]> git.xonotic.org Git - xonotic/darkplaces.git/blob - gl_rmain.c
model_shared: Avoid using R_FrameData_Alloc when building sorted surfaces list
[xonotic/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "r_shadow.h"
24 #include "polygon.h"
25 #include "image.h"
26 #include "ft2.h"
27 #include "csprogs.h"
28 #include "cl_video.h"
29 #include "cl_collision.h"
30
31 #ifdef WIN32
32 // Enable NVIDIA High Performance Graphics while using Integrated Graphics.
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 __declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001;
37 #ifdef __cplusplus
38 }
39 #endif
40 #endif
41
42 mempool_t *r_main_mempool;
43 rtexturepool_t *r_main_texturepool;
44
45 int r_textureframe = 0; ///< used only by R_GetCurrentTexture, incremented per view and per UI render
46
47 static qbool r_loadnormalmap;
48 static qbool r_loadgloss;
49 qbool r_loadfog;
50 static qbool r_loaddds;
51 static qbool r_savedds;
52 static qbool r_gpuskeletal;
53
54 //
55 // screen size info
56 //
57 r_refdef_t r_refdef;
58
59 cvar_t r_motionblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur", "0", "screen motionblur - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
60 cvar_t r_damageblur = {CF_CLIENT | CF_ARCHIVE, "r_damageblur", "0", "screen motionblur based on damage - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
61 cvar_t r_motionblur_averaging = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_averaging", "0.1", "sliding average reaction time for velocity (higher = slower adaption to change)"};
62 cvar_t r_motionblur_randomize = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_randomize", "0.1", "randomizing coefficient to workaround ghosting"};
63 cvar_t r_motionblur_minblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_minblur", "0.5", "factor of blur to apply at all times (always have this amount of blur no matter what the other factors are)"};
64 cvar_t r_motionblur_maxblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_maxblur", "0.9", "maxmimum amount of blur"};
65 cvar_t r_motionblur_velocityfactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor", "1", "factoring in of player velocity to the blur equation - the faster the player moves around the map, the more blur they get"};
66 cvar_t r_motionblur_velocityfactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_minspeed", "400", "lower value of velocity when it starts to factor into blur equation"};
67 cvar_t r_motionblur_velocityfactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_maxspeed", "800", "upper value of velocity when it reaches the peak factor into blur equation"};
68 cvar_t r_motionblur_mousefactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor", "2", "factoring in of mouse acceleration to the blur equation - the faster the player turns their mouse, the more blur they get"};
69 cvar_t r_motionblur_mousefactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_minspeed", "0", "lower value of mouse acceleration when it starts to factor into blur equation"};
70 cvar_t r_motionblur_mousefactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_maxspeed", "50", "upper value of mouse acceleration when it reaches the peak factor into blur equation"};
71
72 cvar_t r_depthfirst = {CF_CLIENT | CF_ARCHIVE, "r_depthfirst", "0", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
73 cvar_t r_useinfinitefarclip = {CF_CLIENT | CF_ARCHIVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"};
74 cvar_t r_farclip_base = {CF_CLIENT, "r_farclip_base", "65536", "farclip (furthest visible distance) for rendering when r_useinfinitefarclip is 0"};
75 cvar_t r_farclip_world = {CF_CLIENT, "r_farclip_world", "2", "adds map size to farclip multiplied by this value"};
76 cvar_t r_nearclip = {CF_CLIENT, "r_nearclip", "1", "distance from camera of nearclip plane" };
77 cvar_t r_deformvertexes = {CF_CLIENT, "r_deformvertexes", "1", "allows use of deformvertexes in shader files (can be turned off to check performance impact)"};
78 cvar_t r_transparent = {CF_CLIENT, "r_transparent", "1", "allows use of transparent surfaces (can be turned off to check performance impact)"};
79 cvar_t r_transparent_alphatocoverage = {CF_CLIENT, "r_transparent_alphatocoverage", "1", "enables GL_ALPHA_TO_COVERAGE antialiasing technique on alphablend and alphatest surfaces when using vid_samples 2 or higher"};
80 cvar_t r_transparent_sortsurfacesbynearest = {CF_CLIENT, "r_transparent_sortsurfacesbynearest", "1", "sort entity and world surfaces by nearest point on bounding box instead of using the center of the bounding box, usually reduces sorting artifacts"};
81 cvar_t r_transparent_useplanardistance = {CF_CLIENT, "r_transparent_useplanardistance", "0", "sort transparent meshes by distance from view plane rather than spherical distance to the chosen point"};
82 cvar_t r_showoverdraw = {CF_CLIENT, "r_showoverdraw", "0", "shows overlapping geometry"};
83 cvar_t r_showbboxes = {CF_CLIENT, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
84 cvar_t r_showbboxes_client = {CF_CLIENT, "r_showbboxes_client", "0", "shows bounding boxes of clientside qc entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
85 cvar_t r_showsurfaces = {CF_CLIENT, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
86 cvar_t r_showtris = {CF_CLIENT, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
87 cvar_t r_shownormals = {CF_CLIENT, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
88 cvar_t r_showlighting = {CF_CLIENT, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
89 cvar_t r_showcollisionbrushes = {CF_CLIENT, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
90 cvar_t r_showcollisionbrushes_polygonfactor = {CF_CLIENT, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
91 cvar_t r_showcollisionbrushes_polygonoffset = {CF_CLIENT, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
92 cvar_t r_showdisabledepthtest = {CF_CLIENT, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
93 cvar_t r_showspriteedges = {CF_CLIENT, "r_showspriteedges", "0", "renders a debug outline to show the polygon shape of each sprite frame rendered (may be 2 or more in case of interpolated animations), for debugging rendering bugs with specific view types"};
94 cvar_t r_showparticleedges = {CF_CLIENT, "r_showparticleedges", "0", "renders a debug outline to show the polygon shape of each particle, for debugging rendering bugs with specific view types"};
95 cvar_t r_drawportals = {CF_CLIENT, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
96 cvar_t r_drawentities = {CF_CLIENT, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
97 cvar_t r_draw2d = {CF_CLIENT, "r_draw2d","1", "draw 2D stuff (dangerous to turn off)"};
98 cvar_t r_drawworld = {CF_CLIENT, "r_drawworld","1", "draw world (most static stuff)"};
99 cvar_t r_drawviewmodel = {CF_CLIENT, "r_drawviewmodel","1", "draw your weapon model"};
100 cvar_t r_drawexteriormodel = {CF_CLIENT, "r_drawexteriormodel","1", "draw your player model (e.g. in chase cam, reflections)"};
101 cvar_t r_cullentities_trace = {CF_CLIENT, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
102 cvar_t r_cullentities_trace_entityocclusion = {CF_CLIENT, "r_cullentities_trace_entityocclusion", "1", "check for occluding entities such as doors, not just world hull"};
103 cvar_t r_cullentities_trace_samples = {CF_CLIENT, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling (in addition to center sample)"};
104 cvar_t r_cullentities_trace_tempentitysamples = {CF_CLIENT, "r_cullentities_trace_tempentitysamples", "-1", "number of samples to test for entity culling of temp entities (including all CSQC entities), -1 disables trace culling on these entities to prevent flicker (pvs still applies)"};
105 cvar_t r_cullentities_trace_enlarge = {CF_CLIENT, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
106 cvar_t r_cullentities_trace_expand = {CF_CLIENT, "r_cullentities_trace_expand", "0", "box expanded by this many units for entity culling"};
107 cvar_t r_cullentities_trace_pad = {CF_CLIENT, "r_cullentities_trace_pad", "8", "accept traces that hit within this many units of the box"};
108 cvar_t r_cullentities_trace_delay = {CF_CLIENT, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
109 cvar_t r_cullentities_trace_eyejitter = {CF_CLIENT, "r_cullentities_trace_eyejitter", "16", "randomly offset rays from the eye by this much to reduce the odds of flickering"};
110 cvar_t r_sortentities = {CF_CLIENT, "r_sortentities", "0", "sort entities before drawing (might be faster)"};
111 cvar_t r_speeds = {CF_CLIENT, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
112 cvar_t r_fullbright = {CF_CLIENT, "r_fullbright","0", "makes map very bright and renders faster"};
113
114 cvar_t r_fullbright_directed = {CF_CLIENT, "r_fullbright_directed", "0", "render fullbright things (unlit worldmodel and EF_FULLBRIGHT entities, but not fullbright shaders) using a constant light direction instead to add more depth while keeping uniform brightness"};
115 cvar_t r_fullbright_directed_ambient = {CF_CLIENT, "r_fullbright_directed_ambient", "0.5", "ambient light multiplier for directed fullbright"};
116 cvar_t r_fullbright_directed_diffuse = {CF_CLIENT, "r_fullbright_directed_diffuse", "0.75", "diffuse light multiplier for directed fullbright"};
117 cvar_t r_fullbright_directed_pitch = {CF_CLIENT, "r_fullbright_directed_pitch", "20", "constant pitch direction ('height') of the fake light source to use for fullbright"};
118 cvar_t r_fullbright_directed_pitch_relative = {CF_CLIENT, "r_fullbright_directed_pitch_relative", "0", "whether r_fullbright_directed_pitch is interpreted as absolute (0) or relative (1) pitch"};
119
120 cvar_t r_wateralpha = {CF_CLIENT | CF_ARCHIVE, "r_wateralpha","1", "opacity of water polygons"};
121 cvar_t r_dynamic = {CF_CLIENT | CF_ARCHIVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
122 cvar_t r_fullbrights = {CF_CLIENT | CF_ARCHIVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
123 cvar_t r_shadows = {CF_CLIENT | CF_ARCHIVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this); when set to 2, always cast the shadows in the direction set by r_shadows_throwdirection, otherwise use the model lighting."};
124 cvar_t r_shadows_darken = {CF_CLIENT | CF_ARCHIVE, "r_shadows_darken", "0.5", "how much shadowed areas will be darkened"};
125 cvar_t r_shadows_throwdistance = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
126 cvar_t r_shadows_throwdirection = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdirection", "0 0 -1", "override throwing direction for r_shadows 2"};
127 cvar_t r_shadows_drawafterrtlighting = {CF_CLIENT | CF_ARCHIVE, "r_shadows_drawafterrtlighting", "0", "draw fake shadows AFTER realtime lightning is drawn. May be useful for simulating fast sunlight on large outdoor maps with only one noshadow rtlight. The price is less realistic appearance of dynamic light shadows."};
128 cvar_t r_shadows_castfrombmodels = {CF_CLIENT | CF_ARCHIVE, "r_shadows_castfrombmodels", "0", "do cast shadows from bmodels"};
129 cvar_t r_shadows_focus = {CF_CLIENT | CF_ARCHIVE, "r_shadows_focus", "0 0 0", "offset the shadowed area focus"};
130 cvar_t r_shadows_shadowmapscale = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapscale", "0.25", "higher values increase shadowmap quality at a cost of area covered (multiply global shadowmap precision) for fake shadows. Needs shadowmapping ON."};
131 cvar_t r_shadows_shadowmapbias = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapbias", "-1", "sets shadowmap bias for fake shadows. -1 sets the value of r_shadow_shadowmapping_bias. Needs shadowmapping ON."};
132 cvar_t r_q1bsp_skymasking = {CF_CLIENT, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
133 cvar_t r_polygonoffset_submodel_factor = {CF_CLIENT, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
134 cvar_t r_polygonoffset_submodel_offset = {CF_CLIENT, "r_polygonoffset_submodel_offset", "14", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
135 cvar_t r_polygonoffset_decals_factor = {CF_CLIENT, "r_polygonoffset_decals_factor", "0", "biases depth values of decals to prevent z-fighting artifacts"};
136 cvar_t r_polygonoffset_decals_offset = {CF_CLIENT, "r_polygonoffset_decals_offset", "-14", "biases depth values of decals to prevent z-fighting artifacts"};
137 cvar_t r_fog_exp2 = {CF_CLIENT, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
138 cvar_t r_fog_clear = {CF_CLIENT, "r_fog_clear", "1", "clears renderbuffer with fog color before render starts"};
139 cvar_t r_drawfog = {CF_CLIENT | CF_ARCHIVE, "r_drawfog", "1", "allows one to disable fog rendering"};
140 cvar_t r_transparentdepthmasking = {CF_CLIENT | CF_ARCHIVE, "r_transparentdepthmasking", "0", "enables depth writes on transparent meshes whose materially is normally opaque, this prevents seeing the inside of a transparent mesh"};
141 cvar_t r_transparent_sortmindist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmindist", "0", "lower distance limit for transparent sorting"};
142 cvar_t r_transparent_sortmaxdist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmaxdist", "32768", "upper distance limit for transparent sorting"};
143 cvar_t r_transparent_sortarraysize = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortarraysize", "4096", "number of distance-sorting layers"};
144 cvar_t r_celshading = {CF_CLIENT | CF_ARCHIVE, "r_celshading", "0", "cartoon-style light shading (OpenGL 2.x only)"}; // FIXME remove OpenGL 2.x only once implemented for DX9
145 cvar_t r_celoutlines = {CF_CLIENT | CF_ARCHIVE, "r_celoutlines", "0", "cartoon-style outlines (requires r_shadow_deferred)"};
146
147 cvar_t gl_fogenable = {CF_CLIENT, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
148 cvar_t gl_fogdensity = {CF_CLIENT, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
149 cvar_t gl_fogred = {CF_CLIENT, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
150 cvar_t gl_foggreen = {CF_CLIENT, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
151 cvar_t gl_fogblue = {CF_CLIENT, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
152 cvar_t gl_fogstart = {CF_CLIENT, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
153 cvar_t gl_fogend = {CF_CLIENT, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
154 cvar_t gl_skyclip = {CF_CLIENT, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
155
156 cvar_t r_texture_dds_load = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_load", "0", "load compressed dds/filename.dds texture instead of filename.tga, if the file exists (requires driver support)"};
157 cvar_t r_texture_dds_save = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_save", "0", "save compressed dds/filename.dds texture when filename.tga is loaded, so that it can be loaded instead next time"};
158
159 cvar_t r_textureunits = {CF_CLIENT, "r_textureunits", "32", "number of texture units to use in GL 1.1 and GL 1.3 rendering paths"};
160 static cvar_t gl_combine = {CF_CLIENT | CF_READONLY, "gl_combine", "1", "indicates whether the OpenGL 1.3 rendering path is active"};
161 static cvar_t r_glsl = {CF_CLIENT | CF_READONLY, "r_glsl", "1", "indicates whether the OpenGL 2.0 rendering path is active"};
162
163 cvar_t r_usedepthtextures = {CF_CLIENT | CF_ARCHIVE, "r_usedepthtextures", "1", "use depth texture instead of depth renderbuffer where possible, uses less video memory but may render slower (or faster) depending on hardware"};
164 cvar_t r_viewfbo = {CF_CLIENT | CF_ARCHIVE, "r_viewfbo", "0", "enables use of an 8bit (1) or 16bit (2) or 32bit (3) per component float framebuffer render, which may be at a different resolution than the video mode"};
165 cvar_t r_rendertarget_debug = {CF_CLIENT, "r_rendertarget_debug", "-1", "replaces the view with the contents of the specified render target (by number - note that these can fluctuate depending on scene)"};
166 cvar_t r_viewscale = {CF_CLIENT | CF_ARCHIVE, "r_viewscale", "1", "scaling factor for resolution of the fbo rendering method, must be > 0, can be above 1 for a costly antialiasing behavior, typical values are 0.5 for 1/4th as many pixels rendered, or 1 for normal rendering"};
167 cvar_t r_viewscale_fpsscaling = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling", "0", "change resolution based on framerate"};
168 cvar_t r_viewscale_fpsscaling_min = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_min", "0.0625", "worst acceptable quality"};
169 cvar_t r_viewscale_fpsscaling_multiply = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_multiply", "5", "adjust quality up or down by the frametime difference from 1.0/target, multiplied by this factor"};
170 cvar_t r_viewscale_fpsscaling_stepsize = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepsize", "0.01", "smallest adjustment to hit the target framerate (this value prevents minute oscillations)"};
171 cvar_t r_viewscale_fpsscaling_stepmax = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepmax", "1.00", "largest adjustment to hit the target framerate (this value prevents wild overshooting of the estimate)"};
172 cvar_t r_viewscale_fpsscaling_target = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_target", "70", "desired framerate"};
173
174 cvar_t r_glsl_skeletal = {CF_CLIENT | CF_ARCHIVE, "r_glsl_skeletal", "1", "render skeletal models faster using a gpu-skinning technique"};
175 cvar_t r_glsl_deluxemapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
176 cvar_t r_glsl_offsetmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
177 cvar_t r_glsl_offsetmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_steps", "2", "offset mapping steps (note: too high values may be not supported by your GPU)"};
178 cvar_t r_glsl_offsetmapping_reliefmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
179 cvar_t r_glsl_offsetmapping_reliefmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_steps", "10", "relief mapping steps (note: too high values may be not supported by your GPU)"};
180 cvar_t r_glsl_offsetmapping_reliefmapping_refinesteps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_refinesteps", "5", "relief mapping refine steps (these are a binary search executed as the last step as given by r_glsl_offsetmapping_reliefmapping_steps)"};
181 cvar_t r_glsl_offsetmapping_scale = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
182 cvar_t r_glsl_offsetmapping_lod = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod", "0", "apply distance-based level-of-detail correction to number of offsetmappig steps, effectively making it render faster on large open-area maps"};
183 cvar_t r_glsl_offsetmapping_lod_distance = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod_distance", "32", "first LOD level distance, second level (-50% steps) is 2x of this, third (33%) - 3x etc."};
184 cvar_t r_glsl_postprocess = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
185 cvar_t r_glsl_postprocess_uservec1 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
186 cvar_t r_glsl_postprocess_uservec2 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
187 cvar_t r_glsl_postprocess_uservec3 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
188 cvar_t r_glsl_postprocess_uservec4 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
189 cvar_t r_glsl_postprocess_uservec1_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1_enable", "1", "enables postprocessing uservec1 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
190 cvar_t r_glsl_postprocess_uservec2_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2_enable", "1", "enables postprocessing uservec2 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
191 cvar_t r_glsl_postprocess_uservec3_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3_enable", "1", "enables postprocessing uservec3 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
192 cvar_t r_glsl_postprocess_uservec4_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4_enable", "1", "enables postprocessing uservec4 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
193 cvar_t r_colorfringe = {CF_CLIENT | CF_ARCHIVE, "r_colorfringe", "0", "Chromatic aberration. Values higher than 0.025 will noticeably distort the image"};
194
195 cvar_t r_water = {CF_CLIENT | CF_ARCHIVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
196 cvar_t r_water_cameraentitiesonly = {CF_CLIENT | CF_ARCHIVE, "r_water_cameraentitiesonly", "0", "whether to only show QC-defined reflections/refractions (typically used for camera- or portal-like effects)"};
197 cvar_t r_water_clippingplanebias = {CF_CLIENT | CF_ARCHIVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
198 cvar_t r_water_resolutionmultiplier = {CF_CLIENT | CF_ARCHIVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
199 cvar_t r_water_refractdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
200 cvar_t r_water_reflectdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
201 cvar_t r_water_scissormode = {CF_CLIENT, "r_water_scissormode", "3", "scissor (1) or cull (2) or both (3) water renders"};
202 cvar_t r_water_lowquality = {CF_CLIENT, "r_water_lowquality", "0", "special option to accelerate water rendering: 1 disables all dynamic lights, 2 disables particles too"};
203 cvar_t r_water_hideplayer = {CF_CLIENT | CF_ARCHIVE, "r_water_hideplayer", "0", "if set to 1 then player will be hidden in refraction views, if set to 2 then player will also be hidden in reflection views, player is always visible in camera views"};
204
205 cvar_t r_lerpsprites = {CF_CLIENT | CF_ARCHIVE, "r_lerpsprites", "0", "enables animation smoothing on sprites"};
206 cvar_t r_lerpmodels = {CF_CLIENT | CF_ARCHIVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
207 cvar_t r_nolerp_list = {CF_CLIENT | CF_ARCHIVE, "r_nolerp_list", "progs/v_nail.mdl,progs/v_nail2.mdl,progs/flame.mdl,progs/flame2.mdl,progs/braztall.mdl,progs/brazshrt.mdl,progs/longtrch.mdl,progs/flame_pyre.mdl,progs/v_saw.mdl,progs/v_xfist.mdl,progs/h2stuff/newfire.mdl", "comma separated list of models that will not have their animations smoothed"};
208 cvar_t r_lerplightstyles = {CF_CLIENT | CF_ARCHIVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
209 cvar_t r_waterscroll = {CF_CLIENT | CF_ARCHIVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
210
211 cvar_t r_bloom = {CF_CLIENT | CF_ARCHIVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
212 cvar_t r_bloom_colorscale = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorscale", "1", "how bright the glow is"};
213
214 cvar_t r_bloom_brighten = {CF_CLIENT | CF_ARCHIVE, "r_bloom_brighten", "1", "how bright the glow is, after subtract/power"};
215 cvar_t r_bloom_blur = {CF_CLIENT | CF_ARCHIVE, "r_bloom_blur", "4", "how large the glow is"};
216 cvar_t r_bloom_resolution = {CF_CLIENT | CF_ARCHIVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
217 cvar_t r_bloom_colorexponent = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorexponent", "1", "how exaggerated the glow is"};
218 cvar_t r_bloom_colorsubtract = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorsubtract", "0.1", "reduces bloom colors by a certain amount"};
219 cvar_t r_bloom_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_bloom_scenebrightness", "1", "global rendering brightness when bloom is enabled"};
220
221 cvar_t r_hdr_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
222 cvar_t r_hdr_glowintensity = {CF_CLIENT | CF_ARCHIVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
223 cvar_t r_hdr_irisadaptation = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation", "0", "adjust scene brightness according to light intensity at player location"};
224 cvar_t r_hdr_irisadaptation_multiplier = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_multiplier", "2", "brightness at which value will be 1.0"};
225 cvar_t r_hdr_irisadaptation_minvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_minvalue", "0.5", "minimum value that can result from multiplier / brightness"};
226 cvar_t r_hdr_irisadaptation_maxvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_maxvalue", "4", "maximum value that can result from multiplier / brightness"};
227 cvar_t r_hdr_irisadaptation_value = {CF_CLIENT, "r_hdr_irisadaptation_value", "1", "current value as scenebrightness multiplier, changes continuously when irisadaptation is active"};
228 cvar_t r_hdr_irisadaptation_fade_up = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_up", "0.1", "fade rate at which value adjusts to darkness"};
229 cvar_t r_hdr_irisadaptation_fade_down = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_down", "0.5", "fade rate at which value adjusts to brightness"};
230 cvar_t r_hdr_irisadaptation_radius = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_radius", "15", "lighting within this many units of the eye is averaged"};
231
232 cvar_t r_smoothnormals_areaweighting = {CF_CLIENT, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
233
234 cvar_t developer_texturelogging = {CF_CLIENT, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
235
236 cvar_t gl_lightmaps = {CF_CLIENT, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers), a value of 2 keeps normalmap shading"};
237
238 cvar_t r_test = {CF_CLIENT, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
239
240 cvar_t r_batch_multidraw = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw", "1", "issue multiple glDrawElements calls when rendering a batch of surfaces with the same texture (otherwise the index data is copied to make it one draw)"};
241 cvar_t r_batch_multidraw_mintriangles = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw_mintriangles", "0", "minimum number of triangles to activate multidraw path (copying small groups of triangles may be faster)"};
242 cvar_t r_batch_debugdynamicvertexpath = {CF_CLIENT | CF_ARCHIVE, "r_batch_debugdynamicvertexpath", "0", "force the dynamic batching code path for debugging purposes"};
243 cvar_t r_batch_dynamicbuffer = {CF_CLIENT | CF_ARCHIVE, "r_batch_dynamicbuffer", "0", "use vertex/index buffers for drawing dynamic and copytriangles batches"};
244
245 cvar_t r_glsl_saturation = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation", "1", "saturation multiplier (only working in glsl!)"};
246 cvar_t r_glsl_saturation_redcompensate = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation_redcompensate", "0", "a 'vampire sight' addition to desaturation effect, does compensation for red color, r_glsl_restart is required"};
247
248 cvar_t r_glsl_vertextextureblend_usebothalphas = {CF_CLIENT | CF_ARCHIVE, "r_glsl_vertextextureblend_usebothalphas", "0", "use both alpha layers on vertex blended surfaces, each alpha layer sets amount of 'blend leak' on another layer, requires mod_q3shader_force_terrain_alphaflag on."};
249
250 // FIXME: This cvar would grow to a ridiculous size after several launches and clean exits when used during surface sorting.
251 cvar_t r_framedatasize = {CF_CLIENT | CF_ARCHIVE, "r_framedatasize", "0.5", "size of renderer data cache used during one frame (for skeletal animation caching, light processing, etc)"};
252 cvar_t r_buffermegs[R_BUFFERDATA_COUNT] =
253 {
254         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_vertex", "4", "vertex buffer size for one frame"},
255         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index16", "1", "index buffer size for one frame (16bit indices)"},
256         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index32", "1", "index buffer size for one frame (32bit indices)"},
257         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_uniform", "0.25", "uniform buffer size for one frame"},
258 };
259
260 cvar_t r_q1bsp_lightmap_updates_enabled = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_enabled", "1", "allow lightmaps to be updated on Q1BSP maps (don't turn this off except for debugging)"};
261 cvar_t r_q1bsp_lightmap_updates_combine = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_combine", "2", "combine lightmap texture updates to make fewer glTexSubImage2D calls, modes: 0 = immediately upload lightmaps (may be thousands of small 3x3 updates), 1 = combine to one call, 2 = combine to one full texture update (glTexImage2D) which tells the driver it does not need to lock the resource (faster on most drivers)"};
262 cvar_t r_q1bsp_lightmap_updates_hidden_surfaces = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_hidden_surfaces", "0", "update lightmaps on surfaces that are not visible, so that updates only occur on frames where lightstyles changed value (animation or light switches), only makes sense with combine = 2"};
263
264 extern cvar_t v_glslgamma_2d;
265
266 extern qbool v_flipped_state;
267
268 r_framebufferstate_t r_fb;
269
270 /// shadow volume bsp struct with automatically growing nodes buffer
271 svbsp_t r_svbsp;
272
273 int r_uniformbufferalignment = 32; // dynamically updated to match GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
274
275 rtexture_t *r_texture_blanknormalmap;
276 rtexture_t *r_texture_white;
277 rtexture_t *r_texture_grey128;
278 rtexture_t *r_texture_black;
279 rtexture_t *r_texture_notexture;
280 rtexture_t *r_texture_whitecube;
281 rtexture_t *r_texture_normalizationcube;
282 rtexture_t *r_texture_fogattenuation;
283 rtexture_t *r_texture_fogheighttexture;
284 rtexture_t *r_texture_gammaramps;
285 unsigned int r_texture_gammaramps_serial;
286 //rtexture_t *r_texture_fogintensity;
287 rtexture_t *r_texture_reflectcube;
288
289 // TODO: hash lookups?
290 typedef struct cubemapinfo_s
291 {
292         char basename[64];
293         rtexture_t *texture;
294 }
295 cubemapinfo_t;
296
297 int r_texture_numcubemaps;
298 cubemapinfo_t *r_texture_cubemaps[MAX_CUBEMAPS];
299
300 unsigned int r_queries[MAX_OCCLUSION_QUERIES];
301 unsigned int r_numqueries;
302 unsigned int r_maxqueries;
303
304 typedef struct r_qwskincache_s
305 {
306         char name[MAX_QPATH];
307         skinframe_t *skinframe;
308 }
309 r_qwskincache_t;
310
311 static r_qwskincache_t *r_qwskincache;
312 static int r_qwskincache_size;
313
314 /// vertex coordinates for a quad that covers the screen exactly
315 extern const float r_screenvertex3f[12];
316 const float r_screenvertex3f[12] =
317 {
318         0, 0, 0,
319         1, 0, 0,
320         1, 1, 0,
321         0, 1, 0
322 };
323
324 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
325 {
326         int i;
327         for (i = 0;i < verts;i++)
328         {
329                 out[0] = in[0] * r;
330                 out[1] = in[1] * g;
331                 out[2] = in[2] * b;
332                 out[3] = in[3];
333                 in += 4;
334                 out += 4;
335         }
336 }
337
338 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
339 {
340         int i;
341         for (i = 0;i < verts;i++)
342         {
343                 out[0] = r;
344                 out[1] = g;
345                 out[2] = b;
346                 out[3] = a;
347                 out += 4;
348         }
349 }
350
351 // FIXME: move this to client?
