                         }
8817                         for (end = start + 1;end < texturenumsurfaces && startplaneindex == RSurf_FindWaterPlaneForSurface(texturesurfacelist[end]);end++)
8818                                 ;
8819                         // now that we have a batch using the same planeindex, render it
8820                         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA)))
8821                         {
8822                                 // render water or distortion background
8823                                 GL_DepthMask(true);
8824                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BACKGROUND, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false);
8825                                 RSurf_DrawBatch();
8826                                 // blend surface on top
8827                                 GL_DepthMask(false);
8828                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, NULL, false);
8829                                 RSurf_DrawBatch();
8830                         }
8831                         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION))
8832                         {
8833                                 // render surface with reflection texture as input
8834                                 GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8835                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false);
8836                                 RSurf_DrawBatch();
8837                         }
8838                 }
8839                 return;
8840         }
8841
8842         // render surface batch normally
8843         GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8844         R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, texturenumsurfaces, texturesurfacelist, NULL, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) != 0);
8845         RSurf_DrawBatch();
8846 }
8847
8848 static void R_DrawTextureSurfaceList_ShowSurfaces(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth)
8849 {
8850         int vi;
8851         int j;
8852         int texturesurfaceindex;
8853         int k;
8854         const msurface_t *surface;
8855         float surfacecolor4f[4];
8856
8857 //      R_Mesh_ResetTextureState();
8858         R_SetupShader_Generic_NoTexture(false, false);
8859
8860         GL_BlendFunc(GL_ONE, GL_ZERO);
8861         GL_DepthMask(writedepth);
8862
8863         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ALWAYSCOPY, texturenumsurfaces, texturesurfacelist);
8864         vi = 0;
8865         for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++)
8866         {
8867                 surface = texturesurfacelist[texturesurfaceindex];
8868                 k = (int)(((size_t)surface) / sizeof(msurface_t));
8869                 Vector4Set(surfacecolor4f, (k & 0xF) * (1.0f / 16.0f), (k & 0xF0) * (1.0f / 256.0f), (k & 0xF00) * (1.0f / 4096.0f), 1);
8870                 for (j = 0;j < surface->num_vertices;j++)
8871                 {
8872                         Vector4Copy(surfacecolor4f, rsurface.batchlightmapcolor4f + 4 * vi);
8873                         vi++;
8874                 }
8875         }
8876         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchlightmapcolor4f, rsurface.batchtexcoordtexture2f);
8877         RSurf_DrawBatch();
8878 }
8879
8880 static void R_DrawModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth, qboolean prepass)
8881 {
8882         CHECKGLERROR
8883         RSurf_SetupDepthAndCulling();
8884         if (r_showsurfaces.integer && r_refdef.view.showdebug)
8885         {
8886                 R_DrawTextureSurfaceList_ShowSurfaces(texturenumsurfaces, texturesurfacelist, writedepth);
8887                 return;
8888         }
8889         switch (vid.renderpath)
8890         {
8891         case RENDERPATH_GL20:
8892         case RENDERPATH_GLES2:
8893                 R_DrawTextureSurfaceList_GL20(texturenumsurfaces, texturesurfacelist, writedepth, prepass);
8894                 break;
8895         }
8896         CHECKGLERROR
8897 }
8898
8899 static void R_DrawSurface_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
8900 {
8901         int i, j;
8902         int texturenumsurfaces, endsurface;
8903         texture_t *texture;
8904         const msurface_t *surface;
8905         const msurface_t *texturesurfacelist[MESHQUEUE_TRANSPARENT_BATCHSIZE];
8906
8907         RSurf_ActiveModelEntity(ent, true, true, false);
8908
8909         if (r_transparentdepthmasking.integer)
8910         {
8911                 qboolean setup = false;
8912                 for (i = 0;i < numsurfaces;i = j)
8913                 {
8914                         j = i + 1;
8915                         surface = rsurface.modelsurfaces + surfacelist[i];
8916                         texture = surface->texture;
8917                         rsurface.texture = R_GetCurrentTexture(texture);
8918                         rsurface.lightmaptexture = NULL;
8919                         rsurface.deluxemaptexture = NULL;
8920                         rsurface.uselightmaptexture = false;
8921                         // scan ahead until we find a different texture
8922                         endsurface = min(i + 1024, numsurfaces);
8923                         texturenumsurfaces = 0;
8924                         texturesurfacelist[texturenumsurfaces++] = surface;
8925                         for (;j < endsurface;j++)
8926                         {
8927                                 surface = rsurface.modelsurfaces + surfacelist[j];
8928                                 if (texture != surface->texture)
8929                                         break;
8930                                 texturesurfacelist[texturenumsurfaces++] = surface;
8931                         }
8932                         if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_TRANSDEPTH))
8933                                 continue;
8934                         // render the range of surfaces as depth
8935                         if (!setup)
8936                         {
8937                                 setup = true;
8938                                 GL_ColorMask(0,0,0,0);
8939                                 GL_Color(1,1,1,1);
8940                                 GL_DepthTest(true);
8941                                 GL_BlendFunc(GL_ONE, GL_ZERO);
8942                                 GL_DepthMask(true);
8943 //                              R_Mesh_ResetTextureState();
8944                         }
8945                         RSurf_SetupDepthAndCulling();
8946                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8947                         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8948                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8949                         RSurf_DrawBatch();
8950                 }
8951                 if (setup)
8952                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8953         }
8954
8955         for (i = 0;i < numsurfaces;i = j)
8956         {
8957                 j = i + 1;
8958                 surface = rsurface.modelsurfaces + surfacelist[i];
8959                 texture = surface->texture;
8960                 rsurface.texture = R_GetCurrentTexture(texture);
8961                 // scan ahead until we find a different texture
8962                 endsurface = min(i + MESHQUEUE_TRANSPARENT_BATCHSIZE, numsurfaces);
8963                 texturenumsurfaces = 0;
8964                 texturesurfacelist[texturenumsurfaces++] = surface;
8965                 if(FAKELIGHT_ENABLED)
8966                 {
8967                         rsurface.lightmaptexture = NULL;
8968                         rsurface.deluxemaptexture = NULL;
8969                         rsurface.uselightmaptexture = false;
8970                         for (;j < endsurface;j++)
8971                         {
8972                                 surface = rsurface.modelsurfaces + surfacelist[j];
8973                                 if (texture != surface->texture)
8974                                         break;
8975                                 texturesurfacelist[texturenumsurfaces++] = surface;
8976                         }
8977                 }
8978                 else
8979                 {
8980                         rsurface.lightmaptexture = surface->lightmaptexture;
8981                         rsurface.deluxemaptexture = surface->deluxemaptexture;
8982                         rsurface.uselightmaptexture = surface->lightmaptexture != NULL;
8983                         for (;j < endsurface;j++)
8984                         {
8985                                 surface = rsurface.modelsurfaces + surfacelist[j];
8986                                 if (texture != surface->texture || rsurface.lightmaptexture != surface->lightmaptexture)
8987                                         break;
8988                                 texturesurfacelist[texturenumsurfaces++] = surface;
8989                         }
8990                 }
8991                 // render the range of surfaces
8992                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, false, false);
8993         }
8994         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
8995 }
8996
8997 static void R_ProcessTransparentTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8998 {
8999         // transparent surfaces get pushed off into the transparent queue
9000         int surfacelistindex;
9001         const msurface_t *surface;
9002         vec3_t tempcenter, center;
9003         for (surfacelistindex = 0;surfacelistindex < texturenumsurfaces;surfacelistindex++)
9004         {
9005                 surface = texturesurfacelist[surfacelistindex];
9006                 if (r_transparent_sortsurfacesbynearest.integer)
9007                 {
9008                         tempcenter[0] = bound(surface->mins[0], rsurface.localvieworigin[0], surface->maxs[0]);
9009                         tempcenter[1] = bound(surface->mins[1], rsurface.localvieworigin[1], surface->maxs[1]);
9010                         tempcenter[2] = bound(surface->mins[2], rsurface.localvieworigin[2], surface->maxs[2]);
9011                 }
9012                 else
9013                 {
9014                         tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f;
9015                         tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f;
9016                         tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f;
9017                 }
9018                 Matrix4x4_Transform(&rsurface.matrix, tempcenter, center);
9019                 if (rsurface.entity->transparent_offset) // transparent offset
9020                 {
9021                         center[0] += r_refdef.view.forward[0]*rsurface.entity->transparent_offset;
9022                         center[1] += r_refdef.view.forward[1]*rsurface.entity->transparent_offset;
9023                         center[2] += r_refdef.view.forward[2]*rsurface.entity->transparent_offset;
9024                 }
9025                 R_MeshQueue_AddTransparent((rsurface.entity->flags & RENDER_WORLDOBJECT) ? TRANSPARENTSORT_SKY : (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) ? TRANSPARENTSORT_HUD : rsurface.texture->transparentsort, center, R_DrawSurface_TransparentCallback, rsurface.entity, surface - rsurface.modelsurfaces, rsurface.rtlight);
9026         }
9027 }
9028
9029 static void R_DrawTextureSurfaceList_DepthOnly(int texturenumsurfaces, const msurface_t **texturesurfacelist)
9030 {
9031         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHATEST)))
9032                 return;
9033         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION)))
9034                 return;
9035         RSurf_SetupDepthAndCulling();
9036         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
9037         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
9038         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
9039         RSurf_DrawBatch();
9040 }
9041
9042 static void R_ProcessModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth, qboolean depthonly, qboolean prepass)
9043 {
9044         CHECKGLERROR
9045         if (depthonly)
9046                 R_DrawTextureSurfaceList_DepthOnly(texturenumsurfaces, texturesurfacelist);
9047         else if (prepass)
9048         {
9049                 if (!rsurface.texture->currentnumlayers)
9050                         return;
9051                 if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
9052                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
9053                 else
9054                         R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass);
9055         }
9056         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) && (!r_showsurfaces.integer || r_showsurfaces.integer == 3))
9057                 R_DrawTextureSurfaceList_Sky(texturenumsurfaces, texturesurfacelist);
9058         else if (!rsurface.texture->currentnumlayers)
9059                 return;
9060         else if (((rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) || (r_showsurfaces.integer == 3 && (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST))))
9061         {
9062                 // in the deferred case, transparent surfaces were queued during prepass
9063                 if (!r_shadow_usingdeferredprepass)
9064                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
9065         }
9066         else
9067         {
9068                 // the alphatest check is to make sure we write depth for anything we skipped on the depth-only pass earlier
9069                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST), prepass);
9070         }
9071         CHECKGLERROR
9072 }
9073
9074 static void R_QueueModelSurfaceList(entity_render_t *ent, int numsurfaces, const msurface_t **surfacelist, int flagsmask, qboolean writedepth, qboolean depthonly, qboolean prepass)
9075 {
9076         int i, j;
9077         texture_t *texture;
9078         R_FrameData_SetMark();
9079         // break the surface list down into batches by texture and use of lightmapping
9080         for (i = 0;i < numsurfaces;i = j)
9081         {
9082                 j = i + 1;
9083                 // texture is the base texture pointer, rsurface.texture is the
9084                 // current frame/skin the texture is directing us to use (for example
9085                 // if a model has 2 skins and it is on skin 1, then skin 0 tells us to
9086                 // use skin 1 instead)
9087                 texture = surfacelist[i]->texture;
9088                 rsurface.texture = R_GetCurrentTexture(texture);
9089                 if (!(rsurface.texture->currentmaterialflags & flagsmask) || (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODRAW))
9090                 {
9091                         // if this texture is not the kind we want, skip ahead to the next one
9092                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
9093                                 ;
9094                         continue;
9095                 }
9096                 if(FAKELIGHT_ENABLED || depthonly || prepass)
9097                 {
9098                         rsurface.lightmaptexture = NULL;
9099                         rsurface.deluxemaptexture = NULL;
9100                         rsurface.uselightmaptexture = false;
9101                         // simply scan ahead until we find a different texture or lightmap state
9102                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
9103                                 ;
9104                 }
9105                 else
9106                 {
9107                         rsurface.lightmaptexture = surfacelist[i]->lightmaptexture;
9108                         rsurface.deluxemaptexture = surfacelist[i]->deluxemaptexture;
9109                         rsurface.uselightmaptexture = surfacelist[i]->lightmaptexture != NULL;
9110                         // simply scan ahead until we find a different texture or lightmap state
9111                         for (;j < numsurfaces && texture == surfacelist[j]->texture && rsurface.lightmaptexture == surfacelist[j]->lightmaptexture;j++)
9112                                 ;
9113                 }
9114                 // render the range of surfaces
9115                 R_ProcessModelTextureSurfaceList(j - i, surfacelist + i, writedepth, depthonly, prepass);
9116         }
9117         R_FrameData_ReturnToMark();
9118 }
9119
9120 float locboxvertex3f[6*4*3] =
9121 {
9122         1,0,1, 1,0,0, 1,1,0, 1,1,1,
9123         0,1,1, 0,1,0, 0,0,0, 0,0,1,
9124         1,1,1, 1,1,0, 0,1,0, 0,1,1,
9125         0,0,1, 0,0,0, 1,0,0, 1,0,1,
9126         0,0,1, 1,0,1, 1,1,1, 0,1,1,
9127         1,0,0, 0,0,0, 0,1,0, 1,1,0
9128 };
9129
9130 unsigned short locboxelements[6*2*3] =
9131 {
9132          0, 1, 2, 0, 2, 3,
9133          4, 5, 6, 4, 6, 7,
9134          8, 9,10, 8,10,11,
9135         12,13,14, 12,14,15,
9136         16,17,18, 16,18,19,
9137         20,21,22, 20,22,23
9138 };
9139
9140 static void R_DrawLoc_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
9141 {
9142         int i, j;
9143         cl_locnode_t *loc = (cl_locnode_t *)ent;
9144         vec3_t mins, size;
9145         float vertex3f[6*4*3];
9146         CHECKGLERROR
9147         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9148         GL_DepthMask(false);
9149         GL_DepthRange(0, 1);
9150         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9151         GL_DepthTest(true);
9152         GL_CullFace(GL_NONE);
9153         R_EntityMatrix(&identitymatrix);
9154
9155 //      R_Mesh_ResetTextureState();
9156
9157         i = surfacelist[0];
9158         GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9159                          ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9160                          ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9161                         surfacelist[0] < 0 ? 0.5f : 0.125f);
9162
9163         if (VectorCompare(loc->mins, loc->maxs))