352 void FOG_clear(void)
353 {
354         if (gamemode == GAME_NEHAHRA)
355         {
356                 Cvar_Set(&cvars_all, "gl_fogenable", "0");
357                 Cvar_Set(&cvars_all, "gl_fogdensity", "0.2");
358                 Cvar_Set(&cvars_all, "gl_fogred", "0.3");
359                 Cvar_Set(&cvars_all, "gl_foggreen", "0.3");
360                 Cvar_Set(&cvars_all, "gl_fogblue", "0.3");
361         }
362         r_refdef.fog_density = 0;
363         r_refdef.fog_red = 0;
364         r_refdef.fog_green = 0;
365         r_refdef.fog_blue = 0;
366         r_refdef.fog_alpha = 1;
367         r_refdef.fog_start = 0;
368         r_refdef.fog_end = 16384;
369         r_refdef.fog_height = 1<<30;
370         r_refdef.fog_fadedepth = 128;
371         memset(r_refdef.fog_height_texturename, 0, sizeof(r_refdef.fog_height_texturename));
372 }
373
374 static void R_BuildBlankTextures(void)
375 {
376         unsigned char data[4];
377         data[2] = 128; // normal X
378         data[1] = 128; // normal Y
379         data[0] = 255; // normal Z
380         data[3] = 255; // height
381         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
382         data[0] = 255;
383         data[1] = 255;
384         data[2] = 255;
385         data[3] = 255;
386         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
387         data[0] = 128;
388         data[1] = 128;
389         data[2] = 128;
390         data[3] = 255;
391         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
392         data[0] = 0;
393         data[1] = 0;
394         data[2] = 0;
395         data[3] = 255;
396         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
397 }
398
399 static void R_BuildNoTexture(void)
400 {
401         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, Image_GenerateNoTexture(), TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, -1, NULL);
402 }
403
404 static void R_BuildWhiteCube(void)
405 {
406         unsigned char data[6*1*1*4];
407         memset(data, 255, sizeof(data));
408         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
409 }
410
411 static void R_BuildNormalizationCube(void)
412 {
413         int x, y, side;
414         vec3_t v;
415         vec_t s, t, intensity;
416 #define NORMSIZE 64
417         unsigned char *data;
418         data = (unsigned char *)Mem_Alloc(tempmempool, 6*NORMSIZE*NORMSIZE*4);
419         for (side = 0;side < 6;side++)
420         {
421                 for (y = 0;y < NORMSIZE;y++)
422                 {
423                         for (x = 0;x < NORMSIZE;x++)
424                         {
425                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
426                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
427                                 switch(side)
428                                 {
429                                 default:
430                                 case 0:
431                                         v[0] = 1;
432                                         v[1] = -t;
433                                         v[2] = -s;
434                                         break;
435                                 case 1:
436                                         v[0] = -1;
437                                         v[1] = -t;
438                                         v[2] = s;
439                                         break;
440                                 case 2:
441                                         v[0] = s;
442                                         v[1] = 1;
443                                         v[2] = t;
444                                         break;
445                                 case 3:
446                                         v[0] = s;
447                                         v[1] = -1;
448                                         v[2] = -t;
449                                         break;
450                                 case 4:
451                                         v[0] = s;
452                                         v[1] = -t;
453                                         v[2] = 1;
454                                         break;
455                                 case 5:
456                                         v[0] = -s;
457                                         v[1] = -t;
458                                         v[2] = -1;
459                                         break;
460                                 }
461                                 intensity = 127.0f / sqrt(DotProduct(v, v));
462                                 data[((side*64+y)*64+x)*4+2] = (unsigned char)(128.0f + intensity * v[0]);
463                                 data[((side*64+y)*64+x)*4+1] = (unsigned char)(128.0f + intensity * v[1]);
464                                 data[((side*64+y)*64+x)*4+0] = (unsigned char)(128.0f + intensity * v[2]);
465                                 data[((side*64+y)*64+x)*4+3] = 255;
466                         }
467                 }
468         }
469         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
470         Mem_Free(data);
471 }
472
473 static void R_BuildFogTexture(void)
474 {
475         int x, b;
476 #define FOGWIDTH 256
477         unsigned char data1[FOGWIDTH][4];
478         //unsigned char data2[FOGWIDTH][4];
479         double d, r, alpha;
480
481         r_refdef.fogmasktable_start = r_refdef.fog_start;
482         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
483         r_refdef.fogmasktable_range = r_refdef.fogrange;
484         r_refdef.fogmasktable_density = r_refdef.fog_density;
485
486         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
487         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
488         {
489                 d = (x * r - r_refdef.fogmasktable_start);
490                 if(developer_extra.integer)
491                         Con_DPrintf("%f ", d);
492                 d = max(0, d);
493                 if (r_fog_exp2.integer)
494                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
495                 else
496                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
497                 if(developer_extra.integer)
498                         Con_DPrintf(" : %f ", alpha);
499                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
500                 if(developer_extra.integer)
501                         Con_DPrintf(" = %f\n", alpha);
502                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
503         }
504
505         for (x = 0;x < FOGWIDTH;x++)
506         {
507                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
508                 data1[x][0] = b;
509                 data1[x][1] = b;
510                 data1[x][2] = b;
511                 data1[x][3] = 255;
512                 //data2[x][0] = 255 - b;
513                 //data2[x][1] = 255 - b;
514                 //data2[x][2] = 255 - b;
515                 //data2[x][3] = 255;
516         }
517         if (r_texture_fogattenuation)
518         {
519                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, 0, FOGWIDTH, 1, 1, 0);
520                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, 0, FOGWIDTH, 1, 1, 0);
521         }
522         else
523         {
524                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
525                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
526         }
527 }
528
529 static void R_BuildFogHeightTexture(void)
530 {
531         unsigned char *inpixels;
532         int size;
533         int x;
534         int y;
535         int j;
536         float c[4];
537         float f;
538         inpixels = NULL;
539         strlcpy(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename, sizeof(r_refdef.fogheighttexturename));
540         if (r_refdef.fogheighttexturename[0])
541                 inpixels = loadimagepixelsbgra(r_refdef.fogheighttexturename, true, false, false, NULL);
542         if (!inpixels)
543         {
544                 r_refdef.fog_height_tablesize = 0;
545                 if (r_texture_fogheighttexture)
546                         R_FreeTexture(r_texture_fogheighttexture);
547                 r_texture_fogheighttexture = NULL;
548                 if (r_refdef.fog_height_table2d)
549                         Mem_Free(r_refdef.fog_height_table2d);
550                 r_refdef.fog_height_table2d = NULL;
551                 if (r_refdef.fog_height_table1d)
552                         Mem_Free(r_refdef.fog_height_table1d);
553                 r_refdef.fog_height_table1d = NULL;
554                 return;
555         }
556         size = image_width;
557         r_refdef.fog_height_tablesize = size;
558         r_refdef.fog_height_table1d = (unsigned char *)Mem_Alloc(r_main_mempool, size * 4);
559         r_refdef.fog_height_table2d = (unsigned char *)Mem_Alloc(r_main_mempool, size * size * 4);
560         memcpy(r_refdef.fog_height_table1d, inpixels, size * 4);
561         Mem_Free(inpixels);
562         // LadyHavoc: now the magic - what is that table2d for?  it is a cooked
563         // average fog color table accounting for every fog layer between a point
564         // and the camera.  (Note: attenuation is handled separately!)
565         for (y = 0;y < size;y++)
566         {
567                 for (x = 0;x < size;x++)
568                 {
569                         Vector4Clear(c);
570                         f = 0;
571                         if (x < y)
572                         {
573                                 for (j = x;j <= y;j++)
574                                 {
575                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
576                                         f++;
577                                 }
578                         }
579                         else
580                         {
581                                 for (j = x;j >= y;j--)
582                                 {
583                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
584                                         f++;
585                                 }
586                         }
587                         f = 1.0f / f;
588                         r_refdef.fog_height_table2d[(y*size+x)*4+0] = (unsigned char)(c[0] * f);
589                         r_refdef.fog_height_table2d[(y*size+x)*4+1] = (unsigned char)(c[1] * f);
590                         r_refdef.fog_height_table2d[(y*size+x)*4+2] = (unsigned char)(c[2] * f);
591                         r_refdef.fog_height_table2d[(y*size+x)*4+3] = (unsigned char)(c[3] * f);
592                 }
593         }
594         r_texture_fogheighttexture = R_LoadTexture2D(r_main_texturepool, "fogheighttable", size, size, r_refdef.fog_height_table2d, TEXTYPE_BGRA, TEXF_ALPHA | TEXF_CLAMP, -1, NULL);
595 }
596
597 //=======================================================================================================================================================
598
599 static const char *builtinshaderstrings[] =
600 {
601 #include "shader_glsl.h"
602 0
603 };
604
605 //=======================================================================================================================================================
606
607 typedef struct shaderpermutationinfo_s
608 {
609         const char *pretext;
610         const char *name;
611 }
612 shaderpermutationinfo_t;
613
614 typedef struct shadermodeinfo_s
615 {
616         const char *sourcebasename;
617         const char *extension;
618         const char **builtinshaderstrings;
619         const char *pretext;
620         const char *name;
621         char *filename;
622         char *builtinstring;
623         int builtincrc;
624 }
625 shadermodeinfo_t;
626
627 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
628 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
629 {
630         {"#define USEDIFFUSE\n", " diffuse"},
631         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
632         {"#define USEVIEWTINT\n", " viewtint"},
633         {"#define USECOLORMAPPING\n", " colormapping"},
634         {"#define USESATURATION\n", " saturation"},
635         {"#define USEFOGINSIDE\n", " foginside"},
636         {"#define USEFOGOUTSIDE\n", " fogoutside"},
637         {"#define USEFOGHEIGHTTEXTURE\n", " fogheighttexture"},
638         {"#define USEFOGALPHAHACK\n", " fogalphahack"},
639         {"#define USEGAMMARAMPS\n", " gammaramps"},
640         {"#define USECUBEFILTER\n", " cubefilter"},
641         {"#define USEGLOW\n", " glow"},
642         {"#define USEBLOOM\n", " bloom"},
643         {"#define USESPECULAR\n", " specular"},
644         {"#define USEPOSTPROCESSING\n", " postprocessing"},
645         {"#define USEREFLECTION\n", " reflection"},
646         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
647         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
648         {"#define USESHADOWMAP2D\n", " shadowmap2d"},
649         {"#define USESHADOWMAPVSDCT\n", " shadowmapvsdct"}, // TODO make this a static parm
650         {"#define USESHADOWMAPORTHO\n", " shadowmaportho"},
651         {"#define USEDEFERREDLIGHTMAP\n", " deferredlightmap"},
652         {"#define USEALPHAKILL\n", " alphakill"},
653         {"#define USEREFLECTCUBE\n", " reflectcube"},
654         {"#define USENORMALMAPSCROLLBLEND\n", " normalmapscrollblend"},
655         {"#define USEBOUNCEGRID\n", " bouncegrid"},
656         {"#define USEBOUNCEGRIDDIRECTIONAL\n", " bouncegriddirectional"}, // TODO make this a static parm
657         {"#define USETRIPPY\n", " trippy"},
658         {"#define USEDEPTHRGB\n", " depthrgb"},
659         {"#define USEALPHAGENVERTEX\n", " alphagenvertex"},
660         {"#define USESKELETAL\n", " skeletal"},
661         {"#define USEOCCLUDE\n", " occlude"}
662 };
663
664 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
665 shadermodeinfo_t shadermodeinfo[SHADERLANGUAGE_COUNT][SHADERMODE_COUNT] =
666 {
667         // SHADERLANGUAGE_GLSL
668         {
669                 {"combined", "glsl", builtinshaderstrings, "#define MODE_GENERIC\n", " generic"},
670                 {"combined", "glsl", builtinshaderstrings, "#define MODE_POSTPROCESS\n", " postprocess"},
671                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
672                 {"combined", "glsl", builtinshaderstrings, "#define MODE_FLATCOLOR\n", " flatcolor"},
673                 {"combined", "glsl", builtinshaderstrings, "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
674                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTMAP\n", " lightmap"},
675                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
676                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
677                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP\n", " lightdirectionmap_forced_lightmap"},
678                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR\n", " lightdirectionmap_forced_vertexcolor"},
679                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTGRID\n", " lightgrid"},
680                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
681                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTSOURCE\n", " lightsource"},
682                 {"combined", "glsl", builtinshaderstrings, "#define MODE_REFRACTION\n", " refraction"},
683                 {"combined", "glsl", builtinshaderstrings, "#define MODE_WATER\n", " water"},
684                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"},
685                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"},
686         },
687 };
688
689 struct r_glsl_permutation_s;
690 typedef struct r_glsl_permutation_s
691 {
692         /// hash lookup data
693         struct r_glsl_permutation_s *hashnext;
694         unsigned int mode;
695         uint64_t permutation;
696
697         /// indicates if we have tried compiling this permutation already
698         qbool compiled;
699         /// 0 if compilation failed
700         int program;
701         // texture units assigned to each detected uniform
702         int tex_Texture_First;
703         int tex_Texture_Second;
704         int tex_Texture_GammaRamps;
705         int tex_Texture_Normal;
706         int tex_Texture_Color;
707         int tex_Texture_Gloss;
708         int tex_Texture_Glow;
709         int tex_Texture_SecondaryNormal;
710         int tex_Texture_SecondaryColor;
711         int tex_Texture_SecondaryGloss;
712         int tex_Texture_SecondaryGlow;
713         int tex_Texture_Pants;
714         int tex_Texture_Shirt;
715         int tex_Texture_FogHeightTexture;
716         int tex_Texture_FogMask;
717         int tex_Texture_LightGrid;
718         int tex_Texture_Lightmap;
719         int tex_Texture_Deluxemap;
720         int tex_Texture_Attenuation;
721         int tex_Texture_Cube;
722         int tex_Texture_Refraction;
723         int tex_Texture_Reflection;
724         int tex_Texture_ShadowMap2D;
725         int tex_Texture_CubeProjection;
726         int tex_Texture_ScreenNormalMap;
727         int tex_Texture_ScreenDiffuse;
728         int tex_Texture_ScreenSpecular;
729         int tex_Texture_ReflectMask;
730         int tex_Texture_ReflectCube;
731         int tex_Texture_BounceGrid;
732         /// locations of detected uniforms in program object, or -1 if not found
733         int loc_Texture_First;
734         int loc_Texture_Second;
735         int loc_Texture_GammaRamps;
736         int loc_Texture_Normal;
737         int loc_Texture_Color;
738         int loc_Texture_Gloss;
739         int loc_Texture_Glow;
740         int loc_Texture_SecondaryNormal;
741         int loc_Texture_SecondaryColor;
742         int loc_Texture_SecondaryGloss;
743         int loc_Texture_SecondaryGlow;
744         int loc_Texture_Pants;
745         int loc_Texture_Shirt;
746         int loc_Texture_FogHeightTexture;
747         int loc_Texture_FogMask;
748         int loc_Texture_LightGrid;
749         int loc_Texture_Lightmap;
750         int loc_Texture_Deluxemap;
751         int loc_Texture_Attenuation;
752         int loc_Texture_Cube;
753         int loc_Texture_Refraction;
754         int loc_Texture_Reflection;
755         int loc_Texture_ShadowMap2D;
756         int loc_Texture_CubeProjection;
757         int loc_Texture_ScreenNormalMap;
758         int loc_Texture_ScreenDiffuse;
759         int loc_Texture_ScreenSpecular;
760         int loc_Texture_ReflectMask;
761         int loc_Texture_ReflectCube;
762         int loc_Texture_BounceGrid;
763         int loc_Alpha;
764         int loc_BloomBlur_Parameters;
765         int loc_ClientTime;
766         int loc_Color_Ambient;
767         int loc_Color_Diffuse;
768         int loc_Color_Specular;
769         int loc_Color_Glow;
770         int loc_Color_Pants;
771         int loc_Color_Shirt;
772         int loc_DeferredColor_Ambient;
773         int loc_DeferredColor_Diffuse;
774         int loc_DeferredColor_Specular;
775         int loc_DeferredMod_Diffuse;
776         int loc_DeferredMod_Specular;
777         int loc_DistortScaleRefractReflect;
778         int loc_EyePosition;
779         int loc_FogColor;
780         int loc_FogHeightFade;
781         int loc_FogPlane;
782         int loc_FogPlaneViewDist;
783         int loc_FogRangeRecip;
784         int loc_LightColor;
785         int loc_LightDir;
786         int loc_LightGridMatrix;
787         int loc_LightGridNormalMatrix;
788         int loc_LightPosition;
789         int loc_OffsetMapping_ScaleSteps;
790         int loc_OffsetMapping_LodDistance;
791         int loc_OffsetMapping_Bias;
792         int loc_PixelSize;
793         int loc_ReflectColor;
794         int loc_ReflectFactor;
795         int loc_ReflectOffset;
796         int loc_RefractColor;
797         int loc_Saturation;
798         int loc_ScreenCenterRefractReflect;
799         int loc_ScreenScaleRefractReflect;
800         int loc_ScreenToDepth;
801         int loc_ShadowMap_Parameters;
802         int loc_ShadowMap_TextureScale;
803         int loc_SpecularPower;
804         int loc_Skeletal_Transform12;
805         int loc_UserVec1;
806         int loc_UserVec2;
807         int loc_UserVec3;
808         int loc_UserVec4;
809         int loc_ColorFringe;
810         int loc_ViewTintColor;
811         int loc_ViewToLight;
812         int loc_ModelToLight;
813         int loc_TexMatrix;
814         int loc_BackgroundTexMatrix;
815         int loc_ModelViewProjectionMatrix;
816         int loc_ModelViewMatrix;
817         int loc_PixelToScreenTexCoord;
818         int loc_ModelToReflectCube;
819         int loc_ShadowMapMatrix;
820         int loc_BloomColorSubtract;
821         int loc_NormalmapScrollBlend;
822         int loc_BounceGridMatrix;
823         int loc_BounceGridIntensity;
824         /// uniform block bindings
825         int ubibind_Skeletal_Transform12_UniformBlock;
826         /// uniform block indices
827         int ubiloc_Skeletal_Transform12_UniformBlock;
828 }
829 r_glsl_permutation_t;
830
831 #define SHADERPERMUTATION_HASHSIZE 256
832
833
834 // non-degradable "lightweight" shader parameters to keep the permutations simpler
835 // these can NOT degrade! only use for simple stuff
836 enum
837 {
838         SHADERSTATICPARM_SATURATION_REDCOMPENSATE = 0, ///< red compensation filter for saturation
839         SHADERSTATICPARM_EXACTSPECULARMATH = 1, ///< (lightsource or deluxemapping) use exact reflection map for specular effects, as opposed to the usual OpenGL approximation
840         SHADERSTATICPARM_POSTPROCESS_USERVEC1 = 2, ///< postprocess uservec1 is enabled
841         SHADERSTATICPARM_POSTPROCESS_USERVEC2 = 3, ///< postprocess uservec2 is enabled
842         SHADERSTATICPARM_POSTPROCESS_USERVEC3 = 4, ///< postprocess uservec3 is enabled
843         SHADERSTATICPARM_POSTPROCESS_USERVEC4 = 5,  ///< postprocess uservec4 is enabled
844         SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS = 6, // use both alpha layers while blending materials, allows more advanced microblending
845         SHADERSTATICPARM_OFFSETMAPPING_USELOD = 7,  ///< LOD for offsetmapping
846         SHADERSTATICPARM_SHADOWMAPPCF_1 = 8, ///< PCF 1
847         SHADERSTATICPARM_SHADOWMAPPCF_2 = 9, ///< PCF 2
848         SHADERSTATICPARM_SHADOWSAMPLER = 10, ///< sampler
849         SHADERSTATICPARM_CELSHADING = 11, ///< celshading (alternative diffuse and specular math)
850         SHADERSTATICPARM_CELOUTLINES = 12, ///< celoutline (depth buffer analysis to produce outlines)
851         SHADERSTATICPARM_FXAA = 13, ///< fast approximate anti aliasing
852         SHADERSTATICPARM_COLORFRINGE = 14 ///< colorfringe (chromatic aberration)
853 };
854 #define SHADERSTATICPARMS_COUNT 15
855
856 static const char *shaderstaticparmstrings_list[SHADERSTATICPARMS_COUNT];
857 static int shaderstaticparms_count = 0;
858
859 static unsigned int r_compileshader_staticparms[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5] = {0};
860 #define R_COMPILESHADER_STATICPARM_ENABLE(p) r_compileshader_staticparms[(p) >> 5] |= (1 << ((p) & 0x1F))
861
862 extern qbool r_shadow_shadowmapsampler;
863 extern int r_shadow_shadowmappcf;
864 qbool R_CompileShader_CheckStaticParms(void)
865 {
866         static int r_compileshader_staticparms_save[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5];
867         memcpy(r_compileshader_staticparms_save, r_compileshader_staticparms, sizeof(r_compileshader_staticparms));
868         memset(r_compileshader_staticparms, 0, sizeof(r_compileshader_staticparms));
869
870         // detect all
871         if (r_glsl_saturation_redcompensate.integer)
872                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SATURATION_REDCOMPENSATE);
873         if (r_glsl_vertextextureblend_usebothalphas.integer)
874                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS);
875         if (r_shadow_glossexact.integer)
876                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_EXACTSPECULARMATH);
877         if (r_glsl_postprocess.integer)
878         {
879                 if (r_glsl_postprocess_uservec1_enable.integer)
880                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC1);
881                 if (r_glsl_postprocess_uservec2_enable.integer)
882                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC2);
883                 if (r_glsl_postprocess_uservec3_enable.integer)
884                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC3);
885                 if (r_glsl_postprocess_uservec4_enable.integer)
886                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC4);
887         }
888         if (r_fxaa.integer)
889                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_FXAA);
890         if (r_glsl_offsetmapping_lod.integer && r_glsl_offsetmapping_lod_distance.integer > 0)
891                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_OFFSETMAPPING_USELOD);
892
893         if (r_shadow_shadowmapsampler)
894                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWSAMPLER);
895         if (r_shadow_shadowmappcf > 1)
896                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_2);
897         else if (r_shadow_shadowmappcf)
898                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_1);
899         if (r_celshading.integer)
900                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELSHADING);
901         if (r_celoutlines.integer)
902                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELOUTLINES);
903         if (r_colorfringe.value)
904                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_COLORFRINGE);
905
906         return memcmp(r_compileshader_staticparms, r_compileshader_staticparms_save, sizeof(r_compileshader_staticparms)) != 0;
907 }
908
909 #define R_COMPILESHADER_STATICPARM_EMIT(p, n) \
910         if(r_compileshader_staticparms[(p) >> 5] & (1 << ((p) & 0x1F))) \
911                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "#define " n "\n"; \
912         else \
913                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "\n"
914 static void R_CompileShader_AddStaticParms(unsigned int mode, uint64_t permutation)
915 {
916         shaderstaticparms_count = 0;
917
918         // emit all
919         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SATURATION_REDCOMPENSATE, "SATURATION_REDCOMPENSATE");
920         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_EXACTSPECULARMATH, "USEEXACTSPECULARMATH");
921         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC1, "USERVEC1");
922         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC2, "USERVEC2");
923         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC3, "USERVEC3");
924         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC4, "USERVEC4");
925         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS, "USEBOTHALPHAS");
926         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_OFFSETMAPPING_USELOD, "USEOFFSETMAPPING_LOD");
927         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_1, "USESHADOWMAPPCF 1");
928         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_2, "USESHADOWMAPPCF 2");
929         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWSAMPLER, "USESHADOWSAMPLER");
930         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELSHADING, "USECELSHADING");
931         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELOUTLINES, "USECELOUTLINES");
932         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_FXAA, "USEFXAA");
933         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_COLORFRINGE, "USECOLORFRINGE");
934 }
935
936 /// information about each possible shader permutation
937 r_glsl_permutation_t *r_glsl_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE];
938 /// currently selected permutation
939 r_glsl_permutation_t *r_glsl_permutation;
940 /// storage for permutations linked in the hash table
941 memexpandablearray_t r_glsl_permutationarray;
942
943 static r_glsl_permutation_t *R_GLSL_FindPermutation(unsigned int mode, uint64_t permutation)
944 {
945         //unsigned int hashdepth = 0;
946         unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1);
947         r_glsl_permutation_t *p;
948         for (p = r_glsl_permutationhash[mode][hashindex];p;p = p->hashnext)
949         {
950                 if (p->mode == mode && p->permutation == permutation)
951                 {
952                         //if (hashdepth > 10)
953                         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
954                         return p;
955                 }
956                 //hashdepth++;
957         }
958         p = (r_glsl_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_glsl_permutationarray);
959         p->mode = mode;
960         p->permutation = permutation;
961         p->hashnext = r_glsl_permutationhash[mode][hashindex];
962         r_glsl_permutationhash[mode][hashindex] = p;
963         //if (hashdepth > 10)
964         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
965         return p;
966 }
967
968 static char *R_ShaderStrCat(const char **strings)
969 {
970         char *string, *s;
971         const char **p = strings;
972         const char *t;
973         size_t len = 0;
974         for (p = strings;(t = *p);p++)
975                 len += strlen(t);
976         len++;
977         s = string = (char *)Mem_Alloc(r_main_mempool, len);
978         len = 0;
979         for (p = strings;(t = *p);p++)
980         {
981                 len = strlen(t);
982                 memcpy(s, t, len);
983                 s += len;
984         }
985         *s = 0;
986         return string;
987 }
988
989 static char *R_ShaderStrCat(const char **strings);
990 static void R_InitShaderModeInfo(void)
991 {
992         int i, language;
993         shadermodeinfo_t *modeinfo;
994         // we have a bunch of things to compute that weren't calculated at engine compile time - all filenames should have a crc of the builtin strings to prevent accidental overrides (any customization must be updated to match engine)
995         for (language = 0; language < SHADERLANGUAGE_COUNT; language++)
996         {
997                 for (i = 0; i < SHADERMODE_COUNT; i++)
998                 {
999                         char filename[MAX_QPATH];
1000                         modeinfo = &shadermodeinfo[language][i];
1001                         modeinfo->builtinstring = R_ShaderStrCat(modeinfo->builtinshaderstrings);
1002                         modeinfo->builtincrc = CRC_Block((const unsigned char *)modeinfo->builtinstring, strlen(modeinfo->builtinstring));
1003                         dpsnprintf(filename, sizeof(filename), "%s/%s_crc%i.%s", modeinfo->extension, modeinfo->sourcebasename, modeinfo->builtincrc, modeinfo->extension);
1004                         modeinfo->filename = Mem_strdup(r_main_mempool, filename);
1005                 }
1006         }
1007 }
1008
1009 static char *ShaderModeInfo_GetShaderText(shadermodeinfo_t *modeinfo, qbool printfromdisknotice, qbool builtinonly)
1010 {
1011         char *shaderstring;
1012         // if the mode has no filename we have to return the builtin string
1013         if (builtinonly || !modeinfo->filename)
1014                 return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1015         // note that FS_LoadFile appends a 0 byte to make it a valid string
1016         shaderstring = (char *)FS_LoadFile(modeinfo->filename, r_main_mempool, false, NULL);
1017         if (shaderstring)
1018         {
1019                 if (printfromdisknotice)
1020                         Con_DPrintf("Loading shaders from file %s...\n", modeinfo->filename);
1021                 return shaderstring;
1022         }
1023         // fall back to builtinstring
1024         return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1025 }
1026
1027 static void R_GLSL_CompilePermutation(r_glsl_permutation_t *p, unsigned int mode, uint64_t permutation)
1028 {
1029         int i;
1030         int ubibind;
1031         int sampler;
1032         shadermodeinfo_t *modeinfo = &shadermodeinfo[SHADERLANGUAGE_GLSL][mode];
1033         char *sourcestring;
1034         char permutationname[256];
1035         int vertstrings_count = 0;
1036         int geomstrings_count = 0;
1037         int fragstrings_count = 0;
1038         const char *vertstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1039         const char *geomstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1040         const char *fragstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1041
1042         if (p->compiled)
1043                 return;
1044         p->compiled = true;
1045         p->program = 0;
1046
1047         permutationname[0] = 0;
1048         sourcestring = ShaderModeInfo_GetShaderText(modeinfo, true, false);
1049
1050         strlcat(permutationname, modeinfo->filename, sizeof(permutationname));
1051
1052         // we need 140 for r_glsl_skeletal (GL_ARB_uniform_buffer_object)
1053         if(vid.support.glshaderversion >= 140)
1054         {
1055                 vertstrings_list[vertstrings_count++] = "#version 140\n";
1056                 geomstrings_list[geomstrings_count++] = "#version 140\n";
1057                 fragstrings_list[fragstrings_count++] = "#version 140\n";
1058                 vertstrings_list[vertstrings_count++] = "#define GLSL140\n";
1059                 geomstrings_list[geomstrings_count++] = "#define GLSL140\n";
1060                 fragstrings_list[fragstrings_count++] = "#define GLSL140\n";
1061         }
1062         // if we can do #version 130, we should (this improves quality of offset/reliefmapping thanks to textureGrad)
1063         else if(vid.support.glshaderversion >= 130)
1064         {
1065                 vertstrings_list[vertstrings_count++] = "#version 130\n";
1066                 geomstrings_list[geomstrings_count++] = "#version 130\n";
1067                 fragstrings_list[fragstrings_count++] = "#version 130\n";
1068                 vertstrings_list[vertstrings_count++] = "#define GLSL130\n";
1069                 geomstrings_list[geomstrings_count++] = "#define GLSL130\n";
1070                 fragstrings_list[fragstrings_count++] = "#define GLSL130\n";
1071         }
1072         // if we can do #version 120, we should (this adds the invariant keyword)
1073         else if(vid.support.glshaderversion >= 120)
1074         {
1075                 vertstrings_list[vertstrings_count++] = "#version 120\n";
1076                 geomstrings_list[geomstrings_count++] = "#version 120\n";
1077                 fragstrings_list[fragstrings_count++] = "#version 120\n";
1078                 vertstrings_list[vertstrings_count++] = "#define GLSL120\n";
1079                 geomstrings_list[geomstrings_count++] = "#define GLSL120\n";
1080                 fragstrings_list[fragstrings_count++] = "#define GLSL120\n";
1081         }
1082         // GLES also adds several things from GLSL120
1083         switch(vid.renderpath)
1084         {
1085         case RENDERPATH_GLES2:
1086                 vertstrings_list[vertstrings_count++] = "#define GLES\n";
1087                 geomstrings_list[geomstrings_count++] = "#define GLES\n";
1088                 fragstrings_list[fragstrings_count++] = "#define GLES\n";
1089                 break;
1090         default:
1091                 break;
1092         }
1093
1094         // the first pretext is which type of shader to compile as
1095         // (later these will all be bound together as a program object)
1096         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1097         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1098         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1099
1100         // the second pretext is the mode (for example a light source)
1101         vertstrings_list[vertstrings_count++] = modeinfo->pretext;
1102         geomstrings_list[geomstrings_count++] = modeinfo->pretext;
1103         fragstrings_list[fragstrings_count++] = modeinfo->pretext;
1104         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1105
1106         // now add all the permutation pretexts
1107         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1108         {
1109                 if (permutation & (1ll<<i))
1110                 {
1111                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1112                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1113                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1114                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1115                 }
1116                 else
1117                 {
1118                         // keep line numbers correct
1119                         vertstrings_list[vertstrings_count++] = "\n";
1120                         geomstrings_list[geomstrings_count++] = "\n";
1121                         fragstrings_list[fragstrings_count++] = "\n";
1122                 }
1123         }
1124
1125         // add static parms
1126         R_CompileShader_AddStaticParms(mode, permutation);
1127         memcpy((char *)(vertstrings_list + vertstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1128         vertstrings_count += shaderstaticparms_count;
1129         memcpy((char *)(geomstrings_list + geomstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1130         geomstrings_count += shaderstaticparms_count;
1131         memcpy((char *)(fragstrings_list + fragstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1132         fragstrings_count += shaderstaticparms_count;