9164         {
9165                 VectorSet(size, 2, 2, 2);
9166                 VectorMA(loc->mins, -0.5f, size, mins);
9167         }
9168         else
9169         {
9170                 VectorCopy(loc->mins, mins);
9171                 VectorSubtract(loc->maxs, loc->mins, size);
9172         }
9173
9174         for (i = 0;i < 6*4*3;)
9175                 for (j = 0;j < 3;j++, i++)
9176                         vertex3f[i] = mins[j] + size[j] * locboxvertex3f[i];
9177
9178         R_Mesh_PrepareVertices_Generic_Arrays(6*4, vertex3f, NULL, NULL);
9179         R_SetupShader_Generic_NoTexture(false, false);
9180         R_Mesh_Draw(0, 6*4, 0, 6*2, NULL, NULL, 0, locboxelements, NULL, 0);
9181 }
9182
9183 void R_DrawLocs(void)
9184 {
9185         int index;
9186         cl_locnode_t *loc, *nearestloc;
9187         vec3_t center;
9188         nearestloc = CL_Locs_FindNearest(cl.movement_origin);
9189         for (loc = cl.locnodes, index = 0;loc;loc = loc->next, index++)
9190         {
9191                 VectorLerp(loc->mins, 0.5f, loc->maxs, center);
9192                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawLoc_Callback, (entity_render_t *)loc, loc == nearestloc ? -1 : index, NULL);
9193         }
9194 }
9195
9196 void R_DecalSystem_Reset(decalsystem_t *decalsystem)
9197 {
9198         if (decalsystem->decals)
9199                 Mem_Free(decalsystem->decals);
9200         memset(decalsystem, 0, sizeof(*decalsystem));
9201 }
9202
9203 static void R_DecalSystem_SpawnTriangle(decalsystem_t *decalsystem, const float *v0, const float *v1, const float *v2, const float *t0, const float *t1, const float *t2, const float *c0, const float *c1, const float *c2, int triangleindex, int surfaceindex, unsigned int decalsequence)
9204 {
9205         tridecal_t *decal;
9206         tridecal_t *decals;
9207         int i;
9208
9209         // expand or initialize the system
9210         if (decalsystem->maxdecals <= decalsystem->numdecals)
9211         {
9212                 decalsystem_t old = *decalsystem;
9213                 qboolean useshortelements;
9214                 decalsystem->maxdecals = max(16, decalsystem->maxdecals * 2);
9215                 useshortelements = decalsystem->maxdecals * 3 <= 65536;
9216                 decalsystem->decals = (tridecal_t *)Mem_Alloc(cls.levelmempool, decalsystem->maxdecals * (sizeof(tridecal_t) + sizeof(float[3][3]) + sizeof(float[3][2]) + sizeof(float[3][4]) + sizeof(int[3]) + (useshortelements ? sizeof(unsigned short[3]) : 0)));
9217                 decalsystem->color4f = (float *)(decalsystem->decals + decalsystem->maxdecals);
9218                 decalsystem->texcoord2f = (float *)(decalsystem->color4f + decalsystem->maxdecals*12);
9219                 decalsystem->vertex3f = (float *)(decalsystem->texcoord2f + decalsystem->maxdecals*6);
9220                 decalsystem->element3i = (int *)(decalsystem->vertex3f + decalsystem->maxdecals*9);
9221                 decalsystem->element3s = (useshortelements ? ((unsigned short *)(decalsystem->element3i + decalsystem->maxdecals*3)) : NULL);
9222                 if (decalsystem->numdecals)
9223                         memcpy(decalsystem->decals, old.decals, decalsystem->numdecals * sizeof(tridecal_t));
9224                 if (old.decals)
9225                         Mem_Free(old.decals);
9226                 for (i = 0;i < decalsystem->maxdecals*3;i++)
9227                         decalsystem->element3i[i] = i;
9228                 if (useshortelements)
9229                         for (i = 0;i < decalsystem->maxdecals*3;i++)
9230                                 decalsystem->element3s[i] = i;
9231         }
9232
9233         // grab a decal and search for another free slot for the next one
9234         decals = decalsystem->decals;
9235         decal = decalsystem->decals + (i = decalsystem->freedecal++);
9236         for (i = decalsystem->freedecal;i < decalsystem->numdecals && decals[i].color4f[0][3];i++)
9237                 ;
9238         decalsystem->freedecal = i;
9239         if (decalsystem->numdecals <= i)
9240                 decalsystem->numdecals = i + 1;
9241
9242         // initialize the decal
9243         decal->lived = 0;
9244         decal->triangleindex = triangleindex;
9245         decal->surfaceindex = surfaceindex;
9246         decal->decalsequence = decalsequence;
9247         decal->color4f[0][0] = c0[0];
9248         decal->color4f[0][1] = c0[1];
9249         decal->color4f[0][2] = c0[2];
9250         decal->color4f[0][3] = 1;
9251         decal->color4f[1][0] = c1[0];
9252         decal->color4f[1][1] = c1[1];
9253         decal->color4f[1][2] = c1[2];
9254         decal->color4f[1][3] = 1;
9255         decal->color4f[2][0] = c2[0];
9256         decal->color4f[2][1] = c2[1];
9257         decal->color4f[2][2] = c2[2];
9258         decal->color4f[2][3] = 1;
9259         decal->vertex3f[0][0] = v0[0];
9260         decal->vertex3f[0][1] = v0[1];
9261         decal->vertex3f[0][2] = v0[2];
9262         decal->vertex3f[1][0] = v1[0];
9263         decal->vertex3f[1][1] = v1[1];
9264         decal->vertex3f[1][2] = v1[2];
9265         decal->vertex3f[2][0] = v2[0];
9266         decal->vertex3f[2][1] = v2[1];
9267         decal->vertex3f[2][2] = v2[2];
9268         decal->texcoord2f[0][0] = t0[0];
9269         decal->texcoord2f[0][1] = t0[1];
9270         decal->texcoord2f[1][0] = t1[0];
9271         decal->texcoord2f[1][1] = t1[1];
9272         decal->texcoord2f[2][0] = t2[0];
9273         decal->texcoord2f[2][1] = t2[1];
9274         TriangleNormal(v0, v1, v2, decal->plane);
9275         VectorNormalize(decal->plane);
9276         decal->plane[3] = DotProduct(v0, decal->plane);
9277 }
9278
9279 extern cvar_t cl_decals_bias;
9280 extern cvar_t cl_decals_models;
9281 extern cvar_t cl_decals_newsystem_intensitymultiplier;
9282 // baseparms, parms, temps
9283 static void R_DecalSystem_SplatTriangle(decalsystem_t *decalsystem, float r, float g, float b, float a, float s1, float t1, float s2, float t2, unsigned int decalsequence, qboolean dynamic, float (*planes)[4], matrix4x4_t *projection, int triangleindex, int surfaceindex)
9284 {
9285         int cornerindex;
9286         int index;
9287         float v[9][3];
9288         const float *vertex3f;
9289         const float *normal3f;
9290         int numpoints;
9291         float points[2][9][3];
9292         float temp[3];
9293         float tc[9][2];
9294         float f;
9295         float c[9][4];
9296         const int *e;
9297
9298         e = rsurface.modelelement3i + 3*triangleindex;
9299
9300         vertex3f = rsurface.modelvertex3f;
9301         normal3f = rsurface.modelnormal3f;
9302
9303         if (normal3f)
9304         {
9305                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9306                 {
9307                         index = 3*e[cornerindex];
9308                         VectorMA(vertex3f + index, cl_decals_bias.value, normal3f + index, v[cornerindex]);
9309                 }
9310         }
9311         else
9312         {
9313                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9314                 {
9315                         index = 3*e[cornerindex];
9316                         VectorCopy(vertex3f + index, v[cornerindex]);
9317                 }
9318         }
9319
9320         // cull backfaces
9321         //TriangleNormal(v[0], v[1], v[2], normal);
9322         //if (DotProduct(normal, localnormal) < 0.0f)
9323         //      continue;
9324         // clip by each of the box planes formed from the projection matrix
9325         // if anything survives, we emit the decal
9326         numpoints = PolygonF_Clip(3        , v[0]        , planes[0][0], planes[0][1], planes[0][2], planes[0][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9327         if (numpoints < 3)
9328                 return;
9329         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[1][0], planes[1][1], planes[1][2], planes[1][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9330         if (numpoints < 3)
9331                 return;
9332         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[2][0], planes[2][1], planes[2][2], planes[2][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9333         if (numpoints < 3)
9334                 return;
9335         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[3][0], planes[3][1], planes[3][2], planes[3][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9336         if (numpoints < 3)
9337                 return;
9338         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[4][0], planes[4][1], planes[4][2], planes[4][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9339         if (numpoints < 3)
9340                 return;
9341         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[5][0], planes[5][1], planes[5][2], planes[5][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), v[0]);
9342         if (numpoints < 3)
9343                 return;
9344         // some part of the triangle survived, so we have to accept it...