1133
1134         // now append the shader text itself
1135         vertstrings_list[vertstrings_count++] = sourcestring;
1136         geomstrings_list[geomstrings_count++] = sourcestring;
1137         fragstrings_list[fragstrings_count++] = sourcestring;
1138
1139         // we don't currently use geometry shaders for anything, so just empty the list
1140         geomstrings_count = 0;
1141
1142         // compile the shader program
1143         if (vertstrings_count + geomstrings_count + fragstrings_count)
1144                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1145         if (p->program)
1146         {
1147                 CHECKGLERROR
1148                 qglUseProgram(p->program);CHECKGLERROR
1149                 // look up all the uniform variable names we care about, so we don't
1150                 // have to look them up every time we set them
1151
1152 #if 0
1153                 // debugging aid
1154                 {
1155                         GLint activeuniformindex = 0;
1156                         GLint numactiveuniforms = 0;
1157                         char uniformname[128];
1158                         GLsizei uniformnamelength = 0;
1159                         GLint uniformsize = 0;
1160                         GLenum uniformtype = 0;
1161                         memset(uniformname, 0, sizeof(uniformname));
1162                         qglGetProgramiv(p->program, GL_ACTIVE_UNIFORMS, &numactiveuniforms);
1163                         Con_Printf("Shader has %i uniforms\n", numactiveuniforms);
1164                         for (activeuniformindex = 0;activeuniformindex < numactiveuniforms;activeuniformindex++)
1165                         {
1166                                 qglGetActiveUniform(p->program, activeuniformindex, sizeof(uniformname) - 1, &uniformnamelength, &uniformsize, &uniformtype, uniformname);
1167                                 Con_Printf("Uniform %i name \"%s\" size %i type %i\n", (int)activeuniformindex, uniformname, (int)uniformsize, (int)uniformtype);
1168                         }
1169                 }
1170 #endif
1171
1172                 p->loc_Texture_First              = qglGetUniformLocation(p->program, "Texture_First");
1173                 p->loc_Texture_Second             = qglGetUniformLocation(p->program, "Texture_Second");
1174                 p->loc_Texture_GammaRamps         = qglGetUniformLocation(p->program, "Texture_GammaRamps");
1175                 p->loc_Texture_Normal             = qglGetUniformLocation(p->program, "Texture_Normal");
1176                 p->loc_Texture_Color              = qglGetUniformLocation(p->program, "Texture_Color");
1177                 p->loc_Texture_Gloss              = qglGetUniformLocation(p->program, "Texture_Gloss");
1178                 p->loc_Texture_Glow               = qglGetUniformLocation(p->program, "Texture_Glow");
1179                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocation(p->program, "Texture_SecondaryNormal");
1180                 p->loc_Texture_SecondaryColor     = qglGetUniformLocation(p->program, "Texture_SecondaryColor");
1181                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocation(p->program, "Texture_SecondaryGloss");
1182                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocation(p->program, "Texture_SecondaryGlow");
1183                 p->loc_Texture_Pants              = qglGetUniformLocation(p->program, "Texture_Pants");
1184                 p->loc_Texture_Shirt              = qglGetUniformLocation(p->program, "Texture_Shirt");
1185                 p->loc_Texture_FogHeightTexture   = qglGetUniformLocation(p->program, "Texture_FogHeightTexture");
1186                 p->loc_Texture_FogMask            = qglGetUniformLocation(p->program, "Texture_FogMask");
1187                 p->loc_Texture_LightGrid          = qglGetUniformLocation(p->program, "Texture_LightGrid");
1188                 p->loc_Texture_Lightmap           = qglGetUniformLocation(p->program, "Texture_Lightmap");
1189                 p->loc_Texture_Deluxemap          = qglGetUniformLocation(p->program, "Texture_Deluxemap");
1190                 p->loc_Texture_Attenuation        = qglGetUniformLocation(p->program, "Texture_Attenuation");
1191                 p->loc_Texture_Cube               = qglGetUniformLocation(p->program, "Texture_Cube");
1192                 p->loc_Texture_Refraction         = qglGetUniformLocation(p->program, "Texture_Refraction");
1193                 p->loc_Texture_Reflection         = qglGetUniformLocation(p->program, "Texture_Reflection");
1194                 p->loc_Texture_ShadowMap2D        = qglGetUniformLocation(p->program, "Texture_ShadowMap2D");
1195                 p->loc_Texture_CubeProjection     = qglGetUniformLocation(p->program, "Texture_CubeProjection");
1196                 p->loc_Texture_ScreenNormalMap    = qglGetUniformLocation(p->program, "Texture_ScreenNormalMap");
1197                 p->loc_Texture_ScreenDiffuse      = qglGetUniformLocation(p->program, "Texture_ScreenDiffuse");
1198                 p->loc_Texture_ScreenSpecular     = qglGetUniformLocation(p->program, "Texture_ScreenSpecular");
1199                 p->loc_Texture_ReflectMask        = qglGetUniformLocation(p->program, "Texture_ReflectMask");
1200                 p->loc_Texture_ReflectCube        = qglGetUniformLocation(p->program, "Texture_ReflectCube");
1201                 p->loc_Texture_BounceGrid         = qglGetUniformLocation(p->program, "Texture_BounceGrid");
1202                 p->loc_Alpha                      = qglGetUniformLocation(p->program, "Alpha");
1203                 p->loc_BloomBlur_Parameters       = qglGetUniformLocation(p->program, "BloomBlur_Parameters");
1204                 p->loc_ClientTime                 = qglGetUniformLocation(p->program, "ClientTime");
1205                 p->loc_Color_Ambient              = qglGetUniformLocation(p->program, "Color_Ambient");
1206                 p->loc_Color_Diffuse              = qglGetUniformLocation(p->program, "Color_Diffuse");
1207                 p->loc_Color_Specular             = qglGetUniformLocation(p->program, "Color_Specular");
1208                 p->loc_Color_Glow                 = qglGetUniformLocation(p->program, "Color_Glow");
1209                 p->loc_Color_Pants                = qglGetUniformLocation(p->program, "Color_Pants");
1210                 p->loc_Color_Shirt                = qglGetUniformLocation(p->program, "Color_Shirt");
1211                 p->loc_DeferredColor_Ambient      = qglGetUniformLocation(p->program, "DeferredColor_Ambient");
1212                 p->loc_DeferredColor_Diffuse      = qglGetUniformLocation(p->program, "DeferredColor_Diffuse");
1213                 p->loc_DeferredColor_Specular     = qglGetUniformLocation(p->program, "DeferredColor_Specular");
1214                 p->loc_DeferredMod_Diffuse        = qglGetUniformLocation(p->program, "DeferredMod_Diffuse");
1215                 p->loc_DeferredMod_Specular       = qglGetUniformLocation(p->program, "DeferredMod_Specular");
1216                 p->loc_DistortScaleRefractReflect = qglGetUniformLocation(p->program, "DistortScaleRefractReflect");
1217                 p->loc_EyePosition                = qglGetUniformLocation(p->program, "EyePosition");
1218                 p->loc_FogColor                   = qglGetUniformLocation(p->program, "FogColor");
1219                 p->loc_FogHeightFade              = qglGetUniformLocation(p->program, "FogHeightFade");
1220                 p->loc_FogPlane                   = qglGetUniformLocation(p->program, "FogPlane");
1221                 p->loc_FogPlaneViewDist           = qglGetUniformLocation(p->program, "FogPlaneViewDist");
1222                 p->loc_FogRangeRecip              = qglGetUniformLocation(p->program, "FogRangeRecip");
1223                 p->loc_LightColor                 = qglGetUniformLocation(p->program, "LightColor");
1224                 p->loc_LightGridMatrix            = qglGetUniformLocation(p->program, "LightGridMatrix");
1225                 p->loc_LightGridNormalMatrix      = qglGetUniformLocation(p->program, "LightGridNormalMatrix");
1226                 p->loc_LightDir                   = qglGetUniformLocation(p->program, "LightDir");
1227                 p->loc_LightPosition              = qglGetUniformLocation(p->program, "LightPosition");
1228                 p->loc_OffsetMapping_ScaleSteps   = qglGetUniformLocation(p->program, "OffsetMapping_ScaleSteps");
1229                 p->loc_OffsetMapping_LodDistance  = qglGetUniformLocation(p->program, "OffsetMapping_LodDistance");
1230                 p->loc_OffsetMapping_Bias         = qglGetUniformLocation(p->program, "OffsetMapping_Bias");
1231                 p->loc_PixelSize                  = qglGetUniformLocation(p->program, "PixelSize");
1232                 p->loc_ReflectColor               = qglGetUniformLocation(p->program, "ReflectColor");
1233                 p->loc_ReflectFactor              = qglGetUniformLocation(p->program, "ReflectFactor");
1234                 p->loc_ReflectOffset              = qglGetUniformLocation(p->program, "ReflectOffset");
1235                 p->loc_RefractColor               = qglGetUniformLocation(p->program, "RefractColor");
1236                 p->loc_Saturation                 = qglGetUniformLocation(p->program, "Saturation");
1237                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocation(p->program, "ScreenCenterRefractReflect");
1238                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocation(p->program, "ScreenScaleRefractReflect");
1239                 p->loc_ScreenToDepth              = qglGetUniformLocation(p->program, "ScreenToDepth");
1240                 p->loc_ShadowMap_Parameters       = qglGetUniformLocation(p->program, "ShadowMap_Parameters");
1241                 p->loc_ShadowMap_TextureScale     = qglGetUniformLocation(p->program, "ShadowMap_TextureScale");
1242                 p->loc_SpecularPower              = qglGetUniformLocation(p->program, "SpecularPower");
1243                 p->loc_UserVec1                   = qglGetUniformLocation(p->program, "UserVec1");
1244                 p->loc_UserVec2                   = qglGetUniformLocation(p->program, "UserVec2");
1245                 p->loc_UserVec3                   = qglGetUniformLocation(p->program, "UserVec3");
1246                 p->loc_UserVec4                   = qglGetUniformLocation(p->program, "UserVec4");
1247                 p->loc_ColorFringe                = qglGetUniformLocation(p->program, "ColorFringe");
1248                 p->loc_ViewTintColor              = qglGetUniformLocation(p->program, "ViewTintColor");
1249                 p->loc_ViewToLight                = qglGetUniformLocation(p->program, "ViewToLight");
1250                 p->loc_ModelToLight               = qglGetUniformLocation(p->program, "ModelToLight");
1251                 p->loc_TexMatrix                  = qglGetUniformLocation(p->program, "TexMatrix");
1252                 p->loc_BackgroundTexMatrix        = qglGetUniformLocation(p->program, "BackgroundTexMatrix");
1253                 p->loc_ModelViewMatrix            = qglGetUniformLocation(p->program, "ModelViewMatrix");
1254                 p->loc_ModelViewProjectionMatrix  = qglGetUniformLocation(p->program, "ModelViewProjectionMatrix");
1255                 p->loc_PixelToScreenTexCoord      = qglGetUniformLocation(p->program, "PixelToScreenTexCoord");
1256                 p->loc_ModelToReflectCube         = qglGetUniformLocation(p->program, "ModelToReflectCube");
1257                 p->loc_ShadowMapMatrix            = qglGetUniformLocation(p->program, "ShadowMapMatrix");
1258                 p->loc_BloomColorSubtract         = qglGetUniformLocation(p->program, "BloomColorSubtract");
1259                 p->loc_NormalmapScrollBlend       = qglGetUniformLocation(p->program, "NormalmapScrollBlend");
1260                 p->loc_BounceGridMatrix           = qglGetUniformLocation(p->program, "BounceGridMatrix");
1261                 p->loc_BounceGridIntensity        = qglGetUniformLocation(p->program, "BounceGridIntensity");
1262                 // initialize the samplers to refer to the texture units we use
1263                 p->tex_Texture_First = -1;
1264                 p->tex_Texture_Second = -1;
1265                 p->tex_Texture_GammaRamps = -1;
1266                 p->tex_Texture_Normal = -1;
1267                 p->tex_Texture_Color = -1;
1268                 p->tex_Texture_Gloss = -1;
1269                 p->tex_Texture_Glow = -1;
1270                 p->tex_Texture_SecondaryNormal = -1;
1271                 p->tex_Texture_SecondaryColor = -1;
1272                 p->tex_Texture_SecondaryGloss = -1;
1273                 p->tex_Texture_SecondaryGlow = -1;
1274                 p->tex_Texture_Pants = -1;
1275                 p->tex_Texture_Shirt = -1;
1276                 p->tex_Texture_FogHeightTexture = -1;
1277                 p->tex_Texture_FogMask = -1;
1278                 p->tex_Texture_LightGrid = -1;
1279                 p->tex_Texture_Lightmap = -1;
1280                 p->tex_Texture_Deluxemap = -1;
1281                 p->tex_Texture_Attenuation = -1;
1282                 p->tex_Texture_Cube = -1;
1283                 p->tex_Texture_Refraction = -1;
1284                 p->tex_Texture_Reflection = -1;
1285                 p->tex_Texture_ShadowMap2D = -1;
1286                 p->tex_Texture_CubeProjection = -1;
1287                 p->tex_Texture_ScreenNormalMap = -1;
1288                 p->tex_Texture_ScreenDiffuse = -1;
1289                 p->tex_Texture_ScreenSpecular = -1;
1290                 p->tex_Texture_ReflectMask = -1;
1291                 p->tex_Texture_ReflectCube = -1;
1292                 p->tex_Texture_BounceGrid = -1;
1293                 // bind the texture samplers in use
1294                 sampler = 0;
1295                 if (p->loc_Texture_First           >= 0) {p->tex_Texture_First            = sampler;qglUniform1i(p->loc_Texture_First           , sampler);sampler++;}
1296                 if (p->loc_Texture_Second          >= 0) {p->tex_Texture_Second           = sampler;qglUniform1i(p->loc_Texture_Second          , sampler);sampler++;}
1297                 if (p->loc_Texture_GammaRamps      >= 0) {p->tex_Texture_GammaRamps       = sampler;qglUniform1i(p->loc_Texture_GammaRamps      , sampler);sampler++;}
1298                 if (p->loc_Texture_Normal          >= 0) {p->tex_Texture_Normal           = sampler;qglUniform1i(p->loc_Texture_Normal          , sampler);sampler++;}
1299                 if (p->loc_Texture_Color           >= 0) {p->tex_Texture_Color            = sampler;qglUniform1i(p->loc_Texture_Color           , sampler);sampler++;}
1300                 if (p->loc_Texture_Gloss           >= 0) {p->tex_Texture_Gloss            = sampler;qglUniform1i(p->loc_Texture_Gloss           , sampler);sampler++;}
1301                 if (p->loc_Texture_Glow            >= 0) {p->tex_Texture_Glow             = sampler;qglUniform1i(p->loc_Texture_Glow            , sampler);sampler++;}
1302                 if (p->loc_Texture_SecondaryNormal >= 0) {p->tex_Texture_SecondaryNormal  = sampler;qglUniform1i(p->loc_Texture_SecondaryNormal , sampler);sampler++;}
1303                 if (p->loc_Texture_SecondaryColor  >= 0) {p->tex_Texture_SecondaryColor   = sampler;qglUniform1i(p->loc_Texture_SecondaryColor  , sampler);sampler++;}
1304                 if (p->loc_Texture_SecondaryGloss  >= 0) {p->tex_Texture_SecondaryGloss   = sampler;qglUniform1i(p->loc_Texture_SecondaryGloss  , sampler);sampler++;}
1305                 if (p->loc_Texture_SecondaryGlow   >= 0) {p->tex_Texture_SecondaryGlow    = sampler;qglUniform1i(p->loc_Texture_SecondaryGlow   , sampler);sampler++;}
1306                 if (p->loc_Texture_Pants           >= 0) {p->tex_Texture_Pants            = sampler;qglUniform1i(p->loc_Texture_Pants           , sampler);sampler++;}
1307                 if (p->loc_Texture_Shirt           >= 0) {p->tex_Texture_Shirt            = sampler;qglUniform1i(p->loc_Texture_Shirt           , sampler);sampler++;}
1308                 if (p->loc_Texture_FogHeightTexture>= 0) {p->tex_Texture_FogHeightTexture = sampler;qglUniform1i(p->loc_Texture_FogHeightTexture, sampler);sampler++;}
1309                 if (p->loc_Texture_FogMask         >= 0) {p->tex_Texture_FogMask          = sampler;qglUniform1i(p->loc_Texture_FogMask         , sampler);sampler++;}
1310                 if (p->loc_Texture_LightGrid       >= 0) {p->tex_Texture_LightGrid        = sampler;qglUniform1i(p->loc_Texture_LightGrid       , sampler);sampler++;}
1311                 if (p->loc_Texture_Lightmap        >= 0) {p->tex_Texture_Lightmap         = sampler;qglUniform1i(p->loc_Texture_Lightmap        , sampler);sampler++;}
1312                 if (p->loc_Texture_Deluxemap       >= 0) {p->tex_Texture_Deluxemap        = sampler;qglUniform1i(p->loc_Texture_Deluxemap       , sampler);sampler++;}
1313                 if (p->loc_Texture_Attenuation     >= 0) {p->tex_Texture_Attenuation      = sampler;qglUniform1i(p->loc_Texture_Attenuation     , sampler);sampler++;}
1314                 if (p->loc_Texture_Cube            >= 0) {p->tex_Texture_Cube             = sampler;qglUniform1i(p->loc_Texture_Cube            , sampler);sampler++;}
1315                 if (p->loc_Texture_Refraction      >= 0) {p->tex_Texture_Refraction       = sampler;qglUniform1i(p->loc_Texture_Refraction      , sampler);sampler++;}
1316                 if (p->loc_Texture_Reflection      >= 0) {p->tex_Texture_Reflection       = sampler;qglUniform1i(p->loc_Texture_Reflection      , sampler);sampler++;}
1317                 if (p->loc_Texture_ShadowMap2D     >= 0) {p->tex_Texture_ShadowMap2D      = sampler;qglUniform1i(p->loc_Texture_ShadowMap2D     , sampler);sampler++;}
1318                 if (p->loc_Texture_CubeProjection  >= 0) {p->tex_Texture_CubeProjection   = sampler;qglUniform1i(p->loc_Texture_CubeProjection  , sampler);sampler++;}
1319                 if (p->loc_Texture_ScreenNormalMap >= 0) {p->tex_Texture_ScreenNormalMap  = sampler;qglUniform1i(p->loc_Texture_ScreenNormalMap , sampler);sampler++;}
1320                 if (p->loc_Texture_ScreenDiffuse   >= 0) {p->tex_Texture_ScreenDiffuse    = sampler;qglUniform1i(p->loc_Texture_ScreenDiffuse   , sampler);sampler++;}
1321                 if (p->loc_Texture_ScreenSpecular  >= 0) {p->tex_Texture_ScreenSpecular   = sampler;qglUniform1i(p->loc_Texture_ScreenSpecular  , sampler);sampler++;}
1322                 if (p->loc_Texture_ReflectMask     >= 0) {p->tex_Texture_ReflectMask      = sampler;qglUniform1i(p->loc_Texture_ReflectMask     , sampler);sampler++;}
1323                 if (p->loc_Texture_ReflectCube     >= 0) {p->tex_Texture_ReflectCube      = sampler;qglUniform1i(p->loc_Texture_ReflectCube     , sampler);sampler++;}
1324                 if (p->loc_Texture_BounceGrid      >= 0) {p->tex_Texture_BounceGrid       = sampler;qglUniform1i(p->loc_Texture_BounceGrid      , sampler);sampler++;}
1325                 // get the uniform block indices so we can bind them
1326                 p->ubiloc_Skeletal_Transform12_UniformBlock = -1;
1327 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1328                 p->ubiloc_Skeletal_Transform12_UniformBlock = qglGetUniformBlockIndex(p->program, "Skeletal_Transform12_UniformBlock");
1329 #endif
1330                 // clear the uniform block bindings
1331                 p->ubibind_Skeletal_Transform12_UniformBlock = -1;
1332                 // bind the uniform blocks in use
1333                 ubibind = 0;
1334 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1335                 if (p->ubiloc_Skeletal_Transform12_UniformBlock >= 0) {p->ubibind_Skeletal_Transform12_UniformBlock = ubibind;qglUniformBlockBinding(p->program, p->ubiloc_Skeletal_Transform12_UniformBlock, ubibind);ubibind++;}
1336 #endif
1337                 // we're done compiling and setting up the shader, at least until it is used
1338                 CHECKGLERROR
1339                 Con_DPrintf("^5GLSL shader %s compiled (%i textures).\n", permutationname, sampler);
1340         }
1341         else
1342                 Con_Printf("^1GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1343
1344         // free the strings
1345         if (sourcestring)
1346                 Mem_Free(sourcestring);
1347 }
1348
1349 static void R_SetupShader_SetPermutationGLSL(unsigned int mode, uint64_t permutation)
1350 {
1351         r_glsl_permutation_t *perm = R_GLSL_FindPermutation(mode, permutation);
1352         if (r_glsl_permutation != perm)
1353         {
1354                 r_glsl_permutation = perm;
1355                 if (!r_glsl_permutation->program)
1356                 {
1357                         if (!r_glsl_permutation->compiled)
1358                         {
1359                                 Con_DPrintf("Compiling shader mode %u permutation %" PRIx64 "\n", mode, permutation);
1360                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1361                         }
1362                         if (!r_glsl_permutation->program)
1363                         {
1364                                 // remove features until we find a valid permutation
1365                                 int i;
1366                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1367                                 {
1368                                         // reduce i more quickly whenever it would not remove any bits
1369                                         uint64_t j = 1ll<<(SHADERPERMUTATION_COUNT-1-i);
1370                                         if (!(permutation & j))
1371                                                 continue;
1372                                         permutation -= j;
1373                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1374                                         if (!r_glsl_permutation->compiled)
1375                                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1376                                         if (r_glsl_permutation->program)
1377                                                 break;
1378                                 }
1379                                 if (i >= SHADERPERMUTATION_COUNT)
1380                                 {
1381                                         //Con_Printf("Could not find a working OpenGL 2.0 shader for permutation %s %s\n", shadermodeinfo[mode].filename, shadermodeinfo[mode].pretext);
1382                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1383                                         qglUseProgram(0);CHECKGLERROR
1384                                         return; // no bit left to clear, entire mode is broken
1385                                 }
1386                         }
1387                 }
1388                 CHECKGLERROR
1389                 qglUseProgram(r_glsl_permutation->program);CHECKGLERROR
1390         }
1391         if (r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
1392         if (r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
1393         if (r_glsl_permutation->loc_ClientTime >= 0) qglUniform1f(r_glsl_permutation->loc_ClientTime, cl.time);
1394         CHECKGLERROR
1395 }
1396
1397 void R_GLSL_Restart_f(cmd_state_t *cmd)
1398 {
1399         unsigned int i, limit;
1400         switch(vid.renderpath)
1401         {
1402         case RENDERPATH_GL32:
1403         case RENDERPATH_GLES2:
1404                 {
1405                         r_glsl_permutation_t *p;
1406                         r_glsl_permutation = NULL;
1407                         limit = (unsigned int)Mem_ExpandableArray_IndexRange(&r_glsl_permutationarray);
1408                         for (i = 0;i < limit;i++)
1409                         {
1410                                 if ((p = (r_glsl_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_glsl_permutationarray, i)))
1411                                 {
1412                                         GL_Backend_FreeProgram(p->program);
1413                                         Mem_ExpandableArray_FreeRecord(&r_glsl_permutationarray, (void*)p);
1414                                 }
1415                         }
1416                         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
1417                 }
1418                 break;
1419         }
1420 }
1421
1422 static void R_GLSL_DumpShader_f(cmd_state_t *cmd)
1423 {
1424         int i, language, mode, dupe;
1425         char *text;
1426         shadermodeinfo_t *modeinfo;
1427         qfile_t *file;
1428
1429         for (language = 0;language < SHADERLANGUAGE_COUNT;language++)
1430         {
1431                 modeinfo = shadermodeinfo[language];
1432                 for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1433                 {
1434                         // don't dump the same file multiple times (most or all shaders come from the same file)
1435                         for (dupe = mode - 1;dupe >= 0;dupe--)
1436                                 if (!strcmp(modeinfo[mode].filename, modeinfo[dupe].filename))
1437                                         break;
1438                         if (dupe >= 0)
1439                                 continue;
1440                         text = modeinfo[mode].builtinstring;
1441                         if (!text)
1442                                 continue;
1443                         file = FS_OpenRealFile(modeinfo[mode].filename, "w", false);
1444                         if (file)
1445                         {
1446                                 FS_Print(file, "/* The engine may define the following macros:\n");
1447                                 FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n");
1448                                 for (i = 0;i < SHADERMODE_COUNT;i++)
1449                                         FS_Print(file, modeinfo[i].pretext);
1450                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1451                                         FS_Print(file, shaderpermutationinfo[i].pretext);
1452                                 FS_Print(file, "*/\n");
1453                                 FS_Print(file, text);
1454                                 FS_Close(file);
1455                                 Con_Printf("%s written\n", modeinfo[mode].filename);
1456                         }
1457                         else
1458                                 Con_Printf(CON_ERROR "failed to write to %s\n", modeinfo[mode].filename);
1459                 }
1460         }
1461 }
1462
1463 void R_SetupShader_Generic(rtexture_t *t, qbool usegamma, qbool notrippy, qbool suppresstexalpha)
1464 {
1465         uint64_t permutation = 0;
1466         if (r_trippy.integer && !notrippy)
1467                 permutation |= SHADERPERMUTATION_TRIPPY;
1468         permutation |= SHADERPERMUTATION_VIEWTINT;
1469         if (t)
1470                 permutation |= SHADERPERMUTATION_DIFFUSE;
1471         if (usegamma && v_glslgamma_2d.integer && !vid.sRGB2D && r_texture_gammaramps && !vid_gammatables_trivial)
1472                 permutation |= SHADERPERMUTATION_GAMMARAMPS;
1473         if (suppresstexalpha)
1474                 permutation |= SHADERPERMUTATION_REFLECTCUBE;
1475         if (vid.allowalphatocoverage)
1476                 GL_AlphaToCoverage(false);
1477         switch (vid.renderpath)
1478         {
1479         case RENDERPATH_GL32:
1480         case RENDERPATH_GLES2:
1481                 R_SetupShader_SetPermutationGLSL(SHADERMODE_GENERIC, permutation);
1482                 if (r_glsl_permutation->tex_Texture_First >= 0)
1483                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First, t);
1484                 if (r_glsl_permutation->tex_Texture_GammaRamps >= 0)
1485                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps);
1486                 break;
1487         }
1488 }
1489
1490 void R_SetupShader_Generic_NoTexture(qbool usegamma, qbool notrippy)
1491 {
1492         R_SetupShader_Generic(NULL, usegamma, notrippy, false);
1493 }
1494
1495 void R_SetupShader_DepthOrShadow(qbool notrippy, qbool depthrgb, qbool skeletal)
1496 {
1497         uint64_t permutation = 0;
1498         if (r_trippy.integer && !notrippy)
1499                 permutation |= SHADERPERMUTATION_TRIPPY;
1500         if (depthrgb)
1501                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1502         if (skeletal)
1503                 permutation |= SHADERPERMUTATION_SKELETAL;
1504
1505         if (vid.allowalphatocoverage)
1506                 GL_AlphaToCoverage(false);
1507         switch (vid.renderpath)
1508         {
1509         case RENDERPATH_GL32:
1510         case RENDERPATH_GLES2:
1511                 R_SetupShader_SetPermutationGLSL(SHADERMODE_DEPTH_OR_SHADOW, permutation);
1512 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1513                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1514 #endif
1515                 break;
1516         }
1517 }
1518
1519 #define BLENDFUNC_ALLOWS_COLORMOD      1
1520 #define BLENDFUNC_ALLOWS_FOG           2
1521 #define BLENDFUNC_ALLOWS_FOG_HACK0     4
1522 #define BLENDFUNC_ALLOWS_FOG_HACKALPHA 8
1523 #define BLENDFUNC_ALLOWS_ANYFOG        (BLENDFUNC_ALLOWS_FOG | BLENDFUNC_ALLOWS_FOG_HACK0 | BLENDFUNC_ALLOWS_FOG_HACKALPHA)
1524 static int R_BlendFuncFlags(int src, int dst)
1525 {
1526         int r = 0;
1527
1528         // a blendfunc allows colormod if:
1529         // a) it can never keep the destination pixel invariant, or
1530         // b) it can keep the destination pixel invariant, and still can do so if colormodded
1531         // this is to prevent unintended side effects from colormod
1532
1533         // a blendfunc allows fog if:
1534         // blend(fog(src), fog(dst)) == fog(blend(src, dst))
1535         // this is to prevent unintended side effects from fog
1536
1537         // these checks are the output of fogeval.pl
1538
1539         r |= BLENDFUNC_ALLOWS_COLORMOD;
1540         if(src == GL_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1541         if(src == GL_DST_ALPHA && dst == GL_ONE_MINUS_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1542         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1543         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1544         if(src == GL_DST_COLOR && dst == GL_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1545         if(src == GL_DST_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1546         if(src == GL_DST_COLOR && dst == GL_ZERO) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1547         if(src == GL_ONE && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1548         if(src == GL_ONE && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG_HACKALPHA;
1549         if(src == GL_ONE && dst == GL_ZERO) r |= BLENDFUNC_ALLOWS_FOG;
1550         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1551         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1552         if(src == GL_ONE_MINUS_DST_COLOR && dst == GL_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1553         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1554         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1555         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1556         if(src == GL_ONE_MINUS_SRC_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1557         if(src == GL_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1558         if(src == GL_SRC_ALPHA && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1559         if(src == GL_ZERO && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG;
1560         if(src == GL_ZERO && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1561
1562         return r;
1563 }
1564
1565 void R_SetupShader_Surface(const float rtlightambient[3], const float rtlightdiffuse[3], const float rtlightspecular[3], rsurfacepass_t rsurfacepass, int texturenumsurfaces, const msurface_t **texturesurfacelist, void *surfacewaterplane, qbool notrippy, qbool ui)
1566 {
1567         // select a permutation of the lighting shader appropriate to this
1568         // combination of texture, entity, light source, and fogging, only use the
1569         // minimum features necessary to avoid wasting rendering time in the
1570         // fragment shader on features that are not being used
1571         uint64_t permutation = 0;
1572         unsigned int mode = 0;
1573         int blendfuncflags;
1574         texture_t *t = rsurface.texture;
1575         float m16f[16];
1576         matrix4x4_t tempmatrix;
1577         r_waterstate_waterplane_t *waterplane = (r_waterstate_waterplane_t *)surfacewaterplane;
1578         if (r_trippy.integer && !notrippy)
1579                 permutation |= SHADERPERMUTATION_TRIPPY;
1580         if (t->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1581                 permutation |= SHADERPERMUTATION_ALPHAKILL;
1582         if (t->currentmaterialflags & MATERIALFLAG_OCCLUDE)
1583                 permutation |= SHADERPERMUTATION_OCCLUDE;
1584         if (t->r_water_waterscroll[0] && t->r_water_waterscroll[1])
1585                 permutation |= SHADERPERMUTATION_NORMALMAPSCROLLBLEND; // todo: make generic
1586         if (rsurfacepass == RSURFPASS_BACKGROUND)
1587         {
1588                 // distorted background
1589                 if (t->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1590                 {
1591                         mode = SHADERMODE_WATER;
1592                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1593                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1594                         if((r_wateralpha.value < 1) && (t->currentmaterialflags & MATERIALFLAG_WATERALPHA))
1595                         {
1596                                 // this is the right thing to do for wateralpha
1597                                 GL_BlendFunc(GL_ONE, GL_ZERO);
1598                                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1599                         }
1600                         else
1601                         {
1602                                 // this is the right thing to do for entity alpha
1603                                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1604                                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1605                         }
1606                 }
1607                 else if (t->currentmaterialflags & MATERIALFLAG_REFRACTION)
1608                 {
1609                         mode = SHADERMODE_REFRACTION;
1610                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1611                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1612                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1613                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1614                 }
1615                 else
1616                 {
1617                         mode = SHADERMODE_GENERIC;
1618                         permutation |= SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_ALPHAKILL;
1619                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1620                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1621                 }
1622                 if (vid.allowalphatocoverage)
1623                         GL_AlphaToCoverage(false);
1624         }
1625         else if (rsurfacepass == RSURFPASS_DEFERREDGEOMETRY)
1626         {
1627                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1628                 {
1629                         switch(t->offsetmapping)
1630                         {
1631                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1632                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1633                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1634                         case OFFSETMAPPING_OFF: break;
1635                         }
1636                 }
1637                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1638                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1639                 // normalmap (deferred prepass), may use alpha test on diffuse
1640                 mode = SHADERMODE_DEFERREDGEOMETRY;
1641                 GL_BlendFunc(GL_ONE, GL_ZERO);
1642                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1643                 if (vid.allowalphatocoverage)
1644                         GL_AlphaToCoverage(false);
1645         }
1646         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1647         {
1648                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1649                 {
1650                         switch(t->offsetmapping)
1651                         {
1652                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1653                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1654                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1655                         case OFFSETMAPPING_OFF: break;
1656                         }
1657                 }
1658                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1659                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1660                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1661                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1662                 // light source
1663                 mode = SHADERMODE_LIGHTSOURCE;