9345         if (dynamic)
9346         {
9347                 // dynamic always uses the original triangle
9348                 numpoints = 3;
9349                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9350                 {
9351                         index = 3*e[cornerindex];
9352                         VectorCopy(vertex3f + index, v[cornerindex]);
9353                 }
9354         }
9355         for (cornerindex = 0;cornerindex < numpoints;cornerindex++)
9356         {
9357                 // convert vertex positions to texcoords
9358                 Matrix4x4_Transform(projection, v[cornerindex], temp);
9359                 tc[cornerindex][0] = (temp[1]+1.0f)*0.5f * (s2-s1) + s1;
9360                 tc[cornerindex][1] = (temp[2]+1.0f)*0.5f * (t2-t1) + t1;
9361                 // calculate distance fade from the projection origin
9362                 f = a * (1.0f-fabs(temp[0])) * cl_decals_newsystem_intensitymultiplier.value;
9363                 f = bound(0.0f, f, 1.0f);
9364                 c[cornerindex][0] = r * f;
9365                 c[cornerindex][1] = g * f;
9366                 c[cornerindex][2] = b * f;
9367                 c[cornerindex][3] = 1.0f;
9368                 //VectorMA(v[cornerindex], cl_decals_bias.value, localnormal, v[cornerindex]);
9369         }
9370         if (dynamic)
9371                 R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[1], v[2], tc[0], tc[1], tc[2], c[0], c[1], c[2], triangleindex, surfaceindex, decalsequence);
9372         else
9373                 for (cornerindex = 0;cornerindex < numpoints-2;cornerindex++)
9374                         R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[cornerindex+1], v[cornerindex+2], tc[0], tc[cornerindex+1], tc[cornerindex+2], c[0], c[cornerindex+1], c[cornerindex+2], -1, surfaceindex, decalsequence);
9375 }
9376 static void R_DecalSystem_SplatEntity(entity_render_t *ent, const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9377 {
9378         matrix4x4_t projection;
9379         decalsystem_t *decalsystem;
9380         qboolean dynamic;
9381         dp_model_t *model;
9382         const msurface_t *surface;
9383         const msurface_t *surfaces;
9384         const int *surfacelist;
9385         const texture_t *texture;
9386         int numtriangles;
9387         int numsurfacelist;
9388         int surfacelistindex;
9389         int surfaceindex;
9390         int triangleindex;
9391         float localorigin[3];
9392         float localnormal[3];
9393         float localmins[3];
9394         float localmaxs[3];
9395         float localsize;
9396         //float normal[3];
9397         float planes[6][4];
9398         float angles[3];
9399         bih_t *bih;
9400         int bih_triangles_count;
9401         int bih_triangles[256];
9402         int bih_surfaces[256];
9403
9404         decalsystem = &ent->decalsystem;
9405         model = ent->model;
9406         if (!model || !ent->allowdecals || ent->alpha < 1 || (ent->flags & (RENDER_ADDITIVE | RENDER_NODEPTHTEST)))
9407         {
9408                 R_DecalSystem_Reset(&ent->decalsystem);
9409                 return;
9410         }
9411
9412         if (!model->brush.data_leafs && !cl_decals_models.integer)
9413         {
9414                 if (decalsystem->model)
9415                         R_DecalSystem_Reset(decalsystem);
9416                 return;
9417         }
9418
9419         if (decalsystem->model != model)
9420                 R_DecalSystem_Reset(decalsystem);
9421         decalsystem->model = model;
9422
9423         RSurf_ActiveModelEntity(ent, true, false, false);
9424
9425         Matrix4x4_Transform(&rsurface.inversematrix, worldorigin, localorigin);
9426         Matrix4x4_Transform3x3(&rsurface.inversematrix, worldnormal, localnormal);
9427         VectorNormalize(localnormal);
9428         localsize = worldsize*rsurface.inversematrixscale;
9429         localmins[0] = localorigin[0] - localsize;
9430         localmins[1] = localorigin[1] - localsize;
9431         localmins[2] = localorigin[2] - localsize;
9432         localmaxs[0] = localorigin[0] + localsize;
9433         localmaxs[1] = localorigin[1] + localsize;
9434         localmaxs[2] = localorigin[2] + localsize;
9435
9436         //VectorCopy(localnormal, planes[4]);
9437         //VectorVectors(planes[4], planes[2], planes[0]);
9438         AnglesFromVectors(angles, localnormal, NULL, false);
9439         AngleVectors(angles, planes[0], planes[2], planes[4]);
9440         VectorNegate(planes[0], planes[1]);
9441         VectorNegate(planes[2], planes[3]);
9442         VectorNegate(planes[4], planes[5]);
9443         planes[0][3] = DotProduct(planes[0], localorigin) - localsize;
9444         planes[1][3] = DotProduct(planes[1], localorigin) - localsize;
9445         planes[2][3] = DotProduct(planes[2], localorigin) - localsize;
9446         planes[3][3] = DotProduct(planes[3], localorigin) - localsize;
9447         planes[4][3] = DotProduct(planes[4], localorigin) - localsize;
9448         planes[5][3] = DotProduct(planes[5], localorigin) - localsize;
9449
9450 #if 1
9451 // works
9452 {
9453         matrix4x4_t forwardprojection;
9454         Matrix4x4_CreateFromQuakeEntity(&forwardprojection, localorigin[0], localorigin[1], localorigin[2], angles[0], angles[1], angles[2], localsize);
9455         Matrix4x4_Invert_Simple(&projection, &forwardprojection);
9456 }
9457 #else
9458 // broken
9459 {
9460         float projectionvector[4][3];
9461         VectorScale(planes[0], ilocalsize, projectionvector[0]);
9462         VectorScale(planes[2], ilocalsize, projectionvector[1]);
9463         VectorScale(planes[4], ilocalsize, projectionvector[2]);
9464         projectionvector[0][0] = planes[0][0] * ilocalsize;
9465         projectionvector[0][1] = planes[1][0] * ilocalsize;
9466         projectionvector[0][2] = planes[2][0] * ilocalsize;
9467         projectionvector[1][0] = planes[0][1] * ilocalsize;
9468         projectionvector[1][1] = planes[1][1] * ilocalsize;
9469         projectionvector[1][2] = planes[2][1] * ilocalsize;
9470         projectionvector[2][0] = planes[0][2] * ilocalsize;
9471         projectionvector[2][1] = planes[1][2] * ilocalsize;
9472         projectionvector[2][2] = planes[2][2] * ilocalsize;
9473         projectionvector[3][0] = -(localorigin[0]*projectionvector[0][0]+localorigin[1]*projectionvector[1][0]+localorigin[2]*projectionvector[2][0]);
9474         projectionvector[3][1] = -(localorigin[0]*projectionvector[0][1]+localorigin[1]*projectionvector[1][1]+localorigin[2]*projectionvector[2][1]);
9475         projectionvector[3][2] = -(localorigin[0]*projectionvector[0][2]+localorigin[1]*projectionvector[1][2]+localorigin[2]*projectionvector[2][2]);
9476         Matrix4x4_FromVectors(&projection, projectionvector[0], projectionvector[1], projectionvector[2], projectionvector[3]);
9477 }
9478 #endif
9479
9480         dynamic = model->surfmesh.isanimated;
9481         numsurfacelist = model->nummodelsurfaces;
9482         surfacelist = model->sortedmodelsurfaces;
9483         surfaces = model->data_surfaces;
9484
9485         bih = NULL;
9486         bih_triangles_count = -1;
9487         if(!dynamic)
9488         {
9489                 if(model->render_bih.numleafs)
9490                         bih = &model->render_bih;
9491                 else if(model->collision_bih.numleafs)
9492                         bih = &model->collision_bih;
9493         }
9494         if(bih)
9495                 bih_triangles_count = BIH_GetTriangleListForBox(bih, sizeof(bih_triangles) / sizeof(*bih_triangles), bih_triangles, bih_surfaces, localmins, localmaxs);
9496         if(bih_triangles_count == 0)
9497                 return;
9498         if(bih_triangles_count > (int) (sizeof(bih_triangles) / sizeof(*bih_triangles))) // hit too many, likely bad anyway
9499                 return;
9500         if(bih_triangles_count > 0)
9501         {
9502                 for (triangleindex = 0; triangleindex < bih_triangles_count; ++triangleindex)
9503                 {
9504                         surfaceindex = bih_surfaces[triangleindex];
9505                         surface = surfaces + surfaceindex;
9506                         texture = surface->texture;
9507                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9508                                 continue;
9509                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9510                                 continue;
9511                         R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, bih_triangles[triangleindex], surfaceindex);
9512                 }
9513         }
9514         else
9515         {
9516                 for (surfacelistindex = 0;surfacelistindex < numsurfacelist;surfacelistindex++)
9517                 {
9518                         surfaceindex = surfacelist[surfacelistindex];
9519                         surface = surfaces + surfaceindex;
9520                         // check cull box first because it rejects more than any other check
9521                         if (!dynamic && !BoxesOverlap(surface->mins, surface->maxs, localmins, localmaxs))
9522                                 continue;
9523                         // skip transparent surfaces
9524                         texture = surface->texture;
9525                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9526                                 continue;
9527                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9528                                 continue;
9529                         numtriangles = surface->num_triangles;
9530                         for (triangleindex = 0; triangleindex < numtriangles; triangleindex++)
9531                                 R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, triangleindex + surface->num_firsttriangle, surfaceindex);
9532                 }
9533         }
9534 }
9535
9536 // do not call this outside of rendering code - use R_DecalSystem_SplatEntities instead
9537 static void R_DecalSystem_ApplySplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9538 {
9539         int renderentityindex;
9540         float worldmins[3];
9541         float worldmaxs[3];
9542         entity_render_t *ent;
9543
9544         if (!cl_decals_newsystem.integer)
9545                 return;
9546
9547         worldmins[0] = worldorigin[0] - worldsize;
9548         worldmins[1] = worldorigin[1] - worldsize;
9549         worldmins[2] = worldorigin[2] - worldsize;
9550         worldmaxs[0] = worldorigin[0] + worldsize;
9551         worldmaxs[1] = worldorigin[1] + worldsize;
9552         worldmaxs[2] = worldorigin[2] + worldsize;
9553
9554         R_DecalSystem_SplatEntity(r_refdef.scene.worldentity, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9555
9556         for (renderentityindex = 0;renderentityindex < r_refdef.scene.numentities;renderentityindex++)
9557         {
9558                 ent = r_refdef.scene.entities[renderentityindex];
9559                 if (!BoxesOverlap(ent->mins, ent->maxs, worldmins, worldmaxs))
9560                         continue;
9561
9562                 R_DecalSystem_SplatEntity(ent, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9563         }
9564 }
9565
9566 typedef struct r_decalsystem_splatqueue_s
9567 {
9568         vec3_t worldorigin;
9569         vec3_t worldnormal;
9570         float color[4];
9571         float tcrange[4];
9572         float worldsize;
9573         unsigned int decalsequence;
9574 }
9575 r_decalsystem_splatqueue_t;
9576
9577 int r_decalsystem_numqueued = 0;
9578 r_decalsystem_splatqueue_t r_decalsystem_queue[MAX_DECALSYSTEM_QUEUE];
9579
9580 void R_DecalSystem_SplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize)
9581 {
9582         r_decalsystem_splatqueue_t *queue;
9583
9584         if (!cl_decals_newsystem.integer || r_decalsystem_numqueued == MAX_DECALSYSTEM_QUEUE)
9585                 return;
9586
9587         queue = &r_decalsystem_queue[r_decalsystem_numqueued++];
9588         VectorCopy(worldorigin, queue->worldorigin);
9589         VectorCopy(worldnormal, queue->worldnormal);
9590         Vector4Set(queue->color, r, g, b, a);
9591         Vector4Set(queue->tcrange, s1, t1, s2, t2);
9592         queue->worldsize = worldsize;
9593         queue->decalsequence = cl.decalsequence++;
9594 }
9595
9596 static void R_DecalSystem_ApplySplatEntitiesQueue(void)
9597 {
9598         int i;
9599         r_decalsystem_splatqueue_t *queue;
9600
9601         for (i = 0, queue = r_decalsystem_queue;i < r_decalsystem_numqueued;i++, queue++)
9602                 R_DecalSystem_ApplySplatEntities(queue->worldorigin, queue->worldnormal, queue->color[0], queue->color[1], queue->color[2], queue->color[3], queue->tcrange[0], queue->tcrange[1], queue->tcrange[2], queue->tcrange[3], queue->worldsize, queue->decalsequence);
9603         r_decalsystem_numqueued = 0;
9604 }
9605
9606 extern cvar_t cl_decals_max;
9607 static void R_DrawModelDecals_FadeEntity(entity_render_t *ent)
9608 {
9609         int i;
9610         decalsystem_t *decalsystem = &ent->decalsystem;
9611         int numdecals;
9612         unsigned int killsequence;
9613         tridecal_t *decal;
9614         float frametime;
9615         float lifetime;
9616
9617         if (!decalsystem->numdecals)
9618                 return;
9619
9620         if (r_showsurfaces.integer)
9621                 return;
9622
9623         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9624         {
9625                 R_DecalSystem_Reset(decalsystem);
9626                 return;
9627         }
9628
9629         killsequence = cl.decalsequence - bound(1, (unsigned int) cl_decals_max.integer, cl.decalsequence);
9630         lifetime = cl_decals_time.value + cl_decals_fadetime.value;
9631
9632         if (decalsystem->lastupdatetime)
9633                 frametime = (r_refdef.scene.time - decalsystem->lastupdatetime);
9634         else
9635                 frametime = 0;
9636         decalsystem->lastupdatetime = r_refdef.scene.time;
9637         numdecals = decalsystem->numdecals;
9638
9639         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9640         {
9641                 if (decal->color4f[0][3])
9642                 {
9643                         decal->lived += frametime;
9644                         if (killsequence > decal->decalsequence || decal->lived >= lifetime)
9645                         {
9646                                 memset(decal, 0, sizeof(*decal));
9647                                 if (decalsystem->freedecal > i)
9648                                         decalsystem->freedecal = i;
9649                         }
9650                 }
9651         }
9652         decal = decalsystem->decals;
9653         while (numdecals > 0 && !decal[numdecals-1].color4f[0][3])
9654                 numdecals--;
9655
9656         // collapse the array by shuffling the tail decals into the gaps
9657         for (;;)
9658         {
9659                 while (decalsystem->freedecal < numdecals && decal[decalsystem->freedecal].color4f[0][3])
9660                         decalsystem->freedecal++;
9661                 if (decalsystem->freedecal == numdecals)
9662                         break;
9663                 decal[decalsystem->freedecal] = decal[--numdecals];
9664         }
9665
9666         decalsystem->numdecals = numdecals;
9667
9668         if (numdecals <= 0)
9669         {
9670                 // if there are no decals left, reset decalsystem
9671                 R_DecalSystem_Reset(decalsystem);
9672         }
9673 }
9674
9675 extern skinframe_t *decalskinframe;
9676 static void R_DrawModelDecals_Entity(entity_render_t *ent)
9677 {
9678         int i;
9679         decalsystem_t *decalsystem = &ent->decalsystem;
9680         int numdecals;
9681         tridecal_t *decal;
9682         float faderate;
9683         float alpha;
9684         float *v3f;
9685         float *c4f;
9686         float *t2f;
9687         const int *e;
9688         const unsigned char *surfacevisible = ent == r_refdef.scene.worldentity ? r_refdef.viewcache.world_surfacevisible : NULL;
9689         int numtris = 0;
9690
9691         numdecals = decalsystem->numdecals;
9692         if (!numdecals)
9693                 return;
9694
9695         if (r_showsurfaces.integer)
9696                 return;
9697
9698         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9699         {
9700                 R_DecalSystem_Reset(decalsystem);
9701                 return;
9702         }
9703
9704         // if the model is static it doesn't matter what value we give for
9705         // wantnormals and wanttangents, so this logic uses only rules applicable
9706         // to a model, knowing that they are meaningless otherwise
9707         RSurf_ActiveModelEntity(ent, false, false, false);
9708
9709         decalsystem->lastupdatetime = r_refdef.scene.time;
9710
9711         faderate = 1.0f / max(0.001f, cl_decals_fadetime.value);
9712
9713         // update vertex positions for animated models
9714         v3f = decalsystem->vertex3f;
9715         c4f = decalsystem->color4f;
9716         t2f = decalsystem->texcoord2f;
9717         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9718         {
9719                 if (!decal->color4f[0][3])
9720                         continue;
9721
9722                 if (surfacevisible && !surfacevisible[decal->surfaceindex])
9723                         continue;
9724
9725                 // skip backfaces
9726                 if (decal->triangleindex < 0 && DotProduct(r_refdef.view.origin, decal->plane) < decal->plane[3])
9727                         continue;
9728
9729                 // update color values for fading decals
9730                 if (decal->lived >= cl_decals_time.value)
9731                         alpha = 1 - faderate * (decal->lived - cl_decals_time.value);
9732                 else
9733                         alpha = 1.0f;
9734
9735                 c4f[ 0] = decal->color4f[0][0] * alpha;
9736                 c4f[ 1] = decal->color4f[0][1] * alpha;
9737                 c4f[ 2] = decal->color4f[0][2] * alpha;
9738                 c4f[ 3] = 1;
9739                 c4f[ 4] = decal->color4f[1][0] * alpha;
9740                 c4f[ 5] = decal->color4f[1][1] * alpha;
9741                 c4f[ 6] = decal->color4f[1][2] * alpha;
9742                 c4f[ 7] = 1;
9743                 c4f[ 8] = decal->color4f[2][0] * alpha;
9744                 c4f[ 9] = decal->color4f[2][1] * alpha;
9745                 c4f[10] = decal->color4f[2][2] * alpha;
9746                 c4f[11] = 1;
9747
9748                 t2f[0] = decal->texcoord2f[0][0];
9749                 t2f[1] = decal->texcoord2f[0][1];
9750                 t2f[2] = decal->texcoord2f[1][0];