1664                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1665                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1666                 if (VectorLength2(rtlightdiffuse) > 0)
1667                         permutation |= SHADERPERMUTATION_DIFFUSE;
1668                 if (VectorLength2(rtlightspecular) > 0)
1669                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1670                 if (r_refdef.fogenabled)
1671                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1672                 if (t->colormapping)
1673                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1674                 if (r_shadow_usingshadowmap2d)
1675                 {
1676                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1677                         if(r_shadow_shadowmapvsdct)
1678                                 permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
1679
1680                         if (r_shadow_shadowmap2ddepthbuffer)
1681                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1682                 }
1683                 if (t->reflectmasktexture)
1684                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1685                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1686                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE);
1687                 if (vid.allowalphatocoverage)
1688                         GL_AlphaToCoverage(false);
1689         }
1690         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
1691         {
1692                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1693                 {
1694                         switch(t->offsetmapping)
1695                         {
1696                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1697                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1698                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1699                         case OFFSETMAPPING_OFF: break;
1700                         }
1701                 }
1702                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1703                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1704                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1705                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1706                 // directional model lighting
1707                 mode = SHADERMODE_LIGHTGRID;
1708                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1709                         permutation |= SHADERPERMUTATION_GLOW;
1710                 permutation |= SHADERPERMUTATION_DIFFUSE;
1711                 if (t->glosstexture || t->backgroundglosstexture)
1712                         permutation |= SHADERPERMUTATION_SPECULAR;
1713                 if (r_refdef.fogenabled)
1714                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1715                 if (t->colormapping)
1716                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1717                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1718                 {
1719                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1720                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1721
1722                         if (r_shadow_shadowmap2ddepthbuffer)
1723                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1724                 }
1725                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1726                         permutation |= SHADERPERMUTATION_REFLECTION;
1727                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1728                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1729                 if (t->reflectmasktexture)
1730                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1731                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1732                 {
1733                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1734                         if (r_shadow_bouncegrid_state.directional)
1735                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1736                 }
1737                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1738                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1739                 // when using alphatocoverage, we don't need alphakill
1740                 if (vid.allowalphatocoverage)
1741                 {
1742                         if (r_transparent_alphatocoverage.integer)
1743                         {
1744                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1745                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1746                         }
1747                         else
1748                                 GL_AlphaToCoverage(false);
1749                 }
1750         }
1751         else if (t->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1752         {
1753                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1754                 {
1755                         switch(t->offsetmapping)
1756                         {
1757                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1758                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1759                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1760                         case OFFSETMAPPING_OFF: break;
1761                         }
1762                 }
1763                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1764                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1765                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1766                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1767                 // directional model lighting
1768                 mode = SHADERMODE_LIGHTDIRECTION;
1769                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1770                         permutation |= SHADERPERMUTATION_GLOW;
1771                 if (VectorLength2(t->render_modellight_diffuse))
1772                         permutation |= SHADERPERMUTATION_DIFFUSE;
1773                 if (VectorLength2(t->render_modellight_specular) > 0)
1774                         permutation |= SHADERPERMUTATION_SPECULAR;
1775                 if (r_refdef.fogenabled)
1776                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1777                 if (t->colormapping)
1778                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1779                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1780                 {
1781                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1782                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1783
1784                         if (r_shadow_shadowmap2ddepthbuffer)
1785                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1786                 }
1787                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1788                         permutation |= SHADERPERMUTATION_REFLECTION;
1789                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1790                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1791                 if (t->reflectmasktexture)
1792                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1793                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1794                 {
1795                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1796                         if (r_shadow_bouncegrid_state.directional)
1797                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1798                 }
1799                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1800                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1801                 // when using alphatocoverage, we don't need alphakill
1802                 if (vid.allowalphatocoverage)
1803                 {
1804                         if (r_transparent_alphatocoverage.integer)
1805                         {
1806                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1807                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1808                         }
1809                         else
1810                                 GL_AlphaToCoverage(false);
1811                 }
1812         }
1813         else
1814         {
1815                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1816                 {
1817                         switch(t->offsetmapping)
1818                         {
1819                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1820                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1821                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1822                         case OFFSETMAPPING_OFF: break;
1823                         }
1824                 }
1825                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1826                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1827                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1828                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1829                 // lightmapped wall
1830                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1831                         permutation |= SHADERPERMUTATION_GLOW;
1832                 if (r_refdef.fogenabled && !ui)
1833                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1834                 if (t->colormapping)
1835                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1836                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1837                 {
1838                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1839                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1840
1841                         if (r_shadow_shadowmap2ddepthbuffer)
1842                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1843                 }
1844                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1845                         permutation |= SHADERPERMUTATION_REFLECTION;
1846                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1847                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1848                 if (t->reflectmasktexture)
1849                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1850                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1851                 {
1852                         // deluxemapping (light direction texture)
1853                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1854                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1855                         else
1856                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1857                         permutation |= SHADERPERMUTATION_DIFFUSE;
1858                         if (VectorLength2(t->render_lightmap_specular) > 0)
1859                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1860                 }
1861                 else if (r_glsl_deluxemapping.integer >= 2)
1862                 {
1863                         // fake deluxemapping (uniform light direction in tangentspace)
1864                         if (rsurface.uselightmaptexture)
1865                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP;
1866                         else
1867                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR;
1868                         permutation |= SHADERPERMUTATION_DIFFUSE;
1869                         if (VectorLength2(t->render_lightmap_specular) > 0)
1870                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1871                 }
1872                 else if (rsurface.uselightmaptexture)
1873                 {
1874                         // ordinary lightmapping (q1bsp, q3bsp)
1875                         mode = SHADERMODE_LIGHTMAP;
1876                 }
1877                 else
1878                 {
1879                         // ordinary vertex coloring (q3bsp)
1880                         mode = SHADERMODE_VERTEXCOLOR;
1881                 }
1882                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1883                 {
1884                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1885                         if (r_shadow_bouncegrid_state.directional)
1886                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1887                 }
1888                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1889                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1890                 // when using alphatocoverage, we don't need alphakill
1891                 if (vid.allowalphatocoverage)
1892                 {
1893                         if (r_transparent_alphatocoverage.integer)
1894                         {
1895                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1896                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1897                         }
1898                         else
1899                                 GL_AlphaToCoverage(false);
1900                 }
1901         }
1902         if(!(blendfuncflags & BLENDFUNC_ALLOWS_ANYFOG))
1903                 permutation &= ~(SHADERPERMUTATION_FOGHEIGHTTEXTURE | SHADERPERMUTATION_FOGOUTSIDE | SHADERPERMUTATION_FOGINSIDE);
1904         if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACKALPHA && !ui)
1905                 permutation |= SHADERPERMUTATION_FOGALPHAHACK;
1906         switch(vid.renderpath)
1907         {
1908         case RENDERPATH_GL32:
1909         case RENDERPATH_GLES2:
1910                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_ARRAY_LIGHTMAP : 0) | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
1911                 RSurf_UploadBuffersForBatch();
1912                 // this has to be after RSurf_PrepareVerticesForBatch
1913                 if (rsurface.batchskeletaltransform3x4buffer)
1914                         permutation |= SHADERPERMUTATION_SKELETAL;
1915                 R_SetupShader_SetPermutationGLSL(mode, permutation);
1916 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1917                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1918 #endif
1919                 if (r_glsl_permutation->loc_ModelToReflectCube >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToReflectCube, 1, false, m16f);}
1920                 if (mode == SHADERMODE_LIGHTSOURCE)
1921                 {
1922                         if (r_glsl_permutation->loc_ModelToLight >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToLight, 1, false, m16f);}
1923                         if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3f(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1924                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1925                         if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, rtlightambient[0], rtlightambient[1], rtlightambient[2]);
1926                         if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, rtlightdiffuse[0], rtlightdiffuse[1], rtlightdiffuse[2]);
1927                         if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, rtlightspecular[0], rtlightspecular[1], rtlightspecular[2]);
1928         
1929                         // additive passes are only darkened by fog, not tinted
1930                         if (r_glsl_permutation->loc_FogColor >= 0)
1931                                 qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1932                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1933                 }
1934                 else
1935                 {
1936                         if (mode == SHADERMODE_FLATCOLOR)
1937                         {
1938                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1939                         }
1940                         else if (mode == SHADERMODE_LIGHTGRID)
1941                         {
1942                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1943                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1944                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1945                                 // other LightGrid uniforms handled below
1946                         }
1947                         else if (mode == SHADERMODE_LIGHTDIRECTION)
1948                         {
1949                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1950                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_modellight_diffuse[0], t->render_modellight_diffuse[1], t->render_modellight_diffuse[2]);
1951                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_modellight_specular[0], t->render_modellight_specular[1], t->render_modellight_specular[2]);
1952                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1953                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1954                                 if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1955                                 if (r_glsl_permutation->loc_LightDir >= 0) qglUniform3f(r_glsl_permutation->loc_LightDir, t->render_modellight_lightdir_local[0], t->render_modellight_lightdir_local[1], t->render_modellight_lightdir_local[2]);
1956                         }
1957                         else
1958                         {
1959                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1960                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1961                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1962                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1963                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1964                         }
1965                         // additive passes are only darkened by fog, not tinted
1966                         if (r_glsl_permutation->loc_FogColor >= 0 && !ui)
1967                         {
1968                                 if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACK0)
1969                                         qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1970                                 else
1971                                         qglUniform3f(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1972                         }
1973                         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * t->refractfactor, r_water_refractdistort.value * t->refractfactor, r_water_reflectdistort.value * t->reflectfactor, r_water_reflectdistort.value * t->reflectfactor);
1974                         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_fb.water.screenscale[0], r_fb.water.screenscale[1], r_fb.water.screenscale[0], r_fb.water.screenscale[1]);
1975                         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_fb.water.screencenter[0], r_fb.water.screencenter[1], r_fb.water.screencenter[0], r_fb.water.screencenter[1]);
1976                         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4f(r_glsl_permutation->loc_RefractColor, t->refractcolor4f[0], t->refractcolor4f[1], t->refractcolor4f[2], t->refractcolor4f[3] * t->currentalpha);
1977                         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4f(r_glsl_permutation->loc_ReflectColor, t->reflectcolor4f[0], t->reflectcolor4f[1], t->reflectcolor4f[2], t->reflectcolor4f[3] * t->currentalpha);
1978                         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectFactor, t->reflectmax - t->reflectmin);
1979                         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectOffset, t->reflectmin);
1980                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1981                         if (r_glsl_permutation->loc_NormalmapScrollBlend >= 0) qglUniform2f(r_glsl_permutation->loc_NormalmapScrollBlend, t->r_water_waterscroll[0], t->r_water_waterscroll[1]);
1982                 }
1983                 if (r_glsl_permutation->loc_TexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currenttexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_TexMatrix, 1, false, m16f);}
1984                 if (r_glsl_permutation->loc_BackgroundTexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currentbackgroundtexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BackgroundTexMatrix, 1, false, m16f);}
1985                 if (r_glsl_permutation->loc_ShadowMapMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ShadowMapMatrix, 1, false, m16f);}
1986                 if (permutation & SHADERPERMUTATION_SHADOWMAPORTHO)
1987                 {
1988                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_modelshadowmap_texturescale[0], r_shadow_modelshadowmap_texturescale[1], r_shadow_modelshadowmap_texturescale[2], r_shadow_modelshadowmap_texturescale[3]);
1989                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_modelshadowmap_parameters[0], r_shadow_modelshadowmap_parameters[1], r_shadow_modelshadowmap_parameters[2], r_shadow_modelshadowmap_parameters[3]);
1990                 }
1991                 else
1992                 {
1993                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
1994                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
1995                 }
1996
1997                 if (r_glsl_permutation->loc_Color_Glow >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Glow, t->render_glowmod[0], t->render_glowmod[1], t->render_glowmod[2]);
1998                 if (r_glsl_permutation->loc_Alpha >= 0) qglUniform1f(r_glsl_permutation->loc_Alpha, t->currentalpha * ((t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay) ? t->r_water_wateralpha : 1));
1999                 if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3f(r_glsl_permutation->loc_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]);
2000                 if (r_glsl_permutation->loc_Color_Pants >= 0)
2001                 {
2002                         if (t->pantstexture)
2003                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, t->render_colormap_pants[0], t->render_colormap_pants[1], t->render_colormap_pants[2]);
2004                         else
2005                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
2006                 }
2007                 if (r_glsl_permutation->loc_Color_Shirt >= 0)
2008                 {
2009                         if (t->shirttexture)
2010                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, t->render_colormap_shirt[0], t->render_colormap_shirt[1], t->render_colormap_shirt[2]);
2011                         else
2012                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
2013                 }
2014                 if (r_glsl_permutation->loc_FogPlane >= 0) qglUniform4f(r_glsl_permutation->loc_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]);
2015                 if (r_glsl_permutation->loc_FogPlaneViewDist >= 0) qglUniform1f(r_glsl_permutation->loc_FogPlaneViewDist, rsurface.fogplaneviewdist);
2016                 if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1f(r_glsl_permutation->loc_FogRangeRecip, rsurface.fograngerecip);
2017                 if (r_glsl_permutation->loc_FogHeightFade >= 0) qglUniform1f(r_glsl_permutation->loc_FogHeightFade, rsurface.fogheightfade);
2018                 if (r_glsl_permutation->loc_OffsetMapping_ScaleSteps >= 0) qglUniform4f(r_glsl_permutation->loc_OffsetMapping_ScaleSteps,
2019                                 r_glsl_offsetmapping_scale.value*t->offsetscale,
2020                                 max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2021                                 1.0 / max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2022                                 max(1, r_glsl_offsetmapping_reliefmapping_refinesteps.integer)
2023                         );
2024                 if (r_glsl_permutation->loc_OffsetMapping_LodDistance >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_LodDistance, r_glsl_offsetmapping_lod_distance.integer * r_refdef.view.quality);
2025                 if (r_glsl_permutation->loc_OffsetMapping_Bias >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_Bias, t->offsetbias);
2026                 if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2f(r_glsl_permutation->loc_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2027                 if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2028                 if (r_glsl_permutation->loc_BounceGridMatrix >= 0) {Matrix4x4_Concat(&tempmatrix, &r_shadow_bouncegrid_state.matrix, &rsurface.matrix);Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BounceGridMatrix, 1, false, m16f);}
2029                 if (r_glsl_permutation->loc_BounceGridIntensity >= 0) qglUniform1f(r_glsl_permutation->loc_BounceGridIntensity, r_shadow_bouncegrid_state.intensity*r_refdef.view.colorscale);
2030                 if (r_glsl_permutation->loc_LightGridMatrix >= 0 && r_refdef.scene.worldmodel)
2031                 {
2032                         float m9f[9];
2033                         Matrix4x4_Concat(&tempmatrix, &r_refdef.scene.worldmodel->brushq3.lightgridworldtotexturematrix, &rsurface.matrix);
2034                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2035                         qglUniformMatrix4fv(r_glsl_permutation->loc_LightGridMatrix, 1, false, m16f);
2036                         Matrix4x4_Normalize3(&tempmatrix, &rsurface.matrix);
2037                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2038                         m9f[0] = m16f[0];m9f[1] = m16f[1];m9f[2] = m16f[2];
2039                         m9f[3] = m16f[4];m9f[4] = m16f[5];m9f[5] = m16f[6];
2040                         m9f[6] = m16f[8];m9f[7] = m16f[9];m9f[8] = m16f[10];
2041                         qglUniformMatrix3fv(r_glsl_permutation->loc_LightGridNormalMatrix, 1, false, m9f);
2042                 }
2043
2044                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First            , r_texture_white                                     );
2045                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second           , r_texture_white                                     );
2046                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps       , r_texture_gammaramps                                );
2047                 if (r_glsl_permutation->tex_Texture_Normal          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Normal           , t->nmaptexture                       );
2048                 if (r_glsl_permutation->tex_Texture_Color           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Color            , t->basetexture                       );
2049                 if (r_glsl_permutation->tex_Texture_Gloss           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Gloss            , t->glosstexture                      );
2050                 if (r_glsl_permutation->tex_Texture_Glow            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Glow             , t->glowtexture                       );
2051                 if (r_glsl_permutation->tex_Texture_SecondaryNormal >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryNormal  , t->backgroundnmaptexture             );
2052                 if (r_glsl_permutation->tex_Texture_SecondaryColor  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryColor   , t->backgroundbasetexture             );
2053                 if (r_glsl_permutation->tex_Texture_SecondaryGloss  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGloss   , t->backgroundglosstexture            );
2054                 if (r_glsl_permutation->tex_Texture_SecondaryGlow   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGlow    , t->backgroundglowtexture             );
2055                 if (r_glsl_permutation->tex_Texture_Pants           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Pants            , t->pantstexture                      );
2056                 if (r_glsl_permutation->tex_Texture_Shirt           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Shirt            , t->shirttexture                      );
2057                 if (r_glsl_permutation->tex_Texture_ReflectMask     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectMask      , t->reflectmasktexture                );
2058                 if (r_glsl_permutation->tex_Texture_ReflectCube     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectCube      , t->reflectcubetexture ? t->reflectcubetexture : r_texture_whitecube);
2059                 if (r_glsl_permutation->tex_Texture_FogHeightTexture>= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogHeightTexture , r_texture_fogheighttexture                          );
2060                 if (r_glsl_permutation->tex_Texture_FogMask         >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogMask          , r_texture_fogattenuation                            );
2061                 if (r_glsl_permutation->tex_Texture_Lightmap        >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Lightmap         , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white);
2062                 if (r_glsl_permutation->tex_Texture_Deluxemap       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Deluxemap        , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap);
2063                 if (r_glsl_permutation->tex_Texture_Attenuation     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation      , r_shadow_attenuationgradienttexture                 );
2064                 if (rsurfacepass == RSURFPASS_BACKGROUND)
2065                 {
2066                         if (r_glsl_permutation->tex_Texture_Refraction  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Refraction        , waterplane->rt_refraction ? waterplane->rt_refraction->colortexture[0] : r_texture_black);
2067                         if (r_glsl_permutation->tex_Texture_First       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First             , waterplane->rt_camera ? waterplane->rt_camera->colortexture[0] : r_texture_black);
2068                         if (r_glsl_permutation->tex_Texture_Reflection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2069                 }
2070                 else
2071                 {
2072                         if (r_glsl_permutation->tex_Texture_Reflection >= 0 && waterplane) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2073                 }
2074                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap   , r_shadow_prepassgeometrynormalmaptexture            );
2075                 if (r_glsl_permutation->tex_Texture_ScreenDiffuse   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenDiffuse     , r_shadow_prepasslightingdiffusetexture              );
2076                 if (r_glsl_permutation->tex_Texture_ScreenSpecular  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenSpecular    , r_shadow_prepasslightingspeculartexture             );
2077                 if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)))
2078                 {
2079                         if (r_glsl_permutation->tex_Texture_ShadowMap2D     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D, r_shadow_shadowmap2ddepthtexture                           );
2080                         if (rsurface.rtlight)
2081                         {
2082                                 if (r_glsl_permutation->tex_Texture_Cube            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube              , rsurface.rtlight->currentcubemap                    );
2083                                 if (r_glsl_permutation->tex_Texture_CubeProjection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection    , r_shadow_shadowmapvsdcttexture                      );
2084                         }
2085                 }
2086                 if (r_glsl_permutation->tex_Texture_BounceGrid  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_BounceGrid, r_shadow_bouncegrid_state.texture);
2087                 if (r_glsl_permutation->tex_Texture_LightGrid   >= 0 && r_refdef.scene.worldmodel) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_LightGrid, r_refdef.scene.worldmodel->brushq3.lightgridtexture);
2088                 CHECKGLERROR
2089                 break;
2090         }
2091 }
2092
2093 void R_SetupShader_DeferredLight(const rtlight_t *rtlight)
2094 {
2095         // select a permutation of the lighting shader appropriate to this
2096         // combination of texture, entity, light source, and fogging, only use the
2097         // minimum features necessary to avoid wasting rendering time in the
2098         // fragment shader on features that are not being used
2099         uint64_t permutation = 0;
2100         unsigned int mode = 0;
2101         const float *lightcolorbase = rtlight->currentcolor;
2102         float ambientscale = rtlight->ambientscale;
2103         float diffusescale = rtlight->diffusescale;
2104         float specularscale = rtlight->specularscale;
2105         // this is the location of the light in view space
2106         vec3_t viewlightorigin;
2107         // this transforms from view space (camera) to light space (cubemap)
2108         matrix4x4_t viewtolight;
2109         matrix4x4_t lighttoview;
2110         float viewtolight16f[16];
2111         // light source
2112         mode = SHADERMODE_DEFERREDLIGHTSOURCE;
2113         if (rtlight->currentcubemap != r_texture_whitecube)
2114                 permutation |= SHADERPERMUTATION_CUBEFILTER;
2115         if (diffusescale > 0)
2116                 permutation |= SHADERPERMUTATION_DIFFUSE;
2117         if (specularscale > 0 && r_shadow_gloss.integer > 0)
2118                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
2119         if (r_shadow_usingshadowmap2d)
2120         {
2121                 permutation |= SHADERPERMUTATION_SHADOWMAP2D;
2122                 if (r_shadow_shadowmapvsdct)
2123                         permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
2124
2125                 if (r_shadow_shadowmap2ddepthbuffer)
2126                         permutation |= SHADERPERMUTATION_DEPTHRGB;
2127         }
2128         if (vid.allowalphatocoverage)
2129                 GL_AlphaToCoverage(false);
2130         Matrix4x4_Transform(&r_refdef.view.viewport.viewmatrix, rtlight->shadoworigin, viewlightorigin);
2131         Matrix4x4_Concat(&lighttoview, &r_refdef.view.viewport.viewmatrix, &rtlight->matrix_lighttoworld);
2132         Matrix4x4_Invert_Full(&viewtolight, &lighttoview);
2133         Matrix4x4_ToArrayFloatGL(&viewtolight, viewtolight16f);
2134         switch(vid.renderpath)
2135         {
2136         case RENDERPATH_GL32:
2137         case RENDERPATH_GLES2:
2138                 R_SetupShader_SetPermutationGLSL(mode, permutation);
2139                 if (r_glsl_permutation->loc_LightPosition             >= 0) qglUniform3f(       r_glsl_permutation->loc_LightPosition            , viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]);
2140                 if (r_glsl_permutation->loc_ViewToLight               >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ViewToLight              , 1, false, viewtolight16f);
2141                 if (r_glsl_permutation->loc_DeferredColor_Ambient     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Ambient    , lightcolorbase[0] * ambientscale , lightcolorbase[1] * ambientscale , lightcolorbase[2] * ambientscale );
2142                 if (r_glsl_permutation->loc_DeferredColor_Diffuse     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Diffuse    , lightcolorbase[0] * diffusescale , lightcolorbase[1] * diffusescale , lightcolorbase[2] * diffusescale );
2143                 if (r_glsl_permutation->loc_DeferredColor_Specular    >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Specular   , lightcolorbase[0] * specularscale, lightcolorbase[1] * specularscale, lightcolorbase[2] * specularscale);
2144                 if (r_glsl_permutation->loc_ShadowMap_TextureScale    >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_TextureScale   , r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
2145                 if (r_glsl_permutation->loc_ShadowMap_Parameters      >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_Parameters     , r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
2146                 if (r_glsl_permutation->loc_SpecularPower             >= 0) qglUniform1f(       r_glsl_permutation->loc_SpecularPower            , (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
2147                 if (r_glsl_permutation->loc_ScreenToDepth             >= 0) qglUniform2f(       r_glsl_permutation->loc_ScreenToDepth            , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2148                 if (r_glsl_permutation->loc_PixelToScreenTexCoord     >= 0) qglUniform2f(       r_glsl_permutation->loc_PixelToScreenTexCoord    , 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2149
2150                 if (r_glsl_permutation->tex_Texture_Attenuation       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation        , r_shadow_attenuationgradienttexture                 );
2151                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap    , r_shadow_prepassgeometrynormalmaptexture            );
2152                 if (r_glsl_permutation->tex_Texture_Cube              >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube               , rsurface.rtlight->currentcubemap                    );
2153                 if (r_glsl_permutation->tex_Texture_ShadowMap2D       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D        , r_shadow_shadowmap2ddepthtexture                    );
2154                 if (r_glsl_permutation->tex_Texture_CubeProjection    >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection     , r_shadow_shadowmapvsdcttexture                      );
2155                 break;
2156         }
2157 }
2158
2159 #define SKINFRAME_HASH 1024
2160
2161 typedef struct
2162 {
2163         unsigned int loadsequence; // incremented each level change
2164         memexpandablearray_t array;
2165         skinframe_t *hash[SKINFRAME_HASH];
2166 }
2167 r_skinframe_t;
2168 r_skinframe_t r_skinframe;
2169
2170 void R_SkinFrame_PrepareForPurge(void)
2171 {
2172         r_skinframe.loadsequence++;
2173         // wrap it without hitting zero
2174         if (r_skinframe.loadsequence >= 200)
2175                 r_skinframe.loadsequence = 1;
2176 }
2177
2178 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
2179 {
2180         if (!skinframe)
2181                 return;
2182         // mark the skinframe as used for the purging code
2183         skinframe->loadsequence = r_skinframe.loadsequence;
2184 }
2185
2186 void R_SkinFrame_PurgeSkinFrame(skinframe_t *s)
2187 {
2188         if (s == NULL)
2189                 return;
2190         if (s->merged == s->base)
2191                 s->merged = NULL;
2192         R_PurgeTexture(s->stain); s->stain = NULL;
2193         R_PurgeTexture(s->merged); s->merged = NULL;
2194         R_PurgeTexture(s->base); s->base = NULL;
2195         R_PurgeTexture(s->pants); s->pants = NULL;
2196         R_PurgeTexture(s->shirt); s->shirt = NULL;
2197         R_PurgeTexture(s->nmap); s->nmap = NULL;
2198         R_PurgeTexture(s->gloss); s->gloss = NULL;
2199         R_PurgeTexture(s->glow); s->glow = NULL;
2200         R_PurgeTexture(s->fog); s->fog = NULL;
2201         R_PurgeTexture(s->reflect); s->reflect = NULL;
2202         s->loadsequence = 0;
2203 }
2204
2205 void R_SkinFrame_Purge(void)
2206 {
2207         int i;
2208         skinframe_t *s;
2209         for (i = 0;i < SKINFRAME_HASH;i++)
2210         {
2211                 for (s = r_skinframe.hash[i];s;s = s->next)
2212                 {
2213                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
2214                                 R_SkinFrame_PurgeSkinFrame(s);
2215                 }
2216         }
2217 }
2218
2219 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
2220         skinframe_t *item;
2221         char basename[MAX_QPATH];
2222
2223         Image_StripImageExtension(name, basename, sizeof(basename));
2224
2225         if( last == NULL ) {
2226                 int hashindex;
2227                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2228                 item = r_skinframe.hash[hashindex];
2229         } else {
2230                 item = last->next;
2231         }
2232
2233         // linearly search through the hash bucket
2234         for( ; item ; item = item->next ) {
2235                 if( !strcmp( item->basename, basename ) ) {
2236                         return item;
2237                 }
2238         }
2239         return NULL;
2240 }
2241
2242 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qbool add)
2243 {
2244         skinframe_t *item;
2245         int compareflags = textureflags & TEXF_IMPORTANTBITS;
2246         int hashindex;
2247         char basename[MAX_QPATH];
2248
2249         Image_StripImageExtension(name, basename, sizeof(basename));
2250
2251         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2252         for (item = r_skinframe.hash[hashindex];item;item = item->next)
2253                 if (!strcmp(item->basename, basename) &&
2254                         item->textureflags == compareflags &&
2255                         item->comparewidth == comparewidth &&
2256                         item->compareheight == compareheight &&
2257                         item->comparecrc == comparecrc)
2258                         break;
2259
2260         if (!item)
2261         {
2262                 if (!add)
2263                         return NULL;
2264                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
2265                 memset(item, 0, sizeof(*item));
2266                 strlcpy(item->basename, basename, sizeof(item->basename));
2267                 item->textureflags = compareflags;
2268                 item->comparewidth = comparewidth;
2269                 item->compareheight = compareheight;
2270                 item->comparecrc = comparecrc;
2271                 item->next = r_skinframe.hash[hashindex];
2272                 r_skinframe.hash[hashindex] = item;
2273         }
2274         else if (textureflags & TEXF_FORCE_RELOAD)
2275                 R_SkinFrame_PurgeSkinFrame(item);
2276
2277         R_SkinFrame_MarkUsed(item);
2278         return item;
2279 }
2280
2281 #define R_SKINFRAME_LOAD_AVERAGE_COLORS(cnt, getpixel) \
2282         { \
2283                 unsigned long long avgcolor[5], wsum; \
2284                 int pix, comp, w; \
2285                 avgcolor[0] = 0; \
2286                 avgcolor[1] = 0; \
2287                 avgcolor[2] = 0; \
2288                 avgcolor[3] = 0; \
2289                 avgcolor[4] = 0; \
2290                 wsum = 0; \
2291                 for(pix = 0; pix < cnt; ++pix) \
2292                 { \
2293                         w = 0; \
2294                         for(comp = 0; comp < 3; ++comp) \
2295                                 w += getpixel; \
2296                         if(w) /* ignore perfectly black pixels because that is better for model skins */ \
2297                         { \
2298                                 ++wsum; \
2299                                 /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2300                                 w = getpixel; \
2301                                 for(comp = 0; comp < 3; ++comp) \
2302                                         avgcolor[comp] += getpixel * w; \
2303                                 avgcolor[3] += w; \
2304                         } \
2305                         /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2306                         avgcolor[4] += getpixel; \
2307                 } \
2308                 if(avgcolor[3] == 0) /* no pixels seen? even worse */ \
2309                         avgcolor[3] = 1; \
2310                 skinframe->avgcolor[0] = avgcolor[2] / (255.0 * avgcolor[3]); \
2311                 skinframe->avgcolor[1] = avgcolor[1] / (255.0 * avgcolor[3]); \
2312                 skinframe->avgcolor[2] = avgcolor[0] / (255.0 * avgcolor[3]); \
2313                 skinframe->avgcolor[3] = avgcolor[4] / (255.0 * cnt); \
2314         }
2315
2316 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2317 {
2318         skinframe_t *skinframe;
2319
2320         if (cls.state == ca_dedicated)
2321                 return NULL;
2322
2323         // return an existing skinframe if already loaded
2324         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
2325         if (skinframe && skinframe->base)
2326                 return skinframe;
2327
2328         // if the skinframe doesn't exist this will create it
2329         return R_SkinFrame_LoadExternal_SkinFrame(skinframe, name, textureflags, complain, fallbacknotexture);
2330 }
2331
2332 extern cvar_t gl_picmip;
2333 skinframe_t *R_SkinFrame_LoadExternal_SkinFrame(skinframe_t *skinframe, const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2334 {
2335         int j;
2336         unsigned char *pixels;
2337         unsigned char *bumppixels;
2338         unsigned char *basepixels = NULL;
2339         int basepixels_width = 0;
2340         int basepixels_height = 0;
2341         rtexture_t *ddsbase = NULL;
2342         qbool ddshasalpha = false;
2343         float ddsavgcolor[4];
2344         char basename[MAX_QPATH];
2345         int miplevel = R_PicmipForFlags(textureflags);
2346         int savemiplevel = miplevel;
2347         int mymiplevel;
2348         char vabuf[1024];
2349
2350         if (cls.state == ca_dedicated)
2351                 return NULL;
2352
2353         Image_StripImageExtension(name, basename, sizeof(basename));
2354
2355         // check for DDS texture file first
2356         if (!r_loaddds || !(ddsbase = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s.dds", basename), vid.sRGB3D, textureflags, &ddshasalpha, ddsavgcolor, miplevel, false)))
2357         {
2358                 basepixels = loadimagepixelsbgra(name, complain, true, false, &miplevel);
2359                 if (basepixels == NULL && fallbacknotexture)
2360                         basepixels = Image_GenerateNoTexture();
2361                 if (basepixels == NULL)
2362                         return NULL;
2363         }
2364
2365         // FIXME handle miplevel
2366
2367         if (developer_loading.integer)
2368                 Con_Printf("loading skin \"%s\"\n", name);
2369
2370         // we've got some pixels to store, so really allocate this new texture now
2371         if (!skinframe)
2372                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
2373         textureflags &= ~TEXF_FORCE_RELOAD;
2374         skinframe->stain = NULL;
2375         skinframe->merged = NULL;
2376         skinframe->base = NULL;
2377         skinframe->pants = NULL;
2378         skinframe->shirt = NULL;
2379         skinframe->nmap = NULL;
2380         skinframe->gloss = NULL;
2381         skinframe->glow = NULL;
2382         skinframe->fog = NULL;
2383         skinframe->reflect = NULL;
2384         skinframe->hasalpha = false;
2385         // we could store the q2animname here too
2386
2387         if (ddsbase)
2388         {
2389                 skinframe->base = ddsbase;
2390                 skinframe->hasalpha = ddshasalpha;
2391                 VectorCopy(ddsavgcolor, skinframe->avgcolor);
2392                 if (r_loadfog && skinframe->hasalpha)
2393                         skinframe->fog = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), false, textureflags | TEXF_ALPHA, NULL, NULL, miplevel, true);
2394                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2395         }
2396         else
2397         {
2398                 basepixels_width = image_width;
2399                 basepixels_height = image_height;
2400                 skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2401                 if (textureflags & TEXF_ALPHA)
2402                 {
2403                         for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
2404                         {
2405                                 if (basepixels[j] < 255)
2406                                 {
2407                                         skinframe->hasalpha = true;
2408                                         break;
2409                                 }
2410                         }
2411                         if (r_loadfog && skinframe->hasalpha)
2412                         {
2413                                 // has transparent pixels
2414                                 pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2415                                 for (j = 0;j < image_width * image_height * 4;j += 4)
2416                                 {
2417                                         pixels[j+0] = 255;
2418                                         pixels[j+1] = 255;
2419                                         pixels[j+2] = 255;
2420                                         pixels[j+3] = basepixels[j+3];
2421                                 }
2422                                 skinframe->fog = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2423                                 Mem_Free(pixels);
2424                         }
2425                 }
2426                 R_SKINFRAME_LOAD_AVERAGE_COLORS(basepixels_width * basepixels_height, basepixels[4 * pix + comp]);
2427 #ifndef USE_GLES2
2428                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2429                 if (r_savedds && skinframe->base)
2430                         R_SaveTextureDDSFile(skinframe->base, va(vabuf, sizeof(vabuf), "dds/%s.dds", skinframe->basename), r_texture_dds_save.integer < 2, skinframe->hasalpha);
2431                 if (r_savedds && skinframe->fog)
2432                         R_SaveTextureDDSFile(skinframe->fog, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2433 #endif
2434         }
2435
2436         if (r_loaddds)
2437         {
2438                 mymiplevel = savemiplevel;
2439                 if (r_loadnormalmap)
2440                         skinframe->nmap = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), false, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), NULL, NULL, mymiplevel, true);
2441                 skinframe->glow = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2442                 if (r_loadgloss)
2443                         skinframe->gloss = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2444                 skinframe->pants = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2445                 skinframe->shirt = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2446                 skinframe->reflect = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2447         }
2448
2449         // _norm is the name used by tenebrae and has been adopted as standard
2450         if (r_loadnormalmap && skinframe->nmap == NULL)
2451         {
2452                 mymiplevel = savemiplevel;
2453                 if ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_norm", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2454                 {
2455                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2456                         Mem_Free(pixels);
2457                         pixels = NULL;
2458                 }
2459                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_bump", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2460                 {
2461                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2462                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
2463                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2464                         Mem_Free(pixels);
2465                         Mem_Free(bumppixels);
2466                 }
2467                 else if (r_shadow_bumpscale_basetexture.value > 0)
2468                 {
2469                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
2470                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
2471                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2472                         Mem_Free(pixels);
2473                 }
2474 #ifndef USE_GLES2
2475                 if (r_savedds && skinframe->nmap)
2476                         R_SaveTextureDDSFile(skinframe->nmap, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2477 #endif
2478         }
2479
2480         // _luma is supported only for tenebrae compatibility
2481         // _blend and .blend are supported only for Q3 & QL compatibility, this hack can be removed if better Q3 shader support is implemented
2482         // _glow is the preferred name
2483         mymiplevel = savemiplevel;
2484         if (skinframe->glow == NULL && ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s.blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_luma", skinframe->basename), false, false, false, &mymiplevel))))
2485         {
2486                 skinframe->glow = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_glow.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2487 #ifndef USE_GLES2
2488                 if (r_savedds && skinframe->glow)
2489                         R_SaveTextureDDSFile(skinframe->glow, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2490 #endif
2491                 Mem_Free(pixels);pixels = NULL;
2492         }
2493
2494         mymiplevel = savemiplevel;
2495         if (skinframe->gloss == NULL && r_loadgloss && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), false, false, false, &mymiplevel)))
2496         {
2497                 skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (gl_texturecompression_gloss.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2498 #ifndef USE_GLES2
2499                 if (r_savedds && skinframe->gloss)
2500                         R_SaveTextureDDSFile(skinframe->gloss, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2501 #endif
2502                 Mem_Free(pixels);
2503                 pixels = NULL;
2504         }
2505
2506         mymiplevel = savemiplevel;
2507         if (skinframe->pants == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), false, false, false, &mymiplevel)))
2508         {
2509                 skinframe->pants = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2510 #ifndef USE_GLES2
2511                 if (r_savedds && skinframe->pants)
2512                         R_SaveTextureDDSFile(skinframe->pants, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2513 #endif
2514                 Mem_Free(pixels);
2515                 pixels = NULL;
2516         }
2517
2518         mymiplevel = savemiplevel;
2519         if (skinframe->shirt == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), false, false, false, &mymiplevel)))
2520         {
2521                 skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2522 #ifndef USE_GLES2
2523                 if (r_savedds && skinframe->shirt)
2524                         R_SaveTextureDDSFile(skinframe->shirt, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2525 #endif
2526                 Mem_Free(pixels);
2527                 pixels = NULL;
2528         }
2529
2530         mymiplevel = savemiplevel;
2531         if (skinframe->reflect == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), false, false, false, &mymiplevel)))
2532         {
2533                 skinframe->reflect = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_reflectmask.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2534 #ifndef USE_GLES2
2535                 if (r_savedds && skinframe->reflect)
2536                         R_SaveTextureDDSFile(skinframe->reflect, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2537 #endif
2538                 Mem_Free(pixels);
2539                 pixels = NULL;
2540         }
2541
2542         if (basepixels)
2543                 Mem_Free(basepixels);
2544
2545         return skinframe;
2546 }
2547
2548 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height, int comparewidth, int compareheight, int comparecrc, qbool sRGB)
2549 {
2550         int i;
2551         skinframe_t *skinframe;
2552         char vabuf[1024];
2553
2554         if (cls.state == ca_dedicated)
2555                 return NULL;
2556
2557         // if already loaded just return it, otherwise make a new skinframe
2558         skinframe = R_SkinFrame_Find(name, textureflags, comparewidth, compareheight, comparecrc, true);
2559         if (skinframe->base)
2560                 return skinframe;
2561         textureflags &= ~TEXF_FORCE_RELOAD;
2562
2563         skinframe->stain = NULL;
2564         skinframe->merged = NULL;
2565         skinframe->base = NULL;
2566         skinframe->pants = NULL;
2567         skinframe->shirt = NULL;
2568         skinframe->nmap = NULL;
2569         skinframe->gloss = NULL;
2570         skinframe->glow = NULL;
2571         skinframe->fog = NULL;
2572         skinframe->reflect = NULL;
2573         skinframe->hasalpha = false;
2574
2575         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2576         if (!skindata)
2577                 return NULL;
2578
2579         if (developer_loading.integer)
2580                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2581
2582         if (r_loadnormalmap && r_shadow_bumpscale_basetexture.value > 0)
2583         {
2584                 unsigned char *a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2585                 unsigned char *b = a + width * height * 4;
2586                 Image_HeightmapToNormalmap_BGRA(skindata, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2587                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2588                 Mem_Free(a);
2589         }
2590         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, sRGB ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags, -1, NULL);
2591         if (textureflags & TEXF_ALPHA)
2592         {
2593                 for (i = 3;i < width * height * 4;i += 4)
2594                 {
2595                         if (skindata[i] < 255)
2596                         {
2597                                 skinframe->hasalpha = true;
2598                                 break;
2599                         }
2600                 }
2601                 if (r_loadfog && skinframe->hasalpha)
2602                 {
2603                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2604                         memcpy(fogpixels, skindata, width * height * 4);
2605                         for (i = 0;i < width * height * 4;i += 4)
2606                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2607                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, textureflags, -1, NULL);
2608                         Mem_Free(fogpixels);
2609                 }
2610         }
2611
2612         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, skindata[4 * pix + comp]);
2613         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2614
2615         return skinframe;
2616 }
2617
2618 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2619 {
2620         int i;
2621         int featuresmask;
2622         skinframe_t *skinframe;
2623
2624         if (cls.state == ca_dedicated)
2625                 return NULL;
2626
2627         // if already loaded just return it, otherwise make a new skinframe
2628         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2629         if (skinframe->base)
2630                 return skinframe;
2631         //textureflags &= ~TEXF_FORCE_RELOAD;
2632
2633         skinframe->stain = NULL;
2634         skinframe->merged = NULL;
2635         skinframe->base = NULL;
2636         skinframe->pants = NULL;
2637         skinframe->shirt = NULL;
2638         skinframe->nmap = NULL;
2639         skinframe->gloss = NULL;
2640         skinframe->glow = NULL;
2641         skinframe->fog = NULL;
2642         skinframe->reflect = NULL;
2643         skinframe->hasalpha = false;
2644
2645         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2646         if (!skindata)
2647                 return NULL;
2648
2649         if (developer_loading.integer)
2650                 Con_Printf("loading quake skin \"%s\"\n", name);
2651
2652         // we actually don't upload anything until the first use, because mdl skins frequently go unused, and are almost never used in both modes (colormapped and non-colormapped)
2653         skinframe->qpixels = (unsigned char *)Mem_Alloc(r_main_mempool, width*height); // FIXME LEAK
2654         memcpy(skinframe->qpixels, skindata, width*height);
2655         skinframe->qwidth = width;
2656         skinframe->qheight = height;
2657
2658         featuresmask = 0;
2659         for (i = 0;i < width * height;i++)
2660                 featuresmask |= palette_featureflags[skindata[i]];
2661
2662         skinframe->hasalpha = false;
2663         // fence textures
2664         if (name[0] == '{')
2665                 skinframe->hasalpha = true;
2666         skinframe->qhascolormapping = loadpantsandshirt && (featuresmask & (PALETTEFEATURE_PANTS | PALETTEFEATURE_SHIRT));
2667         skinframe->qgeneratenmap = r_shadow_bumpscale_basetexture.value > 0;
2668         skinframe->qgeneratemerged = true;
2669         skinframe->qgeneratebase = skinframe->qhascolormapping;
2670         skinframe->qgenerateglow = loadglowtexture && (featuresmask & PALETTEFEATURE_GLOW);
2671
2672         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette_bgra_complete)[skindata[pix]*4 + comp]);
2673         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2674
2675         return skinframe;
2676 }
2677
2678 static void R_SkinFrame_GenerateTexturesFromQPixels(skinframe_t *skinframe, qbool colormapped)
2679 {
2680         int width;
2681         int height;
2682         unsigned char *skindata;
2683         char vabuf[1024];
2684
2685         if (!skinframe->qpixels)
2686                 return;
2687
2688         if (!skinframe->qhascolormapping)
2689                 colormapped = false;
2690
2691         if (colormapped)
2692         {
2693                 if (!skinframe->qgeneratebase)
2694                         return;
2695         }
2696         else
2697         {
2698                 if (!skinframe->qgeneratemerged)
2699                         return;
2700         }
2701
2702         width = skinframe->qwidth;
2703         height = skinframe->qheight;
2704         skindata = skinframe->qpixels;
2705
2706         if (skinframe->qgeneratenmap)
2707         {
2708                 unsigned char *a, *b;
2709                 skinframe->qgeneratenmap = false;
2710                 a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2711                 b = a + width * height * 4;
2712                 // use either a custom palette or the quake palette
2713                 Image_Copy8bitBGRA(skindata, a, width * height, palette_bgra_complete);
2714                 Image_HeightmapToNormalmap_BGRA(a, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2715                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (skinframe->textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2716                 Mem_Free(a);
2717         }
2718
2719         if (skinframe->qgenerateglow)
2720         {
2721                 skinframe->qgenerateglow = false;
2722                 if (skinframe->hasalpha) // fence textures
2723                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, palette_bgra_onlyfullbrights_transparent); // glow
2724                 else
2725                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_onlyfullbrights); // glow
2726         }
2727
2728         if (colormapped)
2729         {
2730                 skinframe->qgeneratebase = false;
2731                 skinframe->base  = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nospecial", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap);
2732                 skinframe->pants = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_pantsaswhite);
2733                 skinframe->shirt = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_shirtaswhite);
2734         }
2735         else
2736         {
2737                 skinframe->qgeneratemerged = false;
2738                 if (skinframe->hasalpha) // fence textures
2739                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, skinframe->glow ? palette_bgra_nofullbrights_transparent : palette_bgra_transparent);
2740                 else
2741                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nofullbrights : palette_bgra_complete);
2742         }
2743
2744         if (!skinframe->qgeneratemerged && !skinframe->qgeneratebase)
2745         {
2746                 Mem_Free(skinframe->qpixels);
2747                 skinframe->qpixels = NULL;
2748         }
2749 }
2750
2751 skinframe_t *R_SkinFrame_LoadInternal8bit(const char *name, int textureflags, const unsigned char *skindata, int width, int height, const unsigned int *palette, const unsigned int *alphapalette)
2752 {
2753         int i;
2754         skinframe_t *skinframe;
2755         char vabuf[1024];
2756
2757         if (cls.state == ca_dedicated)
2758                 return NULL;
2759
2760         // if already loaded just return it, otherwise make a new skinframe
2761         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2762         if (skinframe->base)
2763                 return skinframe;
2764         textureflags &= ~TEXF_FORCE_RELOAD;
2765
2766         skinframe->stain = NULL;
2767         skinframe->merged = NULL;
2768         skinframe->base = NULL;
2769         skinframe->pants = NULL;
2770         skinframe->shirt = NULL;
2771         skinframe->nmap = NULL;
2772         skinframe->gloss = NULL;
2773         skinframe->glow = NULL;
2774         skinframe->fog = NULL;
2775         skinframe->reflect = NULL;
2776         skinframe->hasalpha = false;
2777
2778         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2779         if (!skindata)
2780                 return NULL;
2781
2782         if (developer_loading.integer)
2783                 Con_Printf("loading embedded 8bit image \"%s\"\n", name);
2784
2785         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, palette);
2786         if ((textureflags & TEXF_ALPHA) && alphapalette)
2787         {
2788                 for (i = 0;i < width * height;i++)
2789                 {
2790                         if (((unsigned char *)palette)[skindata[i]*4+3] < 255)
2791                         {
2792                                 skinframe->hasalpha = true;
2793                                 break;
2794                         }
2795                 }
2796                 if (r_loadfog && skinframe->hasalpha)
2797                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, alphapalette);
2798         }
2799
2800         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette)[skindata[pix]*4 + comp]);
2801         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2802
2803         return skinframe;
2804 }
2805
2806 skinframe_t *R_SkinFrame_LoadMissing(void)
2807 {
2808         skinframe_t *skinframe;
2809
2810         if (cls.state == ca_dedicated)
2811                 return NULL;
2812
2813         skinframe = R_SkinFrame_Find("missing", TEXF_FORCENEAREST, 0, 0, 0, true);
2814         skinframe->stain = NULL;
2815         skinframe->merged = NULL;
2816         skinframe->base = NULL;
2817         skinframe->pants = NULL;
2818         skinframe->shirt = NULL;
2819         skinframe->nmap = NULL;
2820         skinframe->gloss = NULL;
2821         skinframe->glow = NULL;
2822         skinframe->fog = NULL;
2823         skinframe->reflect = NULL;
2824         skinframe->hasalpha = false;
2825
2826         skinframe->avgcolor[0] = rand() / RAND_MAX;
2827         skinframe->avgcolor[1] = rand() / RAND_MAX;
2828         skinframe->avgcolor[2] = rand() / RAND_MAX;
2829         skinframe->avgcolor[3] = 1;
2830
2831         return skinframe;
2832 }
2833
2834 skinframe_t *R_SkinFrame_LoadNoTexture(void)
2835 {
2836         if (cls.state == ca_dedicated)
2837                 return NULL;
2838
2839         return R_SkinFrame_LoadInternalBGRA("notexture", TEXF_FORCENEAREST, Image_GenerateNoTexture(), 16, 16, 0, 0, 0, false);
2840 }
2841
2842 skinframe_t *R_SkinFrame_LoadInternalUsingTexture(const char *name, int textureflags, rtexture_t *tex, int width, int height, qbool sRGB)
2843 {
2844         skinframe_t *skinframe;
2845         if (cls.state == ca_dedicated)
2846                 return NULL;
2847         // if already loaded just return it, otherwise make a new skinframe
2848         skinframe = R_SkinFrame_Find(name, textureflags, width, height, 0, true);
2849         if (skinframe->base)
2850                 return skinframe;
2851         textureflags &= ~TEXF_FORCE_RELOAD;
2852         skinframe->stain = NULL;
2853         skinframe->merged = NULL;
2854         skinframe->base = NULL;
2855         skinframe->pants = NULL;
2856         skinframe->shirt = NULL;
2857         skinframe->nmap = NULL;
2858         skinframe->gloss = NULL;
2859         skinframe->glow = NULL;
2860         skinframe->fog = NULL;
2861         skinframe->reflect = NULL;
2862         skinframe->hasalpha = (textureflags & TEXF_ALPHA) != 0;
2863         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2864         if (!tex)
2865                 return NULL;
2866         if (developer_loading.integer)
2867                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2868         skinframe->base = skinframe->merged = tex;
2869         Vector4Set(skinframe->avgcolor, 1, 1, 1, 1); // bogus placeholder
2870         return skinframe;
2871 }
2872
2873 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
2874 typedef struct suffixinfo_s
2875 {
2876         const char *suffix;
2877         qbool flipx, flipy, flipdiagonal;
2878 }
2879 suffixinfo_t;
2880 static suffixinfo_t suffix[3][6] =
2881 {
2882         {
2883                 {"px",   false, false, false},
2884                 {"nx",   false, false, false},
2885                 {"py",   false, false, false},
2886                 {"ny",   false, false, false},
2887                 {"pz",   false, false, false},
2888                 {"nz",   false, false, false}
2889         },
2890         {
2891                 {"posx", false, false, false},
2892                 {"negx", false, false, false},
2893                 {"posy", false, false, false},
2894                 {"negy", false, false, false},
2895                 {"posz", false, false, false},
2896                 {"negz", false, false, false}
2897         },
2898         {
2899                 {"rt",    true, false,  true},
2900                 {"lf",   false,  true,  true},
2901                 {"ft",    true,  true, false},
2902                 {"bk",   false, false, false},
2903                 {"up",    true, false,  true},
2904                 {"dn",    true, false,  true}
2905         }
2906 };
2907
2908 static int componentorder[4] = {0, 1, 2, 3};
2909
2910 static rtexture_t *R_LoadCubemap(const char *basename)
2911 {
2912         int i, j, cubemapsize, forcefilter;
2913         unsigned char *cubemappixels, *image_buffer;
2914         rtexture_t *cubemaptexture;
2915         char name[256];
2916
2917         // HACK: if the cubemap name starts with a !, the cubemap is nearest-filtered
2918         forcefilter = TEXF_FORCELINEAR;
2919         if (basename && basename[0] == '!')
2920         {
2921                 basename++;
2922                 forcefilter = TEXF_FORCENEAREST;
2923         }
2924         // must start 0 so the first loadimagepixels has no requested width/height
2925         cubemapsize = 0;
2926         cubemappixels = NULL;
2927         cubemaptexture = NULL;
2928         // keep trying different suffix groups (posx, px, rt) until one loads
2929         for (j = 0;j < 3 && !cubemappixels;j++)
2930         {
2931                 // load the 6 images in the suffix group
2932                 for (i = 0;i < 6;i++)
2933                 {
2934                         // generate an image name based on the base and and suffix
2935                         dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix);
2936                         // load it
2937                         if ((image_buffer = loadimagepixelsbgra(name, false, false, false, NULL)))
2938                         {
2939                                 // an image loaded, make sure width and height are equal
2940                                 if (image_width == image_height && (!cubemappixels || image_width == cubemapsize))
2941                                 {
2942                                         // if this is the first image to load successfully, allocate the cubemap memory
2943                                         if (!cubemappixels && image_width >= 1)
2944                                         {
2945                                                 cubemapsize = image_width;
2946                                                 // note this clears to black, so unavailable sides are black
2947                                                 cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4);
2948                                         }
2949                                         // copy the image with any flipping needed by the suffix (px and posx types don't need flipping)
2950                                         if (cubemappixels)
2951                                                 Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_buffer, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder);
2952                                 }
2953                                 else
2954                                         Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height);
2955                                 // free the image
2956                                 Mem_Free(image_buffer);
2957                         }
2958                 }
2959         }
2960         // if a cubemap loaded, upload it
2961         if (cubemappixels)
2962         {
2963                 if (developer_loading.integer)
2964                         Con_Printf("loading cubemap \"%s\"\n", basename);
2965
2966                 cubemaptexture = R_LoadTextureCubeMap(r_main_texturepool, basename, cubemapsize, cubemappixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (gl_texturecompression_lightcubemaps.integer && gl_texturecompression.integer ? TEXF_COMPRESS : 0) | forcefilter | TEXF_CLAMP, -1, NULL);
2967                 Mem_Free(cubemappixels);
2968         }
2969         else
2970         {
2971                 Con_DPrintf("failed to load cubemap \"%s\"\n", basename);
2972                 if (developer_loading.integer)
2973                 {
2974                         Con_Printf("(tried tried images ");
2975                         for (j = 0;j < 3;j++)
2976                                 for (i = 0;i < 6;i++)