9751                 t2f[3] = decal->texcoord2f[1][1];
9752                 t2f[4] = decal->texcoord2f[2][0];
9753                 t2f[5] = decal->texcoord2f[2][1];
9754
9755                 // update vertex positions for animated models
9756                 if (decal->triangleindex >= 0 && decal->triangleindex < rsurface.modelnumtriangles)
9757                 {
9758                         e = rsurface.modelelement3i + 3*decal->triangleindex;
9759                         VectorCopy(rsurface.modelvertex3f + 3*e[0], v3f);
9760                         VectorCopy(rsurface.modelvertex3f + 3*e[1], v3f + 3);
9761                         VectorCopy(rsurface.modelvertex3f + 3*e[2], v3f + 6);
9762                 }
9763                 else
9764                 {
9765                         VectorCopy(decal->vertex3f[0], v3f);
9766                         VectorCopy(decal->vertex3f[1], v3f + 3);
9767                         VectorCopy(decal->vertex3f[2], v3f + 6);
9768                 }
9769
9770                 if (r_refdef.fogenabled)
9771                 {
9772                         alpha = RSurf_FogVertex(v3f);
9773                         VectorScale(c4f, alpha, c4f);
9774                         alpha = RSurf_FogVertex(v3f + 3);
9775                         VectorScale(c4f + 4, alpha, c4f + 4);
9776                         alpha = RSurf_FogVertex(v3f + 6);
9777                         VectorScale(c4f + 8, alpha, c4f + 8);
9778                 }
9779
9780                 v3f += 9;
9781                 c4f += 12;
9782                 t2f += 6;
9783                 numtris++;
9784         }
9785
9786         if (numtris > 0)
9787         {
9788                 r_refdef.stats[r_stat_drawndecals] += numtris;
9789
9790                 // now render the decals all at once
9791                 // (this assumes they all use one particle font texture!)
9792                 RSurf_ActiveCustomEntity(&rsurface.matrix, &rsurface.inversematrix, rsurface.ent_flags, ent->shadertime, 1, 1, 1, 1, numdecals*3, decalsystem->vertex3f, decalsystem->texcoord2f, NULL, NULL, NULL, decalsystem->color4f, numtris, decalsystem->element3i, decalsystem->element3s, false, false);
9793 //              R_Mesh_ResetTextureState();
9794                 R_Mesh_PrepareVertices_Generic_Arrays(numtris * 3, decalsystem->vertex3f, decalsystem->color4f, decalsystem->texcoord2f);
9795                 GL_DepthMask(false);
9796                 GL_DepthRange(0, 1);
9797                 GL_PolygonOffset(rsurface.basepolygonfactor + r_polygonoffset_decals_factor.value, rsurface.basepolygonoffset + r_polygonoffset_decals_offset.value);
9798                 GL_DepthTest(true);
9799                 GL_CullFace(GL_NONE);
9800                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
9801                 R_SetupShader_Generic(decalskinframe->base, false, false, false);
9802                 R_Mesh_Draw(0, numtris * 3, 0, numtris, decalsystem->element3i, NULL, 0, decalsystem->element3s, NULL, 0);
9803         }
9804 }
9805
9806 static void R_DrawModelDecals(void)
9807 {
9808         int i, numdecals;
9809
9810         // fade faster when there are too many decals
9811         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9812         for (i = 0;i < r_refdef.scene.numentities;i++)
9813                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9814
9815         R_DrawModelDecals_FadeEntity(r_refdef.scene.worldentity);
9816         for (i = 0;i < r_refdef.scene.numentities;i++)
9817                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9818                         R_DrawModelDecals_FadeEntity(r_refdef.scene.entities[i]);
9819
9820         R_DecalSystem_ApplySplatEntitiesQueue();
9821
9822         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9823         for (i = 0;i < r_refdef.scene.numentities;i++)
9824                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9825
9826         r_refdef.stats[r_stat_totaldecals] += numdecals;
9827
9828         if (r_showsurfaces.integer)
9829                 return;
9830
9831         R_DrawModelDecals_Entity(r_refdef.scene.worldentity);
9832
9833         for (i = 0;i < r_refdef.scene.numentities;i++)
9834         {
9835                 if (!r_refdef.viewcache.entityvisible[i])
9836                         continue;
9837                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9838                         R_DrawModelDecals_Entity(r_refdef.scene.entities[i]);
9839         }
9840 }
9841
9842 extern cvar_t mod_collision_bih;
9843 static void R_DrawDebugModel(void)
9844 {
9845         entity_render_t *ent = rsurface.entity;
9846         int i, j, flagsmask;
9847         const msurface_t *surface;
9848         dp_model_t *model = ent->model;
9849
9850         if (!sv.active  && !cls.demoplayback && ent != r_refdef.scene.worldentity)
9851                 return;
9852
9853         if (r_showoverdraw.value > 0)
9854         {
9855                 float c = r_refdef.view.colorscale * r_showoverdraw.value * 0.125f;
9856                 flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9857                 R_SetupShader_Generic_NoTexture(false, false);
9858                 GL_DepthTest(false);
9859                 GL_DepthMask(false);
9860                 GL_DepthRange(0, 1);
9861                 GL_BlendFunc(GL_ONE, GL_ONE);
9862                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9863                 {
9864                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9865                                 continue;
9866                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9867                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9868                         {
9869                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, 1, &surface);
9870                                 GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
9871                                 if (!rsurface.texture->currentlayers->depthmask)
9872                                         GL_Color(c, 0, 0, 1.0f);
9873                                 else if (ent == r_refdef.scene.worldentity)
9874                                         GL_Color(c, c, c, 1.0f);
9875                                 else
9876                                         GL_Color(0, c, 0, 1.0f);
9877                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9878                                 RSurf_DrawBatch();
9879                         }
9880                 }
9881                 rsurface.texture = NULL;
9882         }
9883
9884         flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9885
9886 //      R_Mesh_ResetTextureState();
9887         R_SetupShader_Generic_NoTexture(false, false);
9888         GL_DepthRange(0, 1);
9889         GL_DepthTest(!r_showdisabledepthtest.integer);
9890         GL_DepthMask(false);
9891         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9892
9893         if (r_showcollisionbrushes.value > 0 && model->collision_bih.numleafs)
9894         {
9895                 int triangleindex;
9896                 int bihleafindex;
9897                 qboolean cullbox = false;
9898                 const q3mbrush_t *brush;
9899                 const bih_t *bih = &model->collision_bih;
9900                 const bih_leaf_t *bihleaf;
9901                 float vertex3f[3][3];
9902                 GL_PolygonOffset(r_refdef.polygonfactor + r_showcollisionbrushes_polygonfactor.value, r_refdef.polygonoffset + r_showcollisionbrushes_polygonoffset.value);
9903                 for (bihleafindex = 0, bihleaf = bih->leafs;bihleafindex < bih->numleafs;bihleafindex++, bihleaf++)
9904                 {
9905                         if (cullbox && R_CullBox(bihleaf->mins, bihleaf->maxs))
9906                                 continue;
9907                         switch (bihleaf->type)
9908                         {
9909                         case BIH_BRUSH:
9910                                 brush = model->brush.data_brushes + bihleaf->itemindex;
9911                                 if (brush->colbrushf && brush->colbrushf->numtriangles)
9912                                 {
9913                                         GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9914                                         R_Mesh_PrepareVertices_Generic_Arrays(brush->colbrushf->numpoints, brush->colbrushf->points->v, NULL, NULL);
9915                                         R_Mesh_Draw(0, brush->colbrushf->numpoints, 0, brush->colbrushf->numtriangles, brush->colbrushf->elements, NULL, 0, NULL, NULL, 0);
9916                                 }
9917                                 break;
9918                         case BIH_COLLISIONTRIANGLE:
9919                                 triangleindex = bihleaf->itemindex;
9920                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+0], vertex3f[0]);
9921                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+1], vertex3f[1]);
9922                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+2], vertex3f[2]);
9923                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9924                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9925                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9926                                 break;
9927                         case BIH_RENDERTRIANGLE:
9928                                 triangleindex = bihleaf->itemindex;
9929                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+0], vertex3f[0]);
9930                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+1], vertex3f[1]);
9931                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+2], vertex3f[2]);
9932                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9933                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9934                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9935                                 break;
9936                         }
9937                 }
9938         }
9939
9940         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9941
9942 #ifndef USE_GLES2
9943         if (r_showtris.value > 0 && qglPolygonMode)
9944         {
9945                 if (r_showdisabledepthtest.integer)
9946                 {
9947                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9948                         GL_DepthMask(false);
9949                 }
9950                 else
9951                 {
9952                         GL_BlendFunc(GL_ONE, GL_ZERO);
9953                         GL_DepthMask(true);
9954                 }
9955                 qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);CHECKGLERROR
9956                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9957                 {
9958                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9959                                 continue;
9960                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9961                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9962                         {
9963                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9964                                 if (!rsurface.texture->currentlayers->depthmask)
9965                                         GL_Color(r_refdef.view.colorscale, 0, 0, r_showtris.value);
9966                                 else if (ent == r_refdef.scene.worldentity)
9967                                         GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, r_showtris.value);
9968                                 else
9969                                         GL_Color(0, r_refdef.view.colorscale, 0, r_showtris.value);
9970                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9971                                 RSurf_DrawBatch();
9972                         }
9973                 }
9974                 qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);CHECKGLERROR
9975                 rsurface.texture = NULL;
9976         }
9977
9978 # if 0
9979         // FIXME!  implement r_shownormals with just triangles
9980         if (r_shownormals.value != 0 && qglBegin)
9981         {
9982                 int l, k;
9983                 vec3_t v;
9984                 if (r_showdisabledepthtest.integer)
9985                 {
9986                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9987                         GL_DepthMask(false);
9988                 }
9989                 else
9990                 {
9991                         GL_BlendFunc(GL_ONE, GL_ZERO);
9992                         GL_DepthMask(true);
9993                 }
9994                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9995                 {
9996                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9997                                 continue;
9998                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9999                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
10000                         {
10001                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
10002                                 qglBegin(GL_LINES);
10003                                 if (r_shownormals.value < 0 && rsurface.batchnormal3f)
10004                                 {
10005                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
10006                                         {
10007                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
10008                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
10009                                                 qglVertex3f(v[0], v[1], v[2]);
10010                                                 VectorMA(v, -r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
10011                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
10012                                                 qglVertex3f(v[0], v[1], v[2]);
10013                                         }
10014                                 }
10015                                 if (r_shownormals.value > 0 && rsurface.batchsvector3f)
10016                                 {
10017                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
10018                                         {
10019                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
10020                                                 GL_Color(r_refdef.view.colorscale, 0, 0, 1);
10021                                                 qglVertex3f(v[0], v[1], v[2]);
10022                                                 VectorMA(v, r_shownormals.value, rsurface.batchsvector3f + l * 3, v);
10023                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
10024                                                 qglVertex3f(v[0], v[1], v[2]);
10025                                         }
10026                                 }
10027                                 if (r_shownormals.value > 0 && rsurface.batchtvector3f)
10028                                 {
10029                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
10030                                         {
10031                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
10032                                                 GL_Color(0, r_refdef.view.colorscale, 0, 1);
10033                                                 qglVertex3f(v[0], v[1], v[2]);
10034                                                 VectorMA(v, r_shownormals.value, rsurface.batchtvector3f + l * 3, v);
10035                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
10036                                                 qglVertex3f(v[0], v[1], v[2]);
10037                                         }
10038                                 }
10039                                 if (r_shownormals.value > 0 && rsurface.batchnormal3f)
10040                                 {
10041                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
10042                                         {
10043                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
10044                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
10045                                                 qglVertex3f(v[0], v[1], v[2]);
10046                                                 VectorMA(v, r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
10047                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
10048                                                 qglVertex3f(v[0], v[1], v[2]);
10049                                         }
10050                                 }
10051                                 qglEnd();
10052                                 CHECKGLERROR
10053                         }
10054                 }
10055                 rsurface.texture = NULL;
10056         }
10057 # endif
10058 #endif
10059 }
10060
10061 int r_maxsurfacelist = 0;
10062 const msurface_t **r_surfacelist = NULL;
10063 void R_DrawModelSurfaces(entity_render_t *ent, qboolean skysurfaces, qboolean writedepth, qboolean depthonly, qboolean debug, qboolean prepass)
10064 {
10065         int i, j, endj, flagsmask;
10066         dp_model_t *model = ent->model;
10067         msurface_t *surfaces;
10068         unsigned char *update;
10069         int numsurfacelist = 0;
10070         if (model == NULL)
10071                 return;
10072
10073         if (r_maxsurfacelist < model->num_surfaces)
10074         {
10075                 r_maxsurfacelist = model->num_surfaces;
10076                 if (r_surfacelist)
10077                         Mem_Free((msurface_t **)r_surfacelist);
10078                 r_surfacelist = (const msurface_t **) Mem_Alloc(r_main_mempool, r_maxsurfacelist * sizeof(*r_surfacelist));
10079         }
10080
10081         if (r_showsurfaces.integer && r_showsurfaces.integer != 3)
10082                 RSurf_ActiveModelEntity(ent, false, false, false);
10083         else if (prepass)
10084                 RSurf_ActiveModelEntity(ent, true, true, true);
10085         else if (depthonly)
10086                 RSurf_ActiveModelEntity(ent, model->wantnormals, model->wanttangents, false);
10087         else
10088                 RSurf_ActiveModelEntity(ent, true, true, false);
10089
10090         surfaces = model->data_surfaces;
10091         update = model->brushq1.lightmapupdateflags;
10092
10093         // update light styles
10094         if (!skysurfaces && !depthonly && !prepass && model->brushq1.num_lightstyles && r_refdef.scene.lightmapintensity > 0)
10095         {
10096                 model_brush_lightstyleinfo_t *style;
10097                 for (i = 0, style = model->brushq1.data_lightstyleinfo;i < model->brushq1.num_lightstyles;i++, style++)