2977                                         Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix);
2978                         Con_Print(" and was unable to find any of them).\n");
2979                 }
2980         }
2981         return cubemaptexture;
2982 }
2983
2984 rtexture_t *R_GetCubemap(const char *basename)
2985 {
2986         int i;
2987         for (i = 0;i < r_texture_numcubemaps;i++)
2988                 if (r_texture_cubemaps[i] != NULL)
2989                         if (!strcasecmp(r_texture_cubemaps[i]->basename, basename))
2990                                 return r_texture_cubemaps[i]->texture ? r_texture_cubemaps[i]->texture : r_texture_whitecube;
2991         if (i >= MAX_CUBEMAPS || !r_main_mempool)
2992                 return r_texture_whitecube;
2993         r_texture_numcubemaps++;
2994         r_texture_cubemaps[i] = (cubemapinfo_t *)Mem_Alloc(r_main_mempool, sizeof(cubemapinfo_t));
2995         strlcpy(r_texture_cubemaps[i]->basename, basename, sizeof(r_texture_cubemaps[i]->basename));
2996         r_texture_cubemaps[i]->texture = R_LoadCubemap(r_texture_cubemaps[i]->basename);
2997         return r_texture_cubemaps[i]->texture;
2998 }
2999
3000 static void R_Main_FreeViewCache(void)
3001 {
3002         if (r_refdef.viewcache.entityvisible)
3003                 Mem_Free(r_refdef.viewcache.entityvisible);
3004         if (r_refdef.viewcache.world_pvsbits)
3005                 Mem_Free(r_refdef.viewcache.world_pvsbits);
3006         if (r_refdef.viewcache.world_leafvisible)
3007                 Mem_Free(r_refdef.viewcache.world_leafvisible);
3008         if (r_refdef.viewcache.world_surfacevisible)
3009                 Mem_Free(r_refdef.viewcache.world_surfacevisible);
3010         memset(&r_refdef.viewcache, 0, sizeof(r_refdef.viewcache));
3011 }
3012
3013 static void R_Main_ResizeViewCache(void)
3014 {
3015         int numentities = r_refdef.scene.numentities;
3016         int numclusters = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusters : 1;
3017         int numclusterbytes = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusterbytes : 1;
3018         int numleafs = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_leafs : 1;
3019         int numsurfaces = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->num_surfaces : 1;
3020         if (r_refdef.viewcache.maxentities < numentities)
3021         {
3022                 r_refdef.viewcache.maxentities = numentities;
3023                 if (r_refdef.viewcache.entityvisible)
3024                         Mem_Free(r_refdef.viewcache.entityvisible);
3025                 r_refdef.viewcache.entityvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.maxentities);
3026         }
3027         if (r_refdef.viewcache.world_numclusters != numclusters)
3028         {
3029                 r_refdef.viewcache.world_numclusters = numclusters;
3030                 r_refdef.viewcache.world_numclusterbytes = numclusterbytes;
3031                 if (r_refdef.viewcache.world_pvsbits)
3032                         Mem_Free(r_refdef.viewcache.world_pvsbits);
3033                 r_refdef.viewcache.world_pvsbits = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numclusterbytes);
3034         }
3035         if (r_refdef.viewcache.world_numleafs != numleafs)
3036         {
3037                 r_refdef.viewcache.world_numleafs = numleafs;
3038                 if (r_refdef.viewcache.world_leafvisible)
3039                         Mem_Free(r_refdef.viewcache.world_leafvisible);
3040                 r_refdef.viewcache.world_leafvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numleafs);
3041         }
3042         if (r_refdef.viewcache.world_numsurfaces != numsurfaces)
3043         {
3044                 r_refdef.viewcache.world_numsurfaces = numsurfaces;
3045                 if (r_refdef.viewcache.world_surfacevisible)
3046                         Mem_Free(r_refdef.viewcache.world_surfacevisible);
3047                 r_refdef.viewcache.world_surfacevisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numsurfaces);
3048         }
3049 }
3050
3051 extern rtexture_t *loadingscreentexture;
3052 static void gl_main_start(void)
3053 {
3054         loadingscreentexture = NULL;
3055         r_texture_blanknormalmap = NULL;
3056         r_texture_white = NULL;
3057         r_texture_grey128 = NULL;
3058         r_texture_black = NULL;
3059         r_texture_whitecube = NULL;
3060         r_texture_normalizationcube = NULL;
3061         r_texture_fogattenuation = NULL;
3062         r_texture_fogheighttexture = NULL;
3063         r_texture_gammaramps = NULL;
3064         r_texture_numcubemaps = 0;
3065         r_uniformbufferalignment = 32;
3066
3067         r_loaddds = r_texture_dds_load.integer != 0;
3068         r_savedds = vid.support.ext_texture_compression_s3tc && r_texture_dds_save.integer;
3069
3070         switch(vid.renderpath)
3071         {
3072         case RENDERPATH_GL32:
3073         case RENDERPATH_GLES2:
3074                 Cvar_SetValueQuick(&r_textureunits, MAX_TEXTUREUNITS);
3075                 Cvar_SetValueQuick(&gl_combine, 1);
3076                 Cvar_SetValueQuick(&r_glsl, 1);
3077                 r_loadnormalmap = true;
3078                 r_loadgloss = true;
3079                 r_loadfog = false;
3080 #ifdef GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
3081                 qglGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &r_uniformbufferalignment);
3082 #endif
3083                 break;
3084         }
3085
3086         R_AnimCache_Free();
3087         R_FrameData_Reset();
3088         R_BufferData_Reset();
3089
3090         r_numqueries = 0;
3091         r_maxqueries = 0;
3092         memset(r_queries, 0, sizeof(r_queries));
3093
3094         r_qwskincache = NULL;
3095         r_qwskincache_size = 0;
3096
3097         // due to caching of texture_t references, the collision cache must be reset
3098         Collision_Cache_Reset(true);
3099
3100         // set up r_skinframe loading system for textures
3101         memset(&r_skinframe, 0, sizeof(r_skinframe));
3102         r_skinframe.loadsequence = 1;
3103         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
3104
3105         r_main_texturepool = R_AllocTexturePool();
3106         R_BuildBlankTextures();
3107         R_BuildNoTexture();
3108         R_BuildWhiteCube();
3109 #ifndef USE_GLES2
3110         R_BuildNormalizationCube();
3111 #endif //USE_GLES2
3112         r_texture_fogattenuation = NULL;
3113         r_texture_fogheighttexture = NULL;
3114         r_texture_gammaramps = NULL;
3115         //r_texture_fogintensity = NULL;
3116         memset(&r_fb, 0, sizeof(r_fb));
3117         Mem_ExpandableArray_NewArray(&r_fb.rendertargets, r_main_mempool, sizeof(r_rendertarget_t), 128);
3118         r_glsl_permutation = NULL;
3119         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3120         Mem_ExpandableArray_NewArray(&r_glsl_permutationarray, r_main_mempool, sizeof(r_glsl_permutation_t), 256);
3121         memset(&r_svbsp, 0, sizeof (r_svbsp));
3122
3123         memset(r_texture_cubemaps, 0, sizeof(r_texture_cubemaps));
3124         r_texture_numcubemaps = 0;
3125
3126         r_refdef.fogmasktable_density = 0;
3127
3128 #ifdef __ANDROID__
3129         // For Steelstorm Android
3130         // FIXME CACHE the program and reload
3131         // FIXME see possible combinations for SS:BR android
3132         Con_DPrintf("Compiling most used shaders for SS:BR android... START\n");
3133         R_SetupShader_SetPermutationGLSL(0, 12);
3134         R_SetupShader_SetPermutationGLSL(0, 13);
3135         R_SetupShader_SetPermutationGLSL(0, 8388621);
3136         R_SetupShader_SetPermutationGLSL(3, 0);
3137         R_SetupShader_SetPermutationGLSL(3, 2048);
3138         R_SetupShader_SetPermutationGLSL(5, 0);
3139         R_SetupShader_SetPermutationGLSL(5, 2);
3140         R_SetupShader_SetPermutationGLSL(5, 2048);
3141         R_SetupShader_SetPermutationGLSL(5, 8388608);
3142         R_SetupShader_SetPermutationGLSL(11, 1);
3143         R_SetupShader_SetPermutationGLSL(11, 2049);
3144         R_SetupShader_SetPermutationGLSL(11, 8193);
3145         R_SetupShader_SetPermutationGLSL(11, 10241);
3146         Con_DPrintf("Compiling most used shaders for SS:BR android... END\n");
3147 #endif
3148 }
3149
3150 extern unsigned int r_shadow_occlusion_buf;
3151
3152 static void gl_main_shutdown(void)
3153 {
3154         R_RenderTarget_FreeUnused(true);
3155         Mem_ExpandableArray_FreeArray(&r_fb.rendertargets);
3156         R_AnimCache_Free();
3157         R_FrameData_Reset();
3158         R_BufferData_Reset();
3159
3160         R_Main_FreeViewCache();
3161
3162         switch(vid.renderpath)
3163         {
3164         case RENDERPATH_GL32:
3165         case RENDERPATH_GLES2:
3166 #if defined(GL_SAMPLES_PASSED) && !defined(USE_GLES2)
3167                 if (r_maxqueries)
3168                         qglDeleteQueries(r_maxqueries, r_queries);
3169 #endif
3170                 break;
3171         }
3172         r_shadow_occlusion_buf = 0;
3173         r_numqueries = 0;
3174         r_maxqueries = 0;
3175         memset(r_queries, 0, sizeof(r_queries));
3176
3177         r_qwskincache = NULL;
3178         r_qwskincache_size = 0;
3179
3180         // clear out the r_skinframe state
3181         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
3182         memset(&r_skinframe, 0, sizeof(r_skinframe));
3183
3184         if (r_svbsp.nodes)
3185                 Mem_Free(r_svbsp.nodes);
3186         memset(&r_svbsp, 0, sizeof (r_svbsp));
3187         R_FreeTexturePool(&r_main_texturepool);
3188         loadingscreentexture = NULL;
3189         r_texture_blanknormalmap = NULL;
3190         r_texture_white = NULL;
3191         r_texture_grey128 = NULL;
3192         r_texture_black = NULL;
3193         r_texture_whitecube = NULL;
3194         r_texture_normalizationcube = NULL;
3195         r_texture_fogattenuation = NULL;
3196         r_texture_fogheighttexture = NULL;
3197         r_texture_gammaramps = NULL;
3198         r_texture_numcubemaps = 0;
3199         //r_texture_fogintensity = NULL;
3200         memset(&r_fb, 0, sizeof(r_fb));
3201         R_GLSL_Restart_f(cmd_local);
3202
3203         r_glsl_permutation = NULL;
3204         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3205         Mem_ExpandableArray_FreeArray(&r_glsl_permutationarray);
3206 }
3207
3208 static void gl_main_newmap(void)
3209 {
3210         // FIXME: move this code to client
3211         char *entities, entname[MAX_QPATH];
3212         if (r_qwskincache)
3213                 Mem_Free(r_qwskincache);
3214         r_qwskincache = NULL;
3215         r_qwskincache_size = 0;
3216         if (cl.worldmodel)
3217         {
3218                 dpsnprintf(entname, sizeof(entname), "%s.ent", cl.worldnamenoextension);
3219                 if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
3220                 {
3221                         CL_ParseEntityLump(entities);
3222                         Mem_Free(entities);
3223                         return;
3224                 }
3225                 if (cl.worldmodel->brush.entities)
3226                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
3227         }
3228         R_Main_FreeViewCache();
3229
3230         R_FrameData_Reset();
3231         R_BufferData_Reset();
3232 }
3233
3234 void GL_Main_Init(void)
3235 {
3236         int i;
3237         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
3238         R_InitShaderModeInfo();
3239
3240         Cmd_AddCommand(CF_CLIENT, "r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
3241         Cmd_AddCommand(CF_CLIENT, "r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
3242         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
3243         if (gamemode == GAME_NEHAHRA)
3244         {
3245                 Cvar_RegisterVariable (&gl_fogenable);
3246                 Cvar_RegisterVariable (&gl_fogdensity);
3247                 Cvar_RegisterVariable (&gl_fogred);
3248                 Cvar_RegisterVariable (&gl_foggreen);
3249                 Cvar_RegisterVariable (&gl_fogblue);
3250                 Cvar_RegisterVariable (&gl_fogstart);
3251                 Cvar_RegisterVariable (&gl_fogend);
3252                 Cvar_RegisterVariable (&gl_skyclip);
3253         }
3254         Cvar_RegisterVariable(&r_motionblur);
3255         Cvar_RegisterVariable(&r_damageblur);
3256         Cvar_RegisterVariable(&r_motionblur_averaging);
3257         Cvar_RegisterVariable(&r_motionblur_randomize);
3258         Cvar_RegisterVariable(&r_motionblur_minblur);
3259         Cvar_RegisterVariable(&r_motionblur_maxblur);
3260         Cvar_RegisterVariable(&r_motionblur_velocityfactor);
3261         Cvar_RegisterVariable(&r_motionblur_velocityfactor_minspeed);
3262         Cvar_RegisterVariable(&r_motionblur_velocityfactor_maxspeed);
3263         Cvar_RegisterVariable(&r_motionblur_mousefactor);
3264         Cvar_RegisterVariable(&r_motionblur_mousefactor_minspeed);
3265         Cvar_RegisterVariable(&r_motionblur_mousefactor_maxspeed);
3266         Cvar_RegisterVariable(&r_depthfirst);
3267         Cvar_RegisterVariable(&r_useinfinitefarclip);
3268         Cvar_RegisterVariable(&r_farclip_base);
3269         Cvar_RegisterVariable(&r_farclip_world);
3270         Cvar_RegisterVariable(&r_nearclip);
3271         Cvar_RegisterVariable(&r_deformvertexes);
3272         Cvar_RegisterVariable(&r_transparent);
3273         Cvar_RegisterVariable(&r_transparent_alphatocoverage);
3274         Cvar_RegisterVariable(&r_transparent_sortsurfacesbynearest);
3275         Cvar_RegisterVariable(&r_transparent_useplanardistance);
3276         Cvar_RegisterVariable(&r_showoverdraw);
3277         Cvar_RegisterVariable(&r_showbboxes);
3278         Cvar_RegisterVariable(&r_showbboxes_client);
3279         Cvar_RegisterVariable(&r_showsurfaces);
3280         Cvar_RegisterVariable(&r_showtris);
3281         Cvar_RegisterVariable(&r_shownormals);
3282         Cvar_RegisterVariable(&r_showlighting);
3283         Cvar_RegisterVariable(&r_showcollisionbrushes);
3284         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
3285         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
3286         Cvar_RegisterVariable(&r_showdisabledepthtest);
3287         Cvar_RegisterVariable(&r_showspriteedges);
3288         Cvar_RegisterVariable(&r_showparticleedges);
3289         Cvar_RegisterVariable(&r_drawportals);
3290         Cvar_RegisterVariable(&r_drawentities);
3291         Cvar_RegisterVariable(&r_draw2d);
3292         Cvar_RegisterVariable(&r_drawworld);
3293         Cvar_RegisterVariable(&r_cullentities_trace);
3294         Cvar_RegisterVariable(&r_cullentities_trace_entityocclusion);
3295         Cvar_RegisterVariable(&r_cullentities_trace_samples);
3296         Cvar_RegisterVariable(&r_cullentities_trace_tempentitysamples);
3297         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
3298         Cvar_RegisterVariable(&r_cullentities_trace_expand);
3299         Cvar_RegisterVariable(&r_cullentities_trace_pad);
3300         Cvar_RegisterVariable(&r_cullentities_trace_delay);
3301         Cvar_RegisterVariable(&r_cullentities_trace_eyejitter);
3302         Cvar_RegisterVariable(&r_sortentities);
3303         Cvar_RegisterVariable(&r_drawviewmodel);
3304         Cvar_RegisterVariable(&r_drawexteriormodel);
3305         Cvar_RegisterVariable(&r_speeds);
3306         Cvar_RegisterVariable(&r_fullbrights);
3307         Cvar_RegisterVariable(&r_wateralpha);
3308         Cvar_RegisterVariable(&r_dynamic);
3309         Cvar_RegisterVariable(&r_fullbright_directed);
3310         Cvar_RegisterVariable(&r_fullbright_directed_ambient);
3311         Cvar_RegisterVariable(&r_fullbright_directed_diffuse);
3312         Cvar_RegisterVariable(&r_fullbright_directed_pitch);
3313         Cvar_RegisterVariable(&r_fullbright_directed_pitch_relative);
3314         Cvar_RegisterVariable(&r_fullbright);
3315         Cvar_RegisterVariable(&r_shadows);
3316         Cvar_RegisterVariable(&r_shadows_darken);
3317         Cvar_RegisterVariable(&r_shadows_drawafterrtlighting);
3318         Cvar_RegisterVariable(&r_shadows_castfrombmodels);
3319         Cvar_RegisterVariable(&r_shadows_throwdistance);
3320         Cvar_RegisterVariable(&r_shadows_throwdirection);
3321         Cvar_RegisterVariable(&r_shadows_focus);
3322         Cvar_RegisterVariable(&r_shadows_shadowmapscale);
3323         Cvar_RegisterVariable(&r_shadows_shadowmapbias);
3324         Cvar_RegisterVariable(&r_q1bsp_skymasking);
3325         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
3326         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
3327         Cvar_RegisterVariable(&r_polygonoffset_decals_factor);
3328         Cvar_RegisterVariable(&r_polygonoffset_decals_offset);
3329         Cvar_RegisterVariable(&r_fog_exp2);
3330         Cvar_RegisterVariable(&r_fog_clear);
3331         Cvar_RegisterVariable(&r_drawfog);
3332         Cvar_RegisterVariable(&r_transparentdepthmasking);
3333         Cvar_RegisterVariable(&r_transparent_sortmindist);
3334         Cvar_RegisterVariable(&r_transparent_sortmaxdist);
3335         Cvar_RegisterVariable(&r_transparent_sortarraysize);
3336         Cvar_RegisterVariable(&r_texture_dds_load);
3337         Cvar_RegisterVariable(&r_texture_dds_save);
3338         Cvar_RegisterVariable(&r_textureunits);
3339         Cvar_RegisterVariable(&gl_combine);
3340         Cvar_RegisterVariable(&r_usedepthtextures);
3341         Cvar_RegisterVariable(&r_viewfbo);
3342         Cvar_RegisterVariable(&r_rendertarget_debug);
3343         Cvar_RegisterVariable(&r_viewscale);
3344         Cvar_RegisterVariable(&r_viewscale_fpsscaling);
3345         Cvar_RegisterVariable(&r_viewscale_fpsscaling_min);
3346         Cvar_RegisterVariable(&r_viewscale_fpsscaling_multiply);
3347         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepsize);
3348         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepmax);
3349         Cvar_RegisterVariable(&r_viewscale_fpsscaling_target);
3350         Cvar_RegisterVariable(&r_glsl);
3351         Cvar_RegisterVariable(&r_glsl_deluxemapping);
3352         Cvar_RegisterVariable(&r_glsl_offsetmapping);
3353         Cvar_RegisterVariable(&r_glsl_offsetmapping_steps);
3354         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
3355         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_steps);
3356         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_refinesteps);
3357         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
3358         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod);
3359         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod_distance);
3360         Cvar_RegisterVariable(&r_glsl_postprocess);
3361         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
3362         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
3363         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
3364         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
3365         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1_enable);
3366         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2_enable);
3367         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3_enable);
3368         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4_enable);
3369         Cvar_RegisterVariable(&r_celshading);
3370         Cvar_RegisterVariable(&r_celoutlines);
3371
3372         Cvar_RegisterVariable(&r_water);
3373         Cvar_RegisterVariable(&r_water_cameraentitiesonly);
3374         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
3375         Cvar_RegisterVariable(&r_water_clippingplanebias);
3376         Cvar_RegisterVariable(&r_water_refractdistort);
3377         Cvar_RegisterVariable(&r_water_reflectdistort);
3378         Cvar_RegisterVariable(&r_water_scissormode);
3379         Cvar_RegisterVariable(&r_water_lowquality);
3380         Cvar_RegisterVariable(&r_water_hideplayer);
3381
3382         Cvar_RegisterVariable(&r_lerpsprites);
3383         Cvar_RegisterVariable(&r_lerpmodels);
3384         Cvar_RegisterVariable(&r_nolerp_list);
3385         Cvar_RegisterVariable(&r_lerplightstyles);
3386         Cvar_RegisterVariable(&r_waterscroll);
3387         Cvar_RegisterVariable(&r_bloom);
3388         Cvar_RegisterVariable(&r_colorfringe);
3389         Cvar_RegisterVariable(&r_bloom_colorscale);
3390         Cvar_RegisterVariable(&r_bloom_brighten);
3391         Cvar_RegisterVariable(&r_bloom_blur);
3392         Cvar_RegisterVariable(&r_bloom_resolution);
3393         Cvar_RegisterVariable(&r_bloom_colorexponent);
3394         Cvar_RegisterVariable(&r_bloom_colorsubtract);
3395         Cvar_RegisterVariable(&r_bloom_scenebrightness);
3396         Cvar_RegisterVariable(&r_hdr_scenebrightness);
3397         Cvar_RegisterVariable(&r_hdr_glowintensity);
3398         Cvar_RegisterVariable(&r_hdr_irisadaptation);
3399         Cvar_RegisterVariable(&r_hdr_irisadaptation_multiplier);
3400         Cvar_RegisterVariable(&r_hdr_irisadaptation_minvalue);
3401         Cvar_RegisterVariable(&r_hdr_irisadaptation_maxvalue);
3402         Cvar_RegisterVariable(&r_hdr_irisadaptation_value);
3403         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_up);
3404         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_down);
3405         Cvar_RegisterVariable(&r_hdr_irisadaptation_radius);
3406         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
3407         Cvar_RegisterVariable(&developer_texturelogging);
3408         Cvar_RegisterVariable(&gl_lightmaps);
3409         Cvar_RegisterVariable(&r_test);
3410         Cvar_RegisterVariable(&r_batch_multidraw);
3411         Cvar_RegisterVariable(&r_batch_multidraw_mintriangles);
3412         Cvar_RegisterVariable(&r_batch_debugdynamicvertexpath);
3413         Cvar_RegisterVariable(&r_glsl_skeletal);
3414         Cvar_RegisterVariable(&r_glsl_saturation);
3415         Cvar_RegisterVariable(&r_glsl_saturation_redcompensate);
3416         Cvar_RegisterVariable(&r_glsl_vertextextureblend_usebothalphas);
3417         Cvar_RegisterVariable(&r_framedatasize);
3418         for (i = 0;i < R_BUFFERDATA_COUNT;i++)
3419                 Cvar_RegisterVariable(&r_buffermegs[i]);
3420         Cvar_RegisterVariable(&r_batch_dynamicbuffer);
3421         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_enabled);
3422         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_combine);
3423         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_hidden_surfaces);
3424         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
3425                 Cvar_SetValue(&cvars_all, "r_fullbrights", 0);
3426 #ifdef DP_MOBILETOUCH
3427         // GLES devices have terrible depth precision in general, so...
3428         Cvar_SetValueQuick(&r_nearclip, 4);
3429         Cvar_SetValueQuick(&r_farclip_base, 4096);
3430         Cvar_SetValueQuick(&r_farclip_world, 0);
3431         Cvar_SetValueQuick(&r_useinfinitefarclip, 0);
3432 #endif
3433         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap, NULL, NULL);
3434 }
3435
3436 void Render_Init(void)
3437 {
3438         gl_backend_init();
3439         R_Textures_Init();
3440         GL_Main_Init();
3441         Font_Init();
3442         GL_Draw_Init();
3443         R_Shadow_Init();
3444         R_Sky_Init();
3445         GL_Surf_Init();
3446         Sbar_Init();
3447         R_Particles_Init();
3448         R_Explosion_Init();
3449         R_LightningBeams_Init();
3450         Mod_RenderInit();
3451 }
3452
3453 static void R_GetCornerOfBox(vec3_t out, const vec3_t mins, const vec3_t maxs, int signbits)
3454 {
3455         out[0] = ((signbits & 1) ? mins : maxs)[0];
3456         out[1] = ((signbits & 2) ? mins : maxs)[1];
3457         out[2] = ((signbits & 4) ? mins : maxs)[2];
3458 }
3459
3460 static qbool _R_CullBox(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes, int ignore)
3461 {
3462         int i;
3463         const mplane_t *p;
3464         vec3_t corner;
3465         if (r_trippy.integer)
3466                 return false;
3467         for (i = 0;i < numplanes;i++)
3468         {
3469                 if(i == ignore)
3470                         continue;
3471                 p = planes + i;
3472                 R_GetCornerOfBox(corner, mins, maxs, p->signbits);
3473                 if (DotProduct(p->normal, corner) < p->dist)
3474                         return true;
3475         }
3476         return false;
3477 }
3478
3479 qbool R_CullFrustum(const vec3_t mins, const vec3_t maxs)
3480 {
3481         // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
3482         return _R_CullBox(mins, maxs, r_refdef.view.numfrustumplanes, r_refdef.view.frustum, 4);
3483 }
3484
3485 qbool R_CullBox(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
3486 {
3487         // nothing to ignore
3488         return _R_CullBox(mins, maxs, numplanes, planes, -1);
3489 }
3490
3491 //==================================================================================
3492
3493 // LadyHavoc: this stores temporary data used within the same frame
3494
3495 typedef struct r_framedata_mem_s
3496 {
3497         struct r_framedata_mem_s *purge; // older mem block to free on next frame
3498         size_t size; // how much usable space
3499         size_t current; // how much space in use
3500         size_t mark; // last "mark" location, temporary memory can be freed by returning to this
3501         size_t wantedsize; // how much space was allocated
3502         unsigned char *data; // start of real data (16byte aligned)
3503 }
3504 r_framedata_mem_t;
3505
3506 static r_framedata_mem_t *r_framedata_mem;
3507
3508 void R_FrameData_Reset(void)
3509 {
3510         while (r_framedata_mem)
3511         {
3512                 r_framedata_mem_t *next = r_framedata_mem->purge;
3513                 Mem_Free(r_framedata_mem);
3514                 r_framedata_mem = next;
3515         }
3516 }
3517
3518 static void R_FrameData_Resize(qbool mustgrow)
3519 {
3520         size_t wantedsize;
3521         wantedsize = (size_t)(r_framedatasize.value * 1024*1024);
3522         wantedsize = bound(65536, wantedsize, 1000*1024*1024);
3523         if (!r_framedata_mem || r_framedata_mem->wantedsize != wantedsize || mustgrow)
3524         {
3525                 r_framedata_mem_t *newmem = (r_framedata_mem_t *)Mem_Alloc(r_main_mempool, wantedsize);
3526                 newmem->wantedsize = wantedsize;
3527                 newmem->data = (unsigned char *)(((size_t)(newmem+1) + 15) & ~15);
3528                 newmem->size = (unsigned char *)newmem + wantedsize - newmem->data;
3529                 newmem->current = 0;
3530                 newmem->mark = 0;
3531                 newmem->purge = r_framedata_mem;
3532                 r_framedata_mem = newmem;
3533         }
3534 }
3535
3536 void R_FrameData_NewFrame(void)
3537 {
3538         R_FrameData_Resize(false);
3539         if (!r_framedata_mem)
3540                 return;
3541         // if we ran out of space on the last frame, free the old memory now
3542         while (r_framedata_mem->purge)
3543         {
3544                 // repeatedly remove the second item in the list, leaving only head
3545                 r_framedata_mem_t *next = r_framedata_mem->purge->purge;
3546                 Mem_Free(r_framedata_mem->purge);
3547                 r_framedata_mem->purge = next;
3548         }
3549         // reset the current mem pointer
3550         r_framedata_mem->current = 0;
3551         r_framedata_mem->mark = 0;
3552 }
3553
3554 void *R_FrameData_Alloc(size_t size)
3555 {
3556         void *data;
3557         float newvalue;
3558
3559         // align to 16 byte boundary - the data pointer is already aligned, so we
3560         // only need to ensure the size of every allocation is also aligned
3561         size = (size + 15) & ~15;
3562
3563         while (!r_framedata_mem || r_framedata_mem->current + size > r_framedata_mem->size)
3564         {
3565                 // emergency - we ran out of space, allocate more memory
3566                 // note: this has no upper-bound, we'll fail to allocate memory eventually and just die
3567                 newvalue = r_framedatasize.value * 2.0f;
3568                 // upper bound based on architecture - if we try to allocate more than this we could overflow, better to loop until we error out on allocation failure
3569                 if (sizeof(size_t) >= 8)
3570                         newvalue = bound(0.25f, newvalue, (float)(1ll << 42));
3571                 else
3572                         newvalue = bound(0.25f, newvalue, (float)(1 << 10));
3573                 // this might not be a growing it, but we'll allocate another buffer every time
3574                 Cvar_SetValueQuick(&r_framedatasize, newvalue);
3575                 R_FrameData_Resize(true);
3576         }
3577
3578         data = r_framedata_mem->data + r_framedata_mem->current;
3579         r_framedata_mem->current += size;
3580
3581         // count the usage for stats
3582         r_refdef.stats[r_stat_framedatacurrent] = max(r_refdef.stats[r_stat_framedatacurrent], (int)r_framedata_mem->current);
3583         r_refdef.stats[r_stat_framedatasize] = max(r_refdef.stats[r_stat_framedatasize], (int)r_framedata_mem->size);
3584
3585         return (void *)data;
3586 }
3587
3588 void *R_FrameData_Store(size_t size, void *data)
3589 {
3590         void *d = R_FrameData_Alloc(size);
3591         if (d && data)
3592                 memcpy(d, data, size);
3593         return d;
3594 }
3595
3596 void R_FrameData_SetMark(void)
3597 {
3598         if (!r_framedata_mem)
3599                 return;
3600         r_framedata_mem->mark = r_framedata_mem->current;
3601 }
3602
3603 void R_FrameData_ReturnToMark(void)
3604 {
3605         if (!r_framedata_mem)
3606                 return;
3607         r_framedata_mem->current = r_framedata_mem->mark;
3608 }
3609
3610 //==================================================================================
3611
3612 // avoid reusing the same buffer objects on consecutive frames
3613 #define R_BUFFERDATA_CYCLE 3
3614
3615 typedef struct r_bufferdata_buffer_s
3616 {
3617         struct r_bufferdata_buffer_s *purge; // older buffer to free on next frame
3618         size_t size; // how much usable space
3619         size_t current; // how much space in use
3620         r_meshbuffer_t *buffer; // the buffer itself
3621 }
3622 r_bufferdata_buffer_t;
3623
3624 static int r_bufferdata_cycle = 0; // incremented and wrapped each frame
3625 static r_bufferdata_buffer_t *r_bufferdata_buffer[R_BUFFERDATA_CYCLE][R_BUFFERDATA_COUNT];
3626
3627 /// frees all dynamic buffers
3628 void R_BufferData_Reset(void)
3629 {
3630         int cycle, type;
3631         r_bufferdata_buffer_t **p, *mem;
3632         for (cycle = 0;cycle < R_BUFFERDATA_CYCLE;cycle++)
3633         {
3634                 for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3635                 {
3636                         // free all buffers
3637                         p = &r_bufferdata_buffer[cycle][type];
3638                         while (*p)
3639                         {
3640                                 mem = *p;
3641                                 *p = (*p)->purge;
3642                                 if (mem->buffer)
3643                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3644                                 Mem_Free(mem);
3645                         }
3646                 }
3647         }
3648 }
3649
3650 // resize buffer as needed (this actually makes a new one, the old one will be recycled next frame)
3651 static void R_BufferData_Resize(r_bufferdata_type_t type, qbool mustgrow, size_t minsize)
3652 {
3653         r_bufferdata_buffer_t *mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3654         size_t size;
3655         float newvalue = r_buffermegs[type].value;
3656
3657         // increase the cvar if we have to (but only if we already have a mem)
3658         if (mustgrow && mem)
3659                 newvalue *= 2.0f;
3660         newvalue = bound(0.25f, newvalue, 256.0f);
3661         while (newvalue * 1024*1024 < minsize)
3662                 newvalue *= 2.0f;
3663
3664         // clamp the cvar to valid range
3665         newvalue = bound(0.25f, newvalue, 256.0f);
3666         if (r_buffermegs[type].value != newvalue)
3667                 Cvar_SetValueQuick(&r_buffermegs[type], newvalue);
3668
3669         // calculate size in bytes
3670         size = (size_t)(newvalue * 1024*1024);
3671         size = bound(131072, size, 256*1024*1024);
3672
3673         // allocate a new buffer if the size is different (purge old one later)
3674         // or if we were told we must grow the buffer
3675         if (!mem || mem->size != size || mustgrow)
3676         {
3677                 mem = (r_bufferdata_buffer_t *)Mem_Alloc(r_main_mempool, sizeof(*mem));
3678                 mem->size = size;
3679                 mem->current = 0;
3680                 if (type == R_BUFFERDATA_VERTEX)
3681                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbuffervertex", false, false, true, false);
3682                 else if (type == R_BUFFERDATA_INDEX16)
3683                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex16", true, false, true, true);
3684                 else if (type == R_BUFFERDATA_INDEX32)
3685                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex32", true, false, true, false);
3686                 else if (type == R_BUFFERDATA_UNIFORM)
3687                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferuniform", false, true, true, false);
3688                 mem->purge = r_bufferdata_buffer[r_bufferdata_cycle][type];
3689                 r_bufferdata_buffer[r_bufferdata_cycle][type] = mem;
3690         }
3691 }
3692
3693 void R_BufferData_NewFrame(void)
3694 {
3695         int type;
3696         r_bufferdata_buffer_t **p, *mem;
3697         // cycle to the next frame's buffers
3698         r_bufferdata_cycle = (r_bufferdata_cycle + 1) % R_BUFFERDATA_CYCLE;
3699         // if we ran out of space on the last time we used these buffers, free the old memory now
3700         for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3701         {
3702                 if (r_bufferdata_buffer[r_bufferdata_cycle][type])
3703                 {
3704                         R_BufferData_Resize((r_bufferdata_type_t)type, false, 131072);
3705                         // free all but the head buffer, this is how we recycle obsolete
3706                         // buffers after they are no longer in use
3707                         p = &r_bufferdata_buffer[r_bufferdata_cycle][type]->purge;
3708                         while (*p)
3709                         {
3710                                 mem = *p;
3711                                 *p = (*p)->purge;
3712                                 if (mem->buffer)
3713                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3714                                 Mem_Free(mem);
3715                         }
3716                         // reset the current offset
3717                         r_bufferdata_buffer[r_bufferdata_cycle][type]->current = 0;
3718                 }
3719         }
3720 }
3721
3722 r_meshbuffer_t *R_BufferData_Store(size_t datasize, const void *data, r_bufferdata_type_t type, int *returnbufferoffset)
3723 {
3724         r_bufferdata_buffer_t *mem;
3725         int offset = 0;
3726         int padsize;
3727
3728         *returnbufferoffset = 0;
3729
3730         // align size to a byte boundary appropriate for the buffer type, this
3731         // makes all allocations have aligned start offsets
3732         if (type == R_BUFFERDATA_UNIFORM)
3733                 padsize = (datasize + r_uniformbufferalignment - 1) & ~(r_uniformbufferalignment - 1);
3734         else
3735                 padsize = (datasize + 15) & ~15;
3736
3737         // if we ran out of space in this buffer we must allocate a new one
3738         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3739                 R_BufferData_Resize(type, true, padsize);
3740
3741         // if the resize did not give us enough memory, fail
3742         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3743                 Sys_Error("R_BufferData_Store: failed to create a new buffer of sufficient size\n");
3744
3745         mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3746         offset = (int)mem->current;
3747         mem->current += padsize;
3748
3749         // upload the data to the buffer at the chosen offset
3750         if (offset == 0)
3751                 R_Mesh_UpdateMeshBuffer(mem->buffer, NULL, mem->size, false, 0);
3752         R_Mesh_UpdateMeshBuffer(mem->buffer, data, datasize, true, offset);
3753
3754         // count the usage for stats
3755         r_refdef.stats[r_stat_bufferdatacurrent_vertex + type] = max(r_refdef.stats[r_stat_bufferdatacurrent_vertex + type], (int)mem->current);
3756         r_refdef.stats[r_stat_bufferdatasize_vertex + type] = max(r_refdef.stats[r_stat_bufferdatasize_vertex + type], (int)mem->size);
3757
3758         // return the buffer offset
3759         *returnbufferoffset = offset;
3760
3761         return mem->buffer;
3762 }
3763
3764 //==================================================================================
3765
3766 // LadyHavoc: animcache originally written by Echon, rewritten since then
3767
3768 /**
3769  * Animation cache prevents re-generating mesh data for an animated model
3770  * multiple times in one frame for lighting, shadowing, reflections, etc.
3771  */
3772
3773 void R_AnimCache_Free(void)
3774 {
3775 }
3776
3777 void R_AnimCache_ClearCache(void)
3778 {
3779         int i;
3780         entity_render_t *ent;
3781
3782         for (i = 0;i < r_refdef.scene.numentities;i++)
3783         {
3784                 ent = r_refdef.scene.entities[i];
3785                 ent->animcache_vertex3f = NULL;
3786                 ent->animcache_vertex3f_vertexbuffer = NULL;
3787                 ent->animcache_vertex3f_bufferoffset = 0;
3788                 ent->animcache_normal3f = NULL;
3789                 ent->animcache_normal3f_vertexbuffer = NULL;
3790                 ent->animcache_normal3f_bufferoffset = 0;
3791                 ent->animcache_svector3f = NULL;
3792                 ent->animcache_svector3f_vertexbuffer = NULL;
3793                 ent->animcache_svector3f_bufferoffset = 0;
3794                 ent->animcache_tvector3f = NULL;
3795                 ent->animcache_tvector3f_vertexbuffer = NULL;
3796                 ent->animcache_tvector3f_bufferoffset = 0;
3797                 ent->animcache_skeletaltransform3x4 = NULL;
3798                 ent->animcache_skeletaltransform3x4buffer = NULL;
3799                 ent->animcache_skeletaltransform3x4offset = 0;
3800                 ent->animcache_skeletaltransform3x4size = 0;
3801         }
3802 }
3803
3804 qbool R_AnimCache_GetEntity(entity_render_t *ent, qbool wantnormals, qbool wanttangents)
3805 {
3806         model_t *model = ent->model;
3807         int numvertices;
3808
3809         // see if this ent is worth caching
3810         if (!model || !model->Draw || !model->AnimateVertices)
3811                 return false;
3812         // nothing to cache if it contains no animations and has no skeleton
3813         if (!model->surfmesh.isanimated && !(model->num_bones && ent->skeleton && ent->skeleton->relativetransforms))
3814                 return false;
3815         // see if it is already cached for gpuskeletal
3816         if (ent->animcache_skeletaltransform3x4)
3817                 return false;
3818         // see if it is already cached as a mesh
3819         if (ent->animcache_vertex3f)
3820         {
3821                 // check if we need to add normals or tangents
3822                 if (ent->animcache_normal3f)
3823                         wantnormals = false;
3824                 if (ent->animcache_svector3f)
3825                         wanttangents = false;
3826                 if (!wantnormals && !wanttangents)
3827                         return false;
3828         }
3829
3830         // check which kind of cache we need to generate
3831         if (r_gpuskeletal && model->num_bones > 0 && model->surfmesh.data_skeletalindex4ub)
3832         {
3833                 // cache the skeleton so the vertex shader can use it
3834                 r_refdef.stats[r_stat_animcache_skeletal_count] += 1;
3835                 r_refdef.stats[r_stat_animcache_skeletal_bones] += model->num_bones;
3836                 r_refdef.stats[r_stat_animcache_skeletal_maxbones] = max(r_refdef.stats[r_stat_animcache_skeletal_maxbones], model->num_bones);
3837                 ent->animcache_skeletaltransform3x4 = (float *)R_FrameData_Alloc(sizeof(float[3][4]) * model->num_bones);
3838                 Mod_Skeletal_BuildTransforms(model, ent->frameblend, ent->skeleton, NULL, ent->animcache_skeletaltransform3x4); 
3839                 // note: this can fail if the buffer is at the grow limit
3840                 ent->animcache_skeletaltransform3x4size = sizeof(float[3][4]) * model->num_bones;
3841                 ent->animcache_skeletaltransform3x4buffer = R_BufferData_Store(ent->animcache_skeletaltransform3x4size, ent->animcache_skeletaltransform3x4, R_BUFFERDATA_UNIFORM, &ent->animcache_skeletaltransform3x4offset);
3842         }
3843         else if (ent->animcache_vertex3f)
3844         {
3845                 // mesh was already cached but we may need to add normals/tangents
3846                 // (this only happens with multiple views, reflections, cameras, etc)
3847                 if (wantnormals || wanttangents)
3848                 {
3849                         numvertices = model->surfmesh.num_vertices;
3850                         if (wantnormals)
3851                                 ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3852                         if (wanttangents)
3853                         {
3854                                 ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3855                                 ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3856                         }
3857                         model->AnimateVertices(model, ent->frameblend, ent->skeleton, NULL, wantnormals ? ent->animcache_normal3f : NULL, wanttangents ? ent->animcache_svector3f : NULL, wanttangents ? ent->animcache_tvector3f : NULL);
3858                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3859                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3860                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3861                 }
3862         }
3863         else
3864         {
3865                 // generate mesh cache
3866                 numvertices = model->surfmesh.num_vertices;
3867                 ent->animcache_vertex3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3868                 if (wantnormals)
3869                         ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3870                 if (wanttangents)
3871                 {
3872                         ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3873                         ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3874                 }
3875                 model->AnimateVertices(model, ent->frameblend, ent->skeleton, ent->animcache_vertex3f, ent->animcache_normal3f, ent->animcache_svector3f, ent->animcache_tvector3f);
3876                 if (wantnormals || wanttangents)
3877                 {
3878                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3879                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3880                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3881                 }
3882                 r_refdef.stats[r_stat_animcache_shape_count] += 1;
3883                 r_refdef.stats[r_stat_animcache_shape_vertices] += numvertices;
3884                 r_refdef.stats[r_stat_animcache_shape_maxvertices] = max(r_refdef.stats[r_stat_animcache_shape_maxvertices], numvertices);
3885         }
3886         return true;
3887 }
3888
3889 void R_AnimCache_CacheVisibleEntities(void)
3890 {
3891         int i;
3892
3893         // TODO: thread this
3894         // NOTE: R_PrepareRTLights() also caches entities
3895
3896         for (i = 0;i < r_refdef.scene.numentities;i++)
3897                 if (r_refdef.viewcache.entityvisible[i])
3898                         R_AnimCache_GetEntity(r_refdef.scene.entities[i], true, true);
3899 }
3900
3901 //==================================================================================
3902
3903 qbool R_CanSeeBox(int numsamples, vec_t eyejitter, vec_t entboxenlarge, vec_t entboxexpand, vec_t pad, vec3_t eye, vec3_t entboxmins, vec3_t entboxmaxs)
3904 {
3905         long unsigned int i;
3906         int j;
3907         vec3_t eyemins, eyemaxs;
3908         vec3_t boxmins, boxmaxs;
3909         vec3_t padmins, padmaxs;
3910         vec3_t start;
3911         vec3_t end;
3912         model_t *model = r_refdef.scene.worldmodel;
3913         static vec3_t positions[] = {
3914                 { 0.5f, 0.5f, 0.5f },
3915                 { 0.0f, 0.0f, 0.0f },
3916                 { 0.0f, 0.0f, 1.0f },
3917                 { 0.0f, 1.0f, 0.0f },
3918                 { 0.0f, 1.0f, 1.0f },
3919                 { 1.0f, 0.0f, 0.0f },
3920                 { 1.0f, 0.0f, 1.0f },
3921                 { 1.0f, 1.0f, 0.0f },
3922                 { 1.0f, 1.0f, 1.0f },
3923         };
3924
3925         // sample count can be set to -1 to skip this logic, for flicker-prone objects
3926         if (numsamples < 0)
3927                 return true;
3928
3929         // view origin is not used for culling in portal/reflection/refraction renders or isometric views
3930         if (!r_refdef.view.usevieworiginculling)
3931                 return true;
3932
3933         if (!r_cullentities_trace_entityocclusion.integer && (!model || !model->brush.TraceLineOfSight))
3934                 return true;
3935
3936         // expand the eye box a little
3937         eyemins[0] = eye[0] - eyejitter;
3938         eyemaxs[0] = eye[0] + eyejitter;
3939         eyemins[1] = eye[1] - eyejitter;
3940         eyemaxs[1] = eye[1] + eyejitter;
3941         eyemins[2] = eye[2] - eyejitter;
3942         eyemaxs[2] = eye[2] + eyejitter;
3943         // expand the box a little
3944         boxmins[0] = (entboxenlarge + 1) * entboxmins[0] - entboxenlarge * entboxmaxs[0] - entboxexpand;
3945         boxmaxs[0] = (entboxenlarge + 1) * entboxmaxs[0] - entboxenlarge * entboxmins[0] + entboxexpand;
3946         boxmins[1] = (entboxenlarge + 1) * entboxmins[1] - entboxenlarge * entboxmaxs[1] - entboxexpand;
3947         boxmaxs[1] = (entboxenlarge + 1) * entboxmaxs[1] - entboxenlarge * entboxmins[1] + entboxexpand;
3948         boxmins[2] = (entboxenlarge + 1) * entboxmins[2] - entboxenlarge * entboxmaxs[2] - entboxexpand;
3949         boxmaxs[2] = (entboxenlarge + 1) * entboxmaxs[2] - entboxenlarge * entboxmins[2] + entboxexpand;
3950         // make an even larger box for the acceptable area
3951         padmins[0] = boxmins[0] - pad;
3952         padmaxs[0] = boxmaxs[0] + pad;
3953         padmins[1] = boxmins[1] - pad;
3954         padmaxs[1] = boxmaxs[1] + pad;
3955         padmins[2] = boxmins[2] - pad;
3956         padmaxs[2] = boxmaxs[2] + pad;
3957
3958         // return true if eye overlaps enlarged box
3959         if (BoxesOverlap(boxmins, boxmaxs, eyemins, eyemaxs))
3960                 return true;
3961
3962         // try specific positions in the box first - note that these can be cached
3963         if (r_cullentities_trace_entityocclusion.integer)
3964         {
3965                 for (i = 0; i < sizeof(positions) / sizeof(positions[0]); i++)
3966                 {
3967                         trace_t trace;
3968                         VectorCopy(eye, start);
3969                         end[0] = boxmins[0] + (boxmaxs[0] - boxmins[0]) * positions[i][0];
3970                         end[1] = boxmins[1] + (boxmaxs[1] - boxmins[1]) * positions[i][1];
3971                         end[2] = boxmins[2] + (boxmaxs[2] - boxmins[2]) * positions[i][2];
3972                         //trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
3973                         trace = CL_Cache_TraceLineSurfaces(start, end, MOVE_NORMAL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT);
3974                         // not picky - if the trace ended anywhere in the box we're good
3975                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
3976                                 return true;
3977                 }
3978         }
3979         else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
3980                 return true;
3981
3982         // try various random positions
3983         for (j = 0; j < numsamples; j++)
3984         {
3985                 VectorSet(start, lhrandom(eyemins[0], eyemaxs[0]), lhrandom(eyemins[1], eyemaxs[1]), lhrandom(eyemins[2], eyemaxs[2]));
3986                 VectorSet(end, lhrandom(boxmins[0], boxmaxs[0]), lhrandom(boxmins[1], boxmaxs[1]), lhrandom(boxmins[2], boxmaxs[2]));
3987                 if (r_cullentities_trace_entityocclusion.integer)
3988                 {
3989                         trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
3990                         // not picky - if the trace ended anywhere in the box we're good
3991                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
3992                                 return true;
3993                 }
3994                 else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
3995                         return true;
3996         }
3997
3998         return false;
3999 }
4000
4001
4002 static void R_View_UpdateEntityVisible (void)
4003 {
4004         int i;
4005         int renderimask;
4006         int samples;
4007         entity_render_t *ent;
4008
4009         if (r_refdef.envmap || r_fb.water.hideplayer)
4010                 renderimask = RENDER_EXTERIORMODEL | RENDER_VIEWMODEL;
4011         else if (chase_active.integer || r_fb.water.renderingscene)
4012                 renderimask = RENDER_VIEWMODEL;
4013         else
4014                 renderimask = RENDER_EXTERIORMODEL;
4015         if (!r_drawviewmodel.integer)
4016                 renderimask |= RENDER_VIEWMODEL;
4017         if (!r_drawexteriormodel.integer)
4018                 renderimask |= RENDER_EXTERIORMODEL;
4019         memset(r_refdef.viewcache.entityvisible, 0, r_refdef.scene.numentities);
4020         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
4021         {
4022                 // worldmodel can check visibility
4023                 for (i = 0;i < r_refdef.scene.numentities;i++)
4024                 {
4025                         ent = r_refdef.scene.entities[i];
4026                         if (r_refdef.viewcache.world_novis && !(ent->flags & RENDER_VIEWMODEL))
4027                         {
4028                                 r_refdef.viewcache.entityvisible[i] = false;
4029                                 continue;
4030                         }
4031                         if (!(ent->flags & renderimask))
4032                         if (!R_CullFrustum(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4033                         if ((ent->flags & (RENDER_NODEPTHTEST | RENDER_WORLDOBJECT | RENDER_VIEWMODEL)) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs))
4034                                 r_refdef.viewcache.entityvisible[i] = true;
4035                 }
4036         }
4037         else
4038         {
4039                 // no worldmodel or it can't check visibility
4040                 for (i = 0;i < r_refdef.scene.numentities;i++)
4041                 {
4042                         ent = r_refdef.scene.entities[i];
4043                         if (!(ent->flags & renderimask))
4044                         if (!R_CullFrustum(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4045                                 r_refdef.viewcache.entityvisible[i] = true;
4046                 }
4047         }
4048         if (r_cullentities_trace.integer)
4049         {
4050                 for (i = 0;i < r_refdef.scene.numentities;i++)
4051                 {
4052                         if (!r_refdef.viewcache.entityvisible[i])
4053                                 continue;
4054                         ent = r_refdef.scene.entities[i];
4055                         if (!(ent->flags & (RENDER_VIEWMODEL | RENDER_WORLDOBJECT | RENDER_NODEPTHTEST)) && !(ent->model && (ent->model->name[0] == '*')))
4056                         {
4057                                 samples = ent->last_trace_visibility == 0 ? r_cullentities_trace_tempentitysamples.integer : r_cullentities_trace_samples.integer;
4058                                 if (R_CanSeeBox(samples, r_cullentities_trace_eyejitter.value, r_cullentities_trace_enlarge.value, r_cullentities_trace_expand.value, r_cullentities_trace_pad.value, r_refdef.view.origin, ent->mins, ent->maxs))
4059                                         ent->last_trace_visibility = host.realtime;
4060                                 if (ent->last_trace_visibility < host.realtime - r_cullentities_trace_delay.value)
4061                                         r_refdef.viewcache.entityvisible[i] = 0;
4062                         }
4063                 }
4064         }
4065 }
4066
4067 /// only used if skyrendermasked, and normally returns false
4068 static int R_DrawBrushModelsSky (void)
4069 {
4070         int i, sky;
4071         entity_render_t *ent;
4072
4073         sky = false;
4074         for (i = 0;i < r_refdef.scene.numentities;i++)
4075         {
4076                 if (!r_refdef.viewcache.entityvisible[i])
4077                         continue;
4078                 ent = r_refdef.scene.entities[i];
4079                 if (!ent->model || !ent->model->DrawSky)
4080                         continue;
4081                 ent->model->DrawSky(ent);
4082                 sky = true;
4083         }
4084         return sky;
4085 }
4086
4087 static void R_DrawNoModel(entity_render_t *ent);
4088 static void R_DrawModels(void)
4089 {
4090         int i;
4091         entity_render_t *ent;
4092
4093         for (i = 0;i < r_refdef.scene.numentities;i++)
4094         {
4095                 if (!r_refdef.viewcache.entityvisible[i])
4096                         continue;
4097                 ent = r_refdef.scene.entities[i];
4098                 r_refdef.stats[r_stat_entities]++;
4099
4100                 if (ent->model && ent->model->Draw != NULL)
4101                         ent->model->Draw(ent);
4102                 else
4103                         R_DrawNoModel(ent);
4104         }
4105 }
4106
4107 static void R_DrawModelsDepth(void)
4108 {
4109         int i;
4110         entity_render_t *ent;
4111
4112         for (i = 0;i < r_refdef.scene.numentities;i++)
4113         {
4114                 if (!r_refdef.viewcache.entityvisible[i])
4115                         continue;
4116                 ent = r_refdef.scene.entities[i];
4117                 if (ent->model && ent->model->DrawDepth != NULL)
4118                         ent->model->DrawDepth(ent);
4119         }
4120 }
4121
4122 static void R_DrawModelsDebug(void)
4123 {
4124         int i;
4125         entity_render_t *ent;
4126
4127         for (i = 0;i < r_refdef.scene.numentities;i++)
4128         {
4129                 if (!r_refdef.viewcache.entityvisible[i])
4130                         continue;
4131                 ent = r_refdef.scene.entities[i];
4132                 if (ent->model && ent->model->DrawDebug != NULL)
4133                         ent->model->DrawDebug(ent);
4134         }
4135 }
4136
4137 static void R_DrawModelsAddWaterPlanes(void)
4138 {
4139         int i;
4140         entity_render_t *ent;
4141
4142         for (i = 0;i < r_refdef.scene.numentities;i++)
4143         {
4144                 if (!r_refdef.viewcache.entityvisible[i])
4145                         continue;
4146                 ent = r_refdef.scene.entities[i];
4147                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
4148                         ent->model->DrawAddWaterPlanes(ent);
4149         }
4150 }
4151
4152 static float irisvecs[7][3] = {{0, 0, 0}, {-1, 0, 0}, {1, 0, 0}, {0, -1, 0}, {0, 1, 0}, {0, 0, -1}, {0, 0, 1}};
4153
4154 void R_HDR_UpdateIrisAdaptation(const vec3_t point)
4155 {
4156         if (r_hdr_irisadaptation.integer)
4157         {
4158                 vec3_t p;
4159                 vec3_t ambient;
4160                 vec3_t diffuse;
4161                 vec3_t diffusenormal;
4162                 vec3_t forward;
4163                 vec_t brightness = 0.0f;
4164                 vec_t goal;
4165                 vec_t current;
4166                 vec_t d;
4167                 int c;
4168                 VectorCopy(r_refdef.view.forward, forward);
4169                 for (c = 0;c < (int)(sizeof(irisvecs)/sizeof(irisvecs[0]));c++)
4170                 {
4171                         p[0] = point[0] + irisvecs[c][0] * r_hdr_irisadaptation_radius.value;
4172                         p[1] = point[1] + irisvecs[c][1] * r_hdr_irisadaptation_radius.value;
4173                         p[2] = point[2] + irisvecs[c][2] * r_hdr_irisadaptation_radius.value;
4174                         R_CompleteLightPoint(ambient, diffuse, diffusenormal, p, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT, r_refdef.scene.lightmapintensity, r_refdef.scene.ambientintensity);
4175                         d = DotProduct(forward, diffusenormal);
4176                         brightness += VectorLength(ambient);
4177                         if (d > 0)
4178                                 brightness += d * VectorLength(diffuse);
4179                 }
4180                 brightness *= 1.0f / c;
4181                 brightness += 0.00001f; // make sure it's never zero
4182                 goal = r_hdr_irisadaptation_multiplier.value / brightness;
4183                 goal = bound(r_hdr_irisadaptation_minvalue.value, goal, r_hdr_irisadaptation_maxvalue.value);
4184                 current = r_hdr_irisadaptation_value.value;
4185                 if (current < goal)
4186                         current = min(current + r_hdr_irisadaptation_fade_up.value * cl.realframetime, goal);
4187                 else if (current > goal)
4188                         current = max(current - r_hdr_irisadaptation_fade_down.value * cl.realframetime, goal);
4189                 if (fabs(r_hdr_irisadaptation_value.value - current) > 0.0001f)
4190                         Cvar_SetValueQuick(&r_hdr_irisadaptation_value, current);
4191         }
4192         else if (r_hdr_irisadaptation_value.value != 1.0f)
4193                 Cvar_SetValueQuick(&r_hdr_irisadaptation_value, 1.0f);
4194 }
4195
4196 extern cvar_t r_lockvisibility;
4197 extern cvar_t r_lockpvs;
4198
4199 static void R_View_SetFrustum(const int *scissor)
4200 {
4201         int i;
4202         double fpx = +1, fnx = -1, fpy = +1, fny = -1;
4203         vec3_t forward, left, up, origin, v;
4204         if(r_lockvisibility.integer)
4205                 return;
4206         if(scissor)
4207         {
4208                 // flipped x coordinates (because x points left here)
4209                 fpx =  1.0 - 2.0 * (scissor[0]              - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4210                 fnx =  1.0 - 2.0 * (scissor[0] + scissor[2] - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4211                 // non-flipped y coordinates
4212                 fny = -1.0 + 2.0 * (scissor[1]              - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4213                 fpy = -1.0 + 2.0 * (scissor[1] + scissor[3] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4214         }
4215
4216         // we can't trust r_refdef.view.forward and friends in reflected scenes
4217         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
4218
4219 #if 0
4220         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
4221         r_refdef.view.frustum[0].normal[1] = 0 - 0;
4222         r_refdef.view.frustum[0].normal[2] = -1 - 0;
4223         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
4224         r_refdef.view.frustum[1].normal[1] = 0 + 0;
4225         r_refdef.view.frustum[1].normal[2] = -1 + 0;
4226         r_refdef.view.frustum[2].normal[0] = 0 - 0;
4227         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
4228         r_refdef.view.frustum[2].normal[2] = -1 - 0;
4229         r_refdef.view.frustum[3].normal[0] = 0 + 0;
4230         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
4231         r_refdef.view.frustum[3].normal[2] = -1 + 0;
4232 #endif
4233
4234 #if 0
4235         zNear = r_refdef.nearclip;
4236         nudge = 1.0 - 1.0 / (1<<23);
4237         r_refdef.view.frustum[4].normal[0] = 0 - 0;
4238         r_refdef.view.frustum[4].normal[1] = 0 - 0;
4239         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
4240         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
4241         r_refdef.view.frustum[5].normal[0] = 0 + 0;
4242         r_refdef.view.frustum[5].normal[1] = 0 + 0;
4243         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
4244         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
4245 #endif
4246
4247
4248
4249 #if 0
4250         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
4251         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
4252         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
4253         r_refdef.view.frustum[0].dist = m[15] - m[12];
4254
4255         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
4256         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
4257         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
4258         r_refdef.view.frustum[1].dist = m[15] + m[12];
4259
4260         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
4261         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
4262         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
4263         r_refdef.view.frustum[2].dist = m[15] - m[13];
4264
4265         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
4266         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
4267         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
4268         r_refdef.view.frustum[3].dist = m[15] + m[13];
4269
4270         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
4271         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
4272         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
4273         r_refdef.view.frustum[4].dist = m[15] - m[14];
4274
4275         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
4276         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
4277         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
4278         r_refdef.view.frustum[5].dist = m[15] + m[14];
4279 #endif
4280
4281         if (r_refdef.view.useperspective)
4282         {
4283                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
4284                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[0]);
4285                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[1]);
4286                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[2]);
4287                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[3]);
4288
4289                 // then the normals from the corners relative to origin
4290                 CrossProduct(r_refdef.view.frustumcorner[2], r_refdef.view.frustumcorner[0], r_refdef.view.frustum[0].normal);
4291                 CrossProduct(r_refdef.view.frustumcorner[1], r_refdef.view.frustumcorner[3], r_refdef.view.frustum[1].normal);
4292                 CrossProduct(r_refdef.view.frustumcorner[0], r_refdef.view.frustumcorner[1], r_refdef.view.frustum[2].normal);
4293                 CrossProduct(r_refdef.view.frustumcorner[3], r_refdef.view.frustumcorner[2], r_refdef.view.frustum[3].normal);
4294
4295                 // in a NORMAL view, forward cross left == up
4296                 // in a REFLECTED view, forward cross left == down
4297                 // so our cross products above need to be adjusted for a left handed coordinate system
4298                 CrossProduct(forward, left, v);
4299                 if(DotProduct(v, up) < 0)
4300                 {
4301                         VectorNegate(r_refdef.view.frustum[0].normal, r_refdef.view.frustum[0].normal);
4302                         VectorNegate(r_refdef.view.frustum[1].normal, r_refdef.view.frustum[1].normal);
4303                         VectorNegate(r_refdef.view.frustum[2].normal, r_refdef.view.frustum[2].normal);
4304                         VectorNegate(r_refdef.view.frustum[3].normal, r_refdef.view.frustum[3].normal);
4305                 }
4306
4307                 // Leaving those out was a mistake, those were in the old code, and they
4308                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
4309                 // I couldn't reproduce it after adding those normalizations. --blub
4310                 VectorNormalize(r_refdef.view.frustum[0].normal);
4311                 VectorNormalize(r_refdef.view.frustum[1].normal);
4312                 VectorNormalize(r_refdef.view.frustum[2].normal);
4313                 VectorNormalize(r_refdef.view.frustum[3].normal);
4314
4315                 // make the corners absolute
4316                 VectorAdd(r_refdef.view.frustumcorner[0], r_refdef.view.origin, r_refdef.view.frustumcorner[0]);
4317                 VectorAdd(r_refdef.view.frustumcorner[1], r_refdef.view.origin, r_refdef.view.frustumcorner[1]);
4318                 VectorAdd(r_refdef.view.frustumcorner[2], r_refdef.view.origin, r_refdef.view.frustumcorner[2]);
4319                 VectorAdd(r_refdef.view.frustumcorner[3], r_refdef.view.origin, r_refdef.view.frustumcorner[3]);
4320
4321                 // one more normal
4322                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
4323
4324                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
4325                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
4326                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
4327                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
4328                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
4329         }
4330         else
4331         {
4332                 VectorScale(left, -1.0f, r_refdef.view.frustum[0].normal);
4333                 VectorScale(left,  1.0f, r_refdef.view.frustum[1].normal);
4334                 VectorScale(up, -1.0f, r_refdef.view.frustum[2].normal);
4335                 VectorScale(up,  1.0f, r_refdef.view.frustum[3].normal);
4336                 VectorScale(forward, -1.0f, r_refdef.view.frustum[4].normal);
4337                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) - r_refdef.view.ortho_x;
4338                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) - r_refdef.view.ortho_x;
4339                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) - r_refdef.view.ortho_y;
4340                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) - r_refdef.view.ortho_y;
4341                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) - r_refdef.farclip;
4342         }
4343         r_refdef.view.numfrustumplanes = 5;
4344
4345         if (r_refdef.view.useclipplane)
4346         {
4347                 r_refdef.view.numfrustumplanes = 6;
4348                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
4349         }
4350
4351         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
4352                 PlaneClassify(r_refdef.view.frustum + i);
4353
4354         // LadyHavoc: note to all quake engine coders, Quake had a special case
4355         // for 90 degrees which assumed a square view (wrong), so I removed it,
4356         // Quake2 has it disabled as well.
4357
4358         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
4359         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
4360         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
4361         //PlaneClassify(&frustum[0]);
4362
4363         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
4364         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
4365         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
4366         //PlaneClassify(&frustum[1]);
4367
4368         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
4369         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
4370         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
4371         //PlaneClassify(&frustum[2]);
4372
4373         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
4374         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
4375         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
4376         //PlaneClassify(&frustum[3]);
4377
4378         // nearclip plane
4379         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
4380         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
4381         //PlaneClassify(&frustum[4]);
4382 }
4383
4384 static void R_View_UpdateWithScissor(const int *myscissor)
4385 {
4386         R_Main_ResizeViewCache();
4387         R_View_SetFrustum(myscissor);
4388         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4389         R_View_UpdateEntityVisible();
4390 }
4391
4392 static void R_View_Update(void)
4393 {
4394         R_Main_ResizeViewCache();
4395         R_View_SetFrustum(NULL);
4396         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4397         R_View_UpdateEntityVisible();
4398 }
4399
4400 float viewscalefpsadjusted = 1.0f;
4401
4402 void R_SetupView(qbool allowwaterclippingplane, int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4403 {
4404         const float *customclipplane = NULL;
4405         float plane[4];
4406         int /*rtwidth,*/ rtheight;
4407         if (r_refdef.view.useclipplane && allowwaterclippingplane)
4408         {
4409                 // LadyHavoc: couldn't figure out how to make this approach work the same in DPSOFTRAST
4410                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
4411                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
4412                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
4413                         dist = r_refdef.view.clipplane.dist;
4414                 plane[0] = r_refdef.view.clipplane.normal[0];
4415                 plane[1] = r_refdef.view.clipplane.normal[1];
4416                 plane[2] = r_refdef.view.clipplane.normal[2];
4417                 plane[3] = -dist;
4418                 customclipplane = plane;
4419         }
4420
4421         //rtwidth = viewfbo ? R_TextureWidth(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.width;
4422         rtheight = viewfbo ? R_TextureHeight(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.height;
4423
4424         if (!r_refdef.view.useperspective)
4425                 R_Viewport_InitOrtho3D(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip, customclipplane);
4426         else if (vid.stencil && r_useinfinitefarclip.integer)
4427                 R_Viewport_InitPerspectiveInfinite(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, customclipplane);
4428         else
4429                 R_Viewport_InitPerspective(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip, customclipplane);
4430         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4431         R_SetViewport(&r_refdef.view.viewport);
4432 }
4433
4434 void R_EntityMatrix(const matrix4x4_t *matrix)
4435 {
4436         if (gl_modelmatrixchanged || memcmp(matrix, &gl_modelmatrix, sizeof(matrix4x4_t)))
4437         {
4438                 gl_modelmatrixchanged = false;
4439                 gl_modelmatrix = *matrix;
4440                 Matrix4x4_Concat(&gl_modelviewmatrix, &gl_viewmatrix, &gl_modelmatrix);
4441                 Matrix4x4_Concat(&gl_modelviewprojectionmatrix, &gl_projectionmatrix, &gl_modelviewmatrix);
4442                 Matrix4x4_ToArrayFloatGL(&gl_modelviewmatrix, gl_modelview16f);
4443                 Matrix4x4_ToArrayFloatGL(&gl_modelviewprojectionmatrix, gl_modelviewprojection16f);
4444                 CHECKGLERROR
4445                 switch(vid.renderpath)
4446                 {
4447                 case RENDERPATH_GL32:
4448                 case RENDERPATH_GLES2:
4449                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
4450                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
4451                         break;
4452                 }
4453         }
4454 }
4455
4456 void R_ResetViewRendering2D_Common(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight, float x2, float y2)
4457 {
4458         r_viewport_t viewport;
4459
4460         CHECKGLERROR
4461
4462         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
4463         R_Viewport_InitOrtho(&viewport, &identitymatrix, viewx, vid.height - viewheight - viewy, viewwidth, viewheight, 0, 0, x2, y2, -10, 100, NULL);
4464         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4465         R_SetViewport(&viewport);
4466         GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
4467         GL_Color(1, 1, 1, 1);
4468         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4469         GL_BlendFunc(GL_ONE, GL_ZERO);
4470         GL_ScissorTest(false);
4471         GL_DepthMask(false);
4472         GL_DepthRange(0, 1);
4473         GL_DepthTest(false);
4474         GL_DepthFunc(GL_LEQUAL);
4475         R_EntityMatrix(&identitymatrix);
4476         R_Mesh_ResetTextureState();
4477         GL_PolygonOffset(0, 0);
4478         switch(vid.renderpath)
4479         {
4480         case RENDERPATH_GL32:
4481         case RENDERPATH_GLES2:
4482                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4483                 break;
4484         }
4485         GL_CullFace(GL_NONE);
4486
4487         CHECKGLERROR
4488 }
4489
4490 void R_ResetViewRendering2D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4491 {
4492         R_ResetViewRendering2D_Common(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight, 1.0f, 1.0f);
4493 }
4494
4495 void R_ResetViewRendering3D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4496 {
4497         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
4498         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
4499         GL_Color(1, 1, 1, 1);
4500         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4501         GL_BlendFunc(GL_ONE, GL_ZERO);
4502         GL_ScissorTest(true);
4503         GL_DepthMask(true);
4504         GL_DepthRange(0, 1);
4505         GL_DepthTest(true);
4506         GL_DepthFunc(GL_LEQUAL);
4507         R_EntityMatrix(&identitymatrix);
4508         R_Mesh_ResetTextureState();
4509         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
4510         switch(vid.renderpath)
4511         {
4512         case RENDERPATH_GL32:
4513         case RENDERPATH_GLES2:
4514                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4515                 break;
4516         }
4517         GL_CullFace(r_refdef.view.cullface_back);
4518 }
4519
4520 /*
4521 ================
4522 R_RenderView_UpdateViewVectors
4523 ================
4524 */
4525 void R_RenderView_UpdateViewVectors(void)
4526 {
4527         // break apart the view matrix into vectors for various purposes
4528         // it is important that this occurs outside the RenderScene function because that can be called from reflection renders, where the vectors come out wrong
4529         // however the r_refdef.view.origin IS updated in RenderScene intentionally - otherwise the sky renders at the wrong origin, etc
4530         Matrix4x4_ToVectors(&r_refdef.view.matrix, r_refdef.view.forward, r_refdef.view.left, r_refdef.view.up, r_refdef.view.origin);
4531         VectorNegate(r_refdef.view.left, r_refdef.view.right);
4532         // make an inverted copy of the view matrix for tracking sprites
4533         Matrix4x4_Invert_Full(&r_refdef.view.inverse_matrix, &r_refdef.view.matrix);
4534 }
4535
4536 void R_RenderTarget_FreeUnused(qbool force)
4537 {
4538         unsigned int i, j, end;
4539         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4540         for (i = 0; i < end; i++)
4541         {
4542                 r_rendertarget_t *r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4543                 // free resources for rendertargets that have not been used for a while
4544                 // (note: this check is run after the frame render, so any targets used
4545                 // this frame will not be affected even at low framerates)
4546                 if (r && (host.realtime - r->lastusetime > 0.2 || force))
4547                 {
4548                         if (r->fbo)
4549                                 R_Mesh_DestroyFramebufferObject(r->fbo);
4550                         for (j = 0; j < sizeof(r->colortexture) / sizeof(r->colortexture[0]); j++)
4551                                 if (r->colortexture[j])
4552                                         R_FreeTexture(r->colortexture[j]);
4553                         if (r->depthtexture)
4554                                 R_FreeTexture(r->depthtexture);
4555                         Mem_ExpandableArray_FreeRecord(&r_fb.rendertargets, r);
4556                 }
4557         }
4558 }
4559
4560 static void R_CalcTexCoordsForView(float x, float y, float w, float h, float tw, float th, float *texcoord2f)
4561 {
4562         float iw = 1.0f / tw, ih = 1.0f / th, x1, y1, x2, y2;
4563         x1 = x * iw;
4564         x2 = (x + w) * iw;
4565         y1 = (th - y) * ih;
4566         y2 = (th - y - h) * ih;
4567         texcoord2f[0] = x1;
4568         texcoord2f[2] = x2;
4569         texcoord2f[4] = x2;
4570         texcoord2f[6] = x1;
4571         texcoord2f[1] = y1;
4572         texcoord2f[3] = y1;
4573         texcoord2f[5] = y2;
4574         texcoord2f[7] = y2;
4575 }
4576
4577 r_rendertarget_t *R_RenderTarget_Get(int texturewidth, int textureheight, textype_t depthtextype, qbool depthisrenderbuffer, textype_t colortextype0, textype_t colortextype1, textype_t colortextype2, textype_t colortextype3)
4578 {
4579         unsigned int i, j, end;
4580         r_rendertarget_t *r = NULL;
4581         char vabuf[256];
4582         // first try to reuse an existing slot if possible
4583         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4584         for (i = 0; i < end; i++)
4585         {
4586                 r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4587                 if (r && r->lastusetime != host.realtime && r->texturewidth == texturewidth && r->textureheight == textureheight && r->depthtextype == depthtextype && r->colortextype[0] == colortextype0 && r->colortextype[1] == colortextype1 && r->colortextype[2] == colortextype2 && r->colortextype[3] == colortextype3)
4588                         break;
4589         }
4590         if (i == end)
4591         {
4592                 // no unused exact match found, so we have to make one in the first unused slot
4593                 r = (r_rendertarget_t *)Mem_ExpandableArray_AllocRecord(&r_fb.rendertargets);
4594                 r->texturewidth = texturewidth;
4595                 r->textureheight = textureheight;
4596                 r->colortextype[0] = colortextype0;
4597                 r->colortextype[1] = colortextype1;
4598                 r->colortextype[2] = colortextype2;
4599                 r->colortextype[3] = colortextype3;
4600                 r->depthtextype = depthtextype;
4601                 r->depthisrenderbuffer = depthisrenderbuffer;
4602                 for (j = 0; j < 4; j++)
4603                         if (r->colortextype[j])
4604                                 r->colortexture[j] = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_%i_type%i", i, j, (int)r->colortextype[j]), r->texturewidth, r->textureheight, NULL, r->colortextype[j], TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4605                 if (r->depthtextype)
4606                 {
4607                         if (r->depthisrenderbuffer)
4608                                 r->depthtexture = R_LoadTextureRenderBuffer(r_main_texturepool, va(vabuf, sizeof(vabuf), "renderbuffer%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, r->depthtextype);
4609                         else
4610                                 r->depthtexture = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, NULL, r->depthtextype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4611                 }
4612                 r->fbo = R_Mesh_CreateFramebufferObject(r->depthtexture, r->colortexture[0], r->colortexture[1], r->colortexture[2], r->colortexture[3]);
4613         }
4614         r_refdef.stats[r_stat_rendertargets_used]++;
4615         r_refdef.stats[r_stat_rendertargets_pixels] += r->texturewidth * r->textureheight;
4616         r->lastusetime = host.realtime;
4617         R_CalcTexCoordsForView(0, 0, r->texturewidth, r->textureheight, r->texturewidth, r->textureheight, r->texcoord2f);
4618         return r;
4619 }
4620
4621 static void R_Water_StartFrame(int viewwidth, int viewheight)
4622 {
4623         int waterwidth, waterheight;
4624
4625         if (viewwidth > (int)vid.maxtexturesize_2d || viewheight > (int)vid.maxtexturesize_2d)
4626                 return;
4627
4628         // set waterwidth and waterheight to the water resolution that will be
4629         // used (often less than the screen resolution for faster rendering)
4630         waterwidth = (int)bound(16, viewwidth * r_water_resolutionmultiplier.value, viewwidth);
4631         waterheight = (int)bound(16, viewheight * r_water_resolutionmultiplier.value, viewheight);
4632
4633         if (!r_water.integer || r_showsurfaces.integer || r_lockvisibility.integer || r_lockpvs.integer)
4634                 waterwidth = waterheight = 0;
4635
4636         // set up variables that will be used in shader setup
4637         r_fb.water.waterwidth = waterwidth;
4638         r_fb.water.waterheight = waterheight;
4639         r_fb.water.texturewidth = waterwidth;
4640         r_fb.water.textureheight = waterheight;
4641         r_fb.water.camerawidth = waterwidth;
4642         r_fb.water.cameraheight = waterheight;
4643         r_fb.water.screenscale[0] = 0.5f;
4644         r_fb.water.screenscale[1] = 0.5f;
4645         r_fb.water.screencenter[0] = 0.5f;
4646         r_fb.water.screencenter[1] = 0.5f;
4647         r_fb.water.enabled = waterwidth != 0;
4648
4649         r_fb.water.maxwaterplanes = MAX_WATERPLANES;
4650         r_fb.water.numwaterplanes = 0;
4651 }
4652
4653 void R_Water_AddWaterPlane(msurface_t *surface, int entno)
4654 {
4655         int planeindex, bestplaneindex, vertexindex;
4656         vec3_t mins, maxs, normal, center, v, n;
4657         vec_t planescore, bestplanescore;
4658         mplane_t plane;
4659         r_waterstate_waterplane_t *p;
4660         texture_t *t = R_GetCurrentTexture(surface->texture);
4661
4662         rsurface.texture = t;
4663         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS, 1, ((const msurface_t **)&surface));
4664         // if the model has no normals, it's probably off-screen and they were not generated, so don't add it anyway
4665         if (!rsurface.batchnormal3f || rsurface.batchnumvertices < 1)
4666                 return;
4667         // average the vertex normals, find the surface bounds (after deformvertexes)
4668         Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f, v);
4669         Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f, n);
4670         VectorCopy(n, normal);
4671         VectorCopy(v, mins);
4672         VectorCopy(v, maxs);
4673         for (vertexindex = 1;vertexindex < rsurface.batchnumvertices;vertexindex++)
4674         {
4675                 Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f + vertexindex*3, v);
4676                 Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f + vertexindex*3, n);
4677                 VectorAdd(normal, n, normal);
4678                 mins[0] = min(mins[0], v[0]);
4679                 mins[1] = min(mins[1], v[1]);
4680                 mins[2] = min(mins[2], v[2]);
4681                 maxs[0] = max(maxs[0], v[0]);
4682                 maxs[1] = max(maxs[1], v[1]);
4683                 maxs[2] = max(maxs[2], v[2]);
4684         }
4685         VectorNormalize(normal);
4686         VectorMAM(0.5f, mins, 0.5f, maxs, center);
4687
4688         VectorCopy(normal, plane.normal);
4689         VectorNormalize(plane.normal);
4690         plane.dist = DotProduct(center, plane.normal);
4691         PlaneClassify(&plane);
4692         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
4693         {
4694                 // skip backfaces (except if nocullface is set)
4695 //              if (!(t->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
4696 //                      return;
4697                 VectorNegate(plane.normal, plane.normal);
4698                 plane.dist *= -1;
4699                 PlaneClassify(&plane);
4700         }
4701
4702
4703         // find a matching plane if there is one
4704         bestplaneindex = -1;
4705         bestplanescore = 1048576.0f;
4706         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4707         {
4708                 if(p->camera_entity == t->camera_entity)
4709                 {
4710                         planescore = 1.0f - DotProduct(plane.normal, p->plane.normal) + fabs(plane.dist - p->plane.dist) * 0.001f;
4711                         if (bestplaneindex < 0 || bestplanescore > planescore)
4712                         {
4713                                 bestplaneindex = planeindex;
4714                                 bestplanescore = planescore;
4715                         }
4716                 }
4717         }
4718         planeindex = bestplaneindex;
4719
4720         // if this surface does not fit any known plane rendered this frame, add one
4721         if (planeindex < 0 || bestplanescore > 0.001f)
4722         {
4723                 if (r_fb.water.numwaterplanes < r_fb.water.maxwaterplanes)
4724                 {
4725                         // store the new plane
4726                         planeindex = r_fb.water.numwaterplanes++;
4727                         p = r_fb.water.waterplanes + planeindex;
4728                         p->plane = plane;
4729                         // clear materialflags and pvs
4730                         p->materialflags = 0;
4731                         p->pvsvalid = false;
4732                         p->camera_entity = t->camera_entity;
4733                         VectorCopy(mins, p->mins);
4734                         VectorCopy(maxs, p->maxs);
4735                 }
4736                 else
4737                 {
4738                         // We're totally screwed.
4739                         return;
4740                 }
4741         }
4742         else
4743         {
4744                 // merge mins/maxs when we're adding this surface to the plane
4745                 p = r_fb.water.waterplanes + planeindex;
4746                 p->mins[0] = min(p->mins[0], mins[0]);
4747                 p->mins[1] = min(p->mins[1], mins[1]);
4748                 p->mins[2] = min(p->mins[2], mins[2]);
4749                 p->maxs[0] = max(p->maxs[0], maxs[0]);
4750                 p->maxs[1] = max(p->maxs[1], maxs[1]);
4751                 p->maxs[2] = max(p->maxs[2], maxs[2]);
4752         }
4753         // merge this surface's materialflags into the waterplane
4754         p->materialflags |= t->currentmaterialflags;
4755         if(!(p->materialflags & MATERIALFLAG_CAMERA))
4756         {
4757                 // merge this surface's PVS into the waterplane
4758                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
4759                  && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
4760                 {
4761                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
4762                         p->pvsvalid = true;
4763                 }
4764         }
4765 }
4766
4767 extern cvar_t r_drawparticles;
4768 extern cvar_t r_drawdecals;
4769
4770 static void R_Water_ProcessPlanes(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int viewx, int viewy, int viewwidth, int viewheight)
4771 {
4772         int myscissor[4];
4773         r_refdef_view_t originalview;
4774         r_refdef_view_t myview;
4775         int planeindex, qualityreduction = 0, old_r_dynamic = 0, old_r_shadows = 0, old_r_worldrtlight = 0, old_r_dlight = 0, old_r_particles = 0, old_r_decals = 0;
4776         r_waterstate_waterplane_t *p;
4777         vec3_t visorigin;
4778         r_rendertarget_t *rt;
4779
4780         originalview = r_refdef.view;
4781
4782         // lowquality hack, temporarily shut down some cvars and restore afterwards
4783         qualityreduction = r_water_lowquality.integer;
4784         if (qualityreduction > 0)
4785         {
4786                 if (qualityreduction >= 1)
4787                 {
4788                         old_r_shadows = r_shadows.integer;
4789                         old_r_worldrtlight = r_shadow_realtime_world.integer;
4790                         old_r_dlight = r_shadow_realtime_dlight.integer;
4791                         Cvar_SetValueQuick(&r_shadows, 0);
4792                         Cvar_SetValueQuick(&r_shadow_realtime_world, 0);
4793                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, 0);
4794                 }
4795                 if (qualityreduction >= 2)
4796                 {
4797                         old_r_dynamic = r_dynamic.integer;
4798                         old_r_particles = r_drawparticles.integer;
4799                         old_r_decals = r_drawdecals.integer;
4800                         Cvar_SetValueQuick(&r_dynamic, 0);
4801                         Cvar_SetValueQuick(&r_drawparticles, 0);
4802                         Cvar_SetValueQuick(&r_drawdecals, 0);
4803                 }
4804         }
4805
4806         for (planeindex = 0, p = r_fb.water.waterplanes; planeindex < r_fb.water.numwaterplanes; planeindex++, p++)
4807         {
4808                 p->rt_reflection = NULL;
4809                 p->rt_refraction = NULL;
4810                 p->rt_camera = NULL;
4811         }
4812
4813         // render views
4814         r_refdef.view = originalview;
4815         r_refdef.view.showdebug = false;
4816         r_refdef.view.width = r_fb.water.waterwidth;
4817         r_refdef.view.height = r_fb.water.waterheight;
4818         r_refdef.view.useclipplane = true;
4819         myview = r_refdef.view;
4820         r_fb.water.renderingscene = true;
4821         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4822         {
4823                 if (r_water_cameraentitiesonly.value != 0 && !p->camera_entity)
4824                         continue;
4825
4826                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
4827                 {
4828                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4829                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4830                                 goto error;
4831                         r_refdef.view = myview;
4832                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
4833                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
4834                         if(r_water_scissormode.integer)
4835                         {
4836                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4837                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4838                                 {
4839                                         p->rt_reflection = NULL;
4840                                         p->rt_refraction = NULL;
4841                                         p->rt_camera = NULL;
4842                                         continue;
4843                                 }
4844                         }
4845
4846                         r_refdef.view.clipplane = p->plane;
4847                         // reflected view origin may be in solid, so don't cull with it
4848                         r_refdef.view.usevieworiginculling = false;
4849                         // reverse the cullface settings for this render
4850                         r_refdef.view.cullface_front = GL_FRONT;
4851                         r_refdef.view.cullface_back = GL_BACK;
4852                         // combined pvs (based on what can be seen from each surface center)
4853                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4854                         {
4855                                 r_refdef.view.usecustompvs = true;
4856                                 if (p->pvsvalid)
4857                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4858                                 else
4859                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4860                         }
4861
4862                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 2) && !chase_active.integer);
4863                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4864                         GL_ScissorTest(false);
4865                         R_ClearScreen(r_refdef.fogenabled);
4866                         GL_ScissorTest(true);
4867                         if(r_water_scissormode.integer & 2)
4868                                 R_View_UpdateWithScissor(myscissor);
4869                         else
4870                                 R_View_Update();
4871                         R_AnimCache_CacheVisibleEntities();
4872                         if(r_water_scissormode.integer & 1)
4873                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4874                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4875
4876                         r_fb.water.hideplayer = false;
4877                         p->rt_reflection = rt;
4878                 }
4879
4880                 // render the normal view scene and copy into texture
4881                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
4882                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
4883                 {
4884                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4885                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4886                                 goto error;
4887                         r_refdef.view = myview;
4888                         if(r_water_scissormode.integer)
4889                         {
4890                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4891                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4892                                 {
4893                                         p->rt_reflection = NULL;
4894                                         p->rt_refraction = NULL;
4895                                         p->rt_camera = NULL;
4896                                         continue;
4897                                 }
4898                         }
4899
4900                         // combined pvs (based on what can be seen from each surface center)
4901                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4902                         {
4903                                 r_refdef.view.usecustompvs = true;
4904                                 if (p->pvsvalid)
4905                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4906                                 else
4907                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4908                         }
4909
4910                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 1) && !chase_active.integer);
4911
4912                         r_refdef.view.clipplane = p->plane;
4913                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4914                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4915
4916                         if((p->materialflags & MATERIALFLAG_CAMERA) && p->camera_entity)
4917                         {
4918                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4919                                 r_fb.water.hideplayer = false; // we don't want to hide the player model from these ones
4920                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4921                                 R_RenderView_UpdateViewVectors();
4922                                 if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4923                                 {
4924                                         r_refdef.view.usecustompvs = true;
4925                                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4926                                 }
4927                         }
4928
4929                         PlaneClassify(&r_refdef.view.clipplane);
4930
4931                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4932                         GL_ScissorTest(false);
4933                         R_ClearScreen(r_refdef.fogenabled);
4934                         GL_ScissorTest(true);
4935                         if(r_water_scissormode.integer & 2)
4936                                 R_View_UpdateWithScissor(myscissor);
4937                         else
4938                                 R_View_Update();
4939                         R_AnimCache_CacheVisibleEntities();
4940                         if(r_water_scissormode.integer & 1)
4941                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4942                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4943
4944                         r_fb.water.hideplayer = false;
4945                         p->rt_refraction = rt;
4946                 }
4947                 else if (p->materialflags & MATERIALFLAG_CAMERA)
4948                 {
4949                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4950                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4951                                 goto error;
4952                         r_refdef.view = myview;
4953
4954                         r_refdef.view.clipplane = p->plane;
4955                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4956                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4957
4958                         r_refdef.view.width = r_fb.water.camerawidth;
4959                         r_refdef.view.height = r_fb.water.cameraheight;
4960                         r_refdef.view.frustum_x = 1; // tan(45 * M_PI / 180.0);
4961                         r_refdef.view.frustum_y = 1; // tan(45 * M_PI / 180.0);
4962                         r_refdef.view.ortho_x = 90; // abused as angle by VM_CL_R_SetView
4963                         r_refdef.view.ortho_y = 90; // abused as angle by VM_CL_R_SetView
4964
4965                         if(p->camera_entity)
4966                         {
4967                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4968                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4969                         }
4970
4971                         // note: all of the view is used for displaying... so
4972                         // there is no use in scissoring
4973
4974                         // reverse the cullface settings for this render
4975                         r_refdef.view.cullface_front = GL_FRONT;
4976                         r_refdef.view.cullface_back = GL_BACK;
4977                         // also reverse the view matrix
4978                         Matrix4x4_ConcatScale3(&r_refdef.view.matrix, 1, 1, -1); // this serves to invert texcoords in the result, as the copied texture is mapped the wrong way round
4979                         R_RenderView_UpdateViewVectors();
4980                         if(p->camera_entity && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4981                         {
4982                                 r_refdef.view.usecustompvs = true;
4983                                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4984                         }
4985                         
4986                         // camera needs no clipplane
4987                         r_refdef.view.useclipplane = false;
4988                         // TODO: is the camera origin always valid?  if so we don't need to clear this
4989                         r_refdef.view.usevieworiginculling = false;
4990
4991                         PlaneClassify(&r_refdef.view.clipplane);
4992
4993                         r_fb.water.hideplayer = false;
4994
4995                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4996                         GL_ScissorTest(false);
4997                         R_ClearScreen(r_refdef.fogenabled);
4998                         GL_ScissorTest(true);
4999                         R_View_Update();
5000                         R_AnimCache_CacheVisibleEntities();
5001                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5002
5003                         r_fb.water.hideplayer = false;
5004                         p->rt_camera = rt;
5005                 }
5006
5007         }
5008         r_fb.water.renderingscene = false;
5009         r_refdef.view = originalview;
5010         R_ResetViewRendering3D(fbo, depthtexture, colortexture, viewx, viewy, viewwidth, viewheight);
5011         R_View_Update();
5012         R_AnimCache_CacheVisibleEntities();
5013         goto finish;
5014 error:
5015         r_refdef.view = originalview;
5016         r_fb.water.renderingscene = false;
5017         Cvar_SetValueQuick(&r_water, 0);
5018         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
5019 finish:
5020         // lowquality hack, restore cvars
5021         if (qualityreduction > 0)
5022         {
5023                 if (qualityreduction >= 1)
5024                 {
5025                         Cvar_SetValueQuick(&r_shadows, old_r_shadows);
5026                         Cvar_SetValueQuick(&r_shadow_realtime_world, old_r_worldrtlight);
5027                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, old_r_dlight);
5028                 }
5029                 if (qualityreduction >= 2)
5030                 {
5031                         Cvar_SetValueQuick(&r_dynamic, old_r_dynamic);
5032                         Cvar_SetValueQuick(&r_drawparticles, old_r_particles);
5033                         Cvar_SetValueQuick(&r_drawdecals, old_r_decals);
5034                 }
5035         }
5036 }
5037
5038 static void R_Bloom_StartFrame(void)
5039 {
5040         int screentexturewidth, screentextureheight;
5041         textype_t textype = TEXTYPE_COLORBUFFER;
5042         double scale;
5043
5044         // clear the pointers to rendertargets from last frame as they're stale
5045         r_fb.rt_screen = NULL;
5046         r_fb.rt_bloom = NULL;
5047
5048         switch (vid.renderpath)
5049         {
5050         case RENDERPATH_GL32:
5051                 r_fb.usedepthtextures = r_usedepthtextures.integer != 0;
5052                 if (r_viewfbo.integer == 2) textype = TEXTYPE_COLORBUFFER16F;
5053                 if (r_viewfbo.integer == 3) textype = TEXTYPE_COLORBUFFER32F;
5054                 break;
5055         case RENDERPATH_GLES2:
5056                 r_fb.usedepthtextures = false;
5057                 break;
5058         }
5059
5060         if (r_viewscale_fpsscaling.integer)
5061         {
5062                 double actualframetime;
5063                 double targetframetime;
5064                 double adjust;
5065                 actualframetime = r_refdef.lastdrawscreentime;
5066                 targetframetime = (1.0 / r_viewscale_fpsscaling_target.value);
5067                 adjust = (targetframetime - actualframetime) * r_viewscale_fpsscaling_multiply.value;
5068                 adjust = bound(-r_viewscale_fpsscaling_stepmax.value, adjust, r_viewscale_fpsscaling_stepmax.value);
5069                 if (r_viewscale_fpsscaling_stepsize.value > 0)
5070                 {
5071                         if (adjust > 0)
5072                                 adjust = floor(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5073                         else
5074                                 adjust = ceil(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5075                 }
5076                 viewscalefpsadjusted += adjust;
5077                 viewscalefpsadjusted = bound(r_viewscale_fpsscaling_min.value, viewscalefpsadjusted, 1.0f);
5078         }
5079         else
5080                 viewscalefpsadjusted = 1.0f;
5081
5082         scale = r_viewscale.value * sqrt(viewscalefpsadjusted);
5083         if (vid.samples)
5084                 scale *= sqrt(vid.samples); // supersampling
5085         scale = bound(0.03125f, scale, 4.0f);
5086         screentexturewidth = (int)ceil(r_refdef.view.width * scale);
5087         screentextureheight = (int)ceil(r_refdef.view.height * scale);
5088         screentexturewidth = bound(1, screentexturewidth, (int)vid.maxtexturesize_2d);
5089         screentextureheight = bound(1, screentextureheight, (int)vid.maxtexturesize_2d);
5090
5091         // set bloomwidth and bloomheight to the bloom resolution that will be
5092         // used (often less than the screen resolution for faster rendering)
5093         r_fb.bloomheight = bound(1, r_bloom_resolution.value * 0.75f, screentextureheight);
5094         r_fb.bloomwidth = r_fb.bloomheight * screentexturewidth / screentextureheight;
5095         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, screentexturewidth);
5096         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, (int)vid.maxtexturesize_2d);
5097         r_fb.bloomheight = bound(1, r_fb.bloomheight, (int)vid.maxtexturesize_2d);
5098
5099         if ((r_bloom.integer || (!R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0))) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > (int)vid.maxtexturesize_2d || r_refdef.view.height > (int)vid.maxtexturesize_2d))
5100         {
5101                 Cvar_SetValueQuick(&r_bloom, 0);
5102                 Cvar_SetValueQuick(&r_motionblur, 0);
5103                 Cvar_SetValueQuick(&r_damageblur, 0);
5104         }
5105         if (!r_bloom.integer)
5106                 r_fb.bloomwidth = r_fb.bloomheight = 0;
5107
5108         // allocate motionblur ghost texture if needed - this is the only persistent texture and is only useful on the main view
5109         if (r_refdef.view.ismain && (r_fb.screentexturewidth != screentexturewidth || r_fb.screentextureheight != screentextureheight || r_fb.textype != textype))
5110         {
5111                 if (r_fb.ghosttexture)
5112                         R_FreeTexture(r_fb.ghosttexture);
5113                 r_fb.ghosttexture = NULL;
5114
5115                 r_fb.screentexturewidth = screentexturewidth;
5116                 r_fb.screentextureheight = screentextureheight;
5117                 r_fb.textype = textype;
5118
5119                 if (r_fb.screentexturewidth && r_fb.screentextureheight)
5120                 {
5121                         if (r_motionblur.value > 0 || r_damageblur.value > 0)
5122                                 r_fb.ghosttexture = R_LoadTexture2D(r_main_texturepool, "framebuffermotionblur", r_fb.screentexturewidth, r_fb.screentextureheight, NULL, r_fb.textype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
5123                         r_fb.ghosttexture_valid = false;
5124                 }
5125         }
5126
5127         r_fb.rt_screen = R_RenderTarget_Get(screentexturewidth, screentextureheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5128
5129         r_refdef.view.clear = true;
5130 }
5131
5132 static void R_Bloom_MakeTexture(void)
5133 {
5134         int x, range, dir;
5135         float xoffset, yoffset, r, brighten;
5136         float colorscale = r_bloom_colorscale.value;
5137         r_viewport_t bloomviewport;
5138         r_rendertarget_t *prev, *cur;
5139         textype_t textype = r_fb.rt_screen->colortextype[0];
5140
5141         r_refdef.stats[r_stat_bloom]++;
5142
5143         R_Viewport_InitOrtho(&bloomviewport, &identitymatrix, 0, 0, r_fb.bloomwidth, r_fb.bloomheight, 0, 0, 1, 1, -10, 100, NULL);
5144
5145         // scale down screen texture to the bloom texture size
5146         CHECKGLERROR
5147         prev = r_fb.rt_screen;
5148         cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5149         R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5150         R_SetViewport(&bloomviewport);
5151         GL_CullFace(GL_NONE);
5152         GL_DepthTest(false);
5153         GL_BlendFunc(GL_ONE, GL_ZERO);
5154         GL_Color(colorscale, colorscale, colorscale, 1);
5155         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5156         // TODO: do boxfilter scale-down in shader?
5157         R_SetupShader_Generic(prev->colortexture[0], false, true, true);
5158         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5159         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5160         // we now have a properly scaled bloom image
5161
5162         // multiply bloom image by itself as many times as desired to darken it
5163         // TODO: if people actually use this it could be done more quickly in the previous shader pass
5164         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
5165         {
5166                 prev = cur;
5167                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5168                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5169                 x *= 2;
5170                 r = bound(0, r_bloom_colorexponent.value / x, 1); // always 0.5 to 1
5171                 if(x <= 2)
5172                         GL_Clear(GL_COLOR_BUFFER_BIT, NULL, 1.0f, 0);
5173                 GL_BlendFunc(GL_SRC_COLOR, GL_ZERO); // square it
5174                 GL_Color(1,1,1,1); // no fix factor supported here
5175                 R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5176                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5177                 R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5178                 r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5179         }
5180         CHECKGLERROR
5181
5182         range = r_bloom_blur.integer * r_fb.bloomwidth / 320;
5183         brighten = r_bloom_brighten.value;
5184         brighten = sqrt(brighten);
5185         if(range >= 1)
5186                 brighten *= (3 * range) / (2 * range - 1); // compensate for the "dot particle"
5187
5188         for (dir = 0;dir < 2;dir++)
5189         {
5190                 prev = cur;
5191                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5192                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5193                 // blend on at multiple vertical offsets to achieve a vertical blur
5194                 // TODO: do offset blends using GLSL
5195                 // TODO instead of changing the texcoords, change the target positions to prevent artifacts at edges
5196                 CHECKGLERROR
5197                 GL_BlendFunc(GL_ONE, GL_ZERO);
5198                 CHECKGLERROR
5199                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5200                 CHECKGLERROR
5201                 for (x = -range;x <= range;x++)
5202                 {
5203                         if (!dir){xoffset = 0;yoffset = x;}
5204                         else {xoffset = x;yoffset = 0;}
5205                         xoffset /= (float)prev->texturewidth;
5206                         yoffset /= (float)prev->textureheight;
5207                         // compute a texcoord array with the specified x and y offset
5208                         r_fb.offsettexcoord2f[0] = xoffset+prev->texcoord2f[0];
5209                         r_fb.offsettexcoord2f[1] = yoffset+prev->texcoord2f[1];
5210                         r_fb.offsettexcoord2f[2] = xoffset+prev->texcoord2f[2];
5211                         r_fb.offsettexcoord2f[3] = yoffset+prev->texcoord2f[3];
5212                         r_fb.offsettexcoord2f[4] = xoffset+prev->texcoord2f[4];
5213                         r_fb.offsettexcoord2f[5] = yoffset+prev->texcoord2f[5];
5214                         r_fb.offsettexcoord2f[6] = xoffset+prev->texcoord2f[6];
5215                         r_fb.offsettexcoord2f[7] = yoffset+prev->texcoord2f[7];
5216                         // this r value looks like a 'dot' particle, fading sharply to
5217                         // black at the edges
5218                         // (probably not realistic but looks good enough)
5219                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
5220                         //r = brighten/(range*2+1);
5221                         r = brighten / (range * 2 + 1);
5222                         if(range >= 1)
5223                                 r *= (1 - x*x/(float)((range+1)*(range+1)));
5224                         if (r <= 0)
5225                                 continue;
5226                         CHECKGLERROR
5227                         GL_Color(r, r, r, 1);
5228                         CHECKGLERROR
5229                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.offsettexcoord2f);
5230                         CHECKGLERROR
5231                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5232                         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5233                         CHECKGLERROR
5234                         GL_BlendFunc(GL_ONE, GL_ONE);
5235                         CHECKGLERROR
5236                 }
5237         }
5238
5239         // now we have the bloom image, so keep track of it
5240         r_fb.rt_bloom = cur;
5241 }
5242
5243 static void R_BlendView(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5244 {
5245         uint64_t permutation;
5246         float uservecs[4][4];
5247         rtexture_t *viewtexture;
5248         rtexture_t *bloomtexture;
5249
5250         R_EntityMatrix(&identitymatrix);
5251
5252         if(r_refdef.view.ismain && !R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0) && r_fb.ghosttexture)
5253         {
5254                 // declare variables
5255                 float blur_factor, blur_mouseaccel, blur_velocity;
5256                 static float blur_average; 
5257                 static vec3_t blur_oldangles; // used to see how quickly the mouse is moving
5258
5259                 // set a goal for the factoring
5260                 blur_velocity = bound(0, (VectorLength(cl.movement_velocity) - r_motionblur_velocityfactor_minspeed.value) 
5261                         / max(1, r_motionblur_velocityfactor_maxspeed.value - r_motionblur_velocityfactor_minspeed.value), 1);
5262                 blur_mouseaccel = bound(0, ((fabs(VectorLength(cl.viewangles) - VectorLength(blur_oldangles)) * 10) - r_motionblur_mousefactor_minspeed.value) 
5263                         / max(1, r_motionblur_mousefactor_maxspeed.value - r_motionblur_mousefactor_minspeed.value), 1);
5264                 blur_factor = ((blur_velocity * r_motionblur_velocityfactor.value) 
5265                         + (blur_mouseaccel * r_motionblur_mousefactor.value));
5266
5267                 // from the goal, pick an averaged value between goal and last value
5268                 cl.motionbluralpha = bound(0, (cl.time - cl.oldtime) / max(0.001, r_motionblur_averaging.value), 1);
5269                 blur_average = blur_average * (1 - cl.motionbluralpha) + blur_factor * cl.motionbluralpha;
5270
5271                 // enforce minimum amount of blur 
5272                 blur_factor = blur_average * (1 - r_motionblur_minblur.value) + r_motionblur_minblur.value;
5273
5274                 //Con_Printf("motionblur: direct factor: %f, averaged factor: %f, velocity: %f, mouse accel: %f \n", blur_factor, blur_average, blur_velocity, blur_mouseaccel);
5275
5276                 // calculate values into a standard alpha
5277                 cl.motionbluralpha = 1 - exp(-
5278                                 (
5279                                         (r_motionblur.value * blur_factor / 80)
5280                                         +
5281                                         (r_damageblur.value * (cl.cshifts[CSHIFT_DAMAGE].percent / 1600))
5282                                 )
5283                                 /
5284                                 max(0.0001, cl.time - cl.oldtime) // fps independent
5285                                 );
5286
5287                 // randomization for the blur value to combat persistent ghosting
5288                 cl.motionbluralpha *= lhrandom(1 - r_motionblur_randomize.value, 1 + r_motionblur_randomize.value);
5289                 cl.motionbluralpha = bound(0, cl.motionbluralpha, r_motionblur_maxblur.value);
5290
5291                 // apply the blur
5292                 R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5293                 if (cl.motionbluralpha > 0 && !r_refdef.envmap && r_fb.ghosttexture_valid)
5294                 {
5295                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
5296                         GL_Color(1, 1, 1, cl.motionbluralpha);
5297                         R_CalcTexCoordsForView(0, 0, viewwidth, viewheight, viewwidth, viewheight, r_fb.ghosttexcoord2f);
5298                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.ghosttexcoord2f);
5299                         R_SetupShader_Generic(r_fb.ghosttexture, false, true, true);
5300                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5301                         r_refdef.stats[r_stat_bloom_drawpixels] += viewwidth * viewheight;
5302                 }
5303
5304                 // updates old view angles for next pass
5305                 VectorCopy(cl.viewangles, blur_oldangles);
5306
5307                 // copy view into the ghost texture
5308                 R_Mesh_CopyToTexture(r_fb.ghosttexture, 0, 0, viewx, viewy, viewwidth, viewheight);
5309                 r_refdef.stats[r_stat_bloom_copypixels] += viewwidth * viewheight;
5310                 r_fb.ghosttexture_valid = true;
5311         }
5312
5313         if (r_fb.bloomwidth)
5314         {
5315                 // make the bloom texture
5316                 R_Bloom_MakeTexture();
5317         }
5318
5319 #if _MSC_VER >= 1400
5320 #define sscanf sscanf_s
5321 #endif
5322         memset(uservecs, 0, sizeof(uservecs));
5323         if (r_glsl_postprocess_uservec1_enable.integer)
5324                 sscanf(r_glsl_postprocess_uservec1.string, "%f %f %f %f", &uservecs[0][0], &uservecs[0][1], &uservecs[0][2], &uservecs[0][3]);
5325         if (r_glsl_postprocess_uservec2_enable.integer)
5326                 sscanf(r_glsl_postprocess_uservec2.string, "%f %f %f %f", &uservecs[1][0], &uservecs[1][1], &uservecs[1][2], &uservecs[1][3]);
5327         if (r_glsl_postprocess_uservec3_enable.integer)
5328                 sscanf(r_glsl_postprocess_uservec3.string, "%f %f %f %f", &uservecs[2][0], &uservecs[2][1], &uservecs[2][2], &uservecs[2][3]);
5329         if (r_glsl_postprocess_uservec4_enable.integer)
5330                 sscanf(r_glsl_postprocess_uservec4.string, "%f %f %f %f", &uservecs[3][0], &uservecs[3][1], &uservecs[3][2], &uservecs[3][3]);
5331
5332         // render to the screen fbo
5333         R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5334         GL_Color(1, 1, 1, 1);
5335         GL_BlendFunc(GL_ONE, GL_ZERO);
5336
5337         viewtexture = r_fb.rt_screen->colortexture[0];
5338         bloomtexture = r_fb.rt_bloom ? r_fb.rt_bloom->colortexture[0] : NULL;
5339
5340         if (r_rendertarget_debug.integer >= 0)
5341         {
5342                 r_rendertarget_t *rt = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, r_rendertarget_debug.integer);
5343                 if (rt && rt->colortexture[0])
5344                 {
5345                         viewtexture = rt->colortexture[0];
5346                         bloomtexture = NULL;
5347                 }
5348         }
5349
5350         R_Mesh_PrepareVertices_Mesh_Arrays(4, r_screenvertex3f, NULL, NULL, NULL, NULL, r_fb.rt_screen->texcoord2f, bloomtexture ? r_fb.rt_bloom->texcoord2f : NULL);
5351         switch(vid.renderpath)
5352         {
5353         case RENDERPATH_GL32:
5354         case RENDERPATH_GLES2:
5355                 permutation =
5356                         (r_fb.bloomwidth ? SHADERPERMUTATION_BLOOM : 0)
5357                         | (r_refdef.viewblend[3] > 0 ? SHADERPERMUTATION_VIEWTINT : 0)
5358                         | (!vid