10098                 {
10099                         if (style->value != r_refdef.scene.lightstylevalue[style->style])
10100                         {
10101                                 int *list = style->surfacelist;
10102                                 style->value = r_refdef.scene.lightstylevalue[style->style];
10103                                 for (j = 0;j < style->numsurfaces;j++)
10104                                         update[list[j]] = true;
10105                         }
10106                 }
10107         }
10108
10109         flagsmask = skysurfaces ? MATERIALFLAG_SKY : MATERIALFLAG_WALL;
10110
10111         if (debug)
10112         {
10113                 R_DrawDebugModel();
10114                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10115                 return;
10116         }
10117
10118         rsurface.lightmaptexture = NULL;
10119         rsurface.deluxemaptexture = NULL;
10120         rsurface.uselightmaptexture = false;
10121         rsurface.texture = NULL;
10122         rsurface.rtlight = NULL;
10123         numsurfacelist = 0;
10124         // add visible surfaces to draw list
10125         if (ent == r_refdef.scene.worldentity)
10126         {
10127                 // for the world entity, check surfacevisible
10128                 for (i = 0;i < model->nummodelsurfaces;i++)
10129                 {
10130                         j = model->sortedmodelsurfaces[i];
10131                         if (r_refdef.viewcache.world_surfacevisible[j])
10132                                 r_surfacelist[numsurfacelist++] = surfaces + j;
10133                 }
10134         }
10135         else
10136         {
10137                 // add all surfaces
10138                 for (i = 0; i < model->nummodelsurfaces; i++)
10139                         r_surfacelist[numsurfacelist++] = surfaces + model->sortedmodelsurfaces[i];
10140         }
10141         // don't do anything if there were no surfaces
10142         if (!numsurfacelist)
10143         {
10144                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10145                 return;
10146         }
10147         // update lightmaps if needed
10148         if (update)
10149         {
10150                 int updated = 0;
10151                 for (j = model->firstmodelsurface, endj = model->firstmodelsurface + model->nummodelsurfaces;j < endj;j++)
10152                 {
10153                         if (update[j])
10154                         {
10155                                 updated++;
10156                                 R_BuildLightMap(ent, surfaces + j);
10157                         }
10158                 }
10159         }
10160
10161         R_QueueModelSurfaceList(ent, numsurfacelist, r_surfacelist, flagsmask, writedepth, depthonly, prepass);
10162
10163         // add to stats if desired
10164         if (r_speeds.integer && !skysurfaces && !depthonly)
10165         {
10166                 r_refdef.stats[r_stat_entities_surfaces] += numsurfacelist;
10167                 for (j = 0;j < numsurfacelist;j++)
10168                         r_refdef.stats[r_stat_entities_triangles] += r_surfacelist[j]->num_triangles;
10169         }
10170
10171         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10172 }
10173
10174 void R_DebugLine(vec3_t start, vec3_t end)
10175 {
10176         dp_model_t *mod = CL_Mesh_UI();
10177         msurface_t *surf;
10178         int e0, e1, e2, e3;
10179         float offsetx, offsety, x1, y1, x2, y2, width = 1.0f;
10180         float r1 = 1.0f, g1 = 0.0f, b1 = 0.0f, alpha1 = 0.25f;
10181         float r2 = 1.0f, g2 = 1.0f, b2 = 0.0f, alpha2 = 0.25f;
10182         vec4_t w[2], s[2];
10183
10184         // transform to screen coords first
10185         Vector4Set(w[0], start[0], start[1], start[2], 1);
10186         Vector4Set(w[1], end[0], end[1], end[2], 1);
10187         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[0], s[0]);
10188         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[1], s[1]);
10189         x1 = s[0][0] * vid_conwidth.value / vid.width;
10190         y1 = (vid.height - s[0][1]) * vid_conheight.value / vid.height;
10191         x2 = s[1][0] * vid_conwidth.value / vid.width;
10192         y2 = (vid.height - s[1][1]) * vid_conheight.value / vid.height;
10193         //Con_DPrintf("R_DebugLine: %.0f,%.0f to %.0f,%.0f\n", x1, y1, x2, y2);
10194
10195         // add the line to the UI mesh for drawing later
10196
10197         // width is measured in real pixels
10198         if (fabs(x2 - x1) > fabs(y2 - y1))
10199         {
10200                 offsetx = 0;
10201                 offsety = 0.5f * width * vid_conheight.value / vid.height;
10202         }
10203         else
10204         {
10205                 offsetx = 0.5f * width * vid_conwidth.value / vid.width;
10206                 offsety = 0;
10207         }
10208         surf = Mod_Mesh_AddSurface(mod, Mod_Mesh_GetTexture(mod, "white", 0, 0, MATERIALFLAG_VERTEXCOLOR), true);
10209         e0 = Mod_Mesh_IndexForVertex(mod, surf, x1 - offsetx, y1 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10210         e1 = Mod_Mesh_IndexForVertex(mod, surf, x2 - offsetx, y2 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10211         e2 = Mod_Mesh_IndexForVertex(mod, surf, x2 + offsetx, y2 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10212         e3 = Mod_Mesh_IndexForVertex(mod, surf, x1 + offsetx, y1 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10213         Mod_Mesh_AddTriangle(mod, surf, e0, e1, e2);
10214         Mod_Mesh_AddTriangle(mod, surf, e0, e2, e3);
10215
10216 }
10217
10218
10219 void R_DrawCustomSurface(skinframe_t *skinframe, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qboolean writedepth, qboolean prepass)
10220 {
10221         int q;
10222         static texture_t texture;
10223         static msurface_t surface;
10224         const msurface_t *surfacelist = &surface;
10225
10226         // fake enough texture and surface state to render this geometry
10227
10228         texture.update_lastrenderframe = -1; // regenerate this texture
10229         texture.basematerialflags = materialflags | MATERIALFLAG_CUSTOMSURFACE | MATERIALFLAG_WALL;
10230         texture.basealpha = 1.0f;
10231         texture.currentskinframe = skinframe;
10232         texture.currenttexmatrix = *texmatrix; // requires MATERIALFLAG_CUSTOMSURFACE
10233         texture.offsetmapping = OFFSETMAPPING_OFF;
10234         texture.offsetscale = 1;
10235         texture.specularscalemod = 1;
10236         texture.specularpowermod = 1;
10237         texture.transparentsort = TRANSPARENTSORT_DISTANCE;
10238         // WHEN ADDING DEFAULTS HERE, REMEMBER TO PUT DEFAULTS IN ALL LOADERS
10239         // JUST GREP FOR "specularscalemod = 1".
10240
10241         for (q = 0; q < 3; q++)
10242         {
10243                 texture.render_glowmod[q] = r_refdef.view.colorscale * r_hdr_glowintensity.value;
10244                 texture.render_modellight_lightdir[q] = q == 2;
10245                 texture.render_modellight_ambient[q] = r_refdef.view.colorscale * r_refdef.scene.ambientintensity;
10246                 texture.render_modellight_diffuse[q] = r_refdef.view.colorscale;
10247                 texture.render_modellight_specular[q] = r_refdef.view.colorscale;
10248                 texture.render_lightmap_ambient[q] = r_refdef.view.colorscale * r_refdef.scene.ambientintensity;
10249                 texture.render_lightmap_diffuse[q] = r_refdef.view.colorscale * r_refdef.scene.lightmapintensity;
10250                 texture.render_lightmap_specular[q] = r_refdef.view.colorscale;
10251                 texture.render_rtlight_diffuse[q] = r_refdef.view.colorscale;
10252                 texture.render_rtlight_specular[q] = r_refdef.view.colorscale;
10253         }
10254         texture.currentalpha = 1.0f;
10255
10256         surface.texture = &texture;
10257         surface.num_triangles = numtriangles;
10258         surface.num_firsttriangle = firsttriangle;
10259         surface.num_vertices = numvertices;
10260         surface.num_firstvertex = firstvertex;
10261
10262         // now render it
10263         rsurface.texture = R_GetCurrentTexture(surface.texture);
10264         rsurface.lightmaptexture = NULL;
10265         rsurface.deluxemaptexture = NULL;
10266         rsurface.uselightmaptexture = false;
10267         R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass);
10268 }
10269
10270 void R_DrawCustomSurface_Texture(texture_t *texture, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qboolean writedepth, qboolean prepass)
10271 {
10272         static msurface_t surface;
10273         const msurface_t *surfacelist = &surface;
10274
10275         // fake enough texture and surface state to render this geometry
10276         surface.texture = texture;
10277         surface.num_triangles = numtriangles;
10278         surface.num_firsttriangle = firsttriangle;
10279         surface.num_vertices = numvertices;
10280         surface.num_firstvertex = firstvertex;
10281
10282         // now render it
10283         rsurface.texture = R_GetCurrentTexture(surface.texture);
10284         rsurface.lightmaptexture = NULL;
10285         rsurface.deluxemaptexture = NULL;
10286         rsurface.uselightmaptexture = false;
10287         R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass);
10288 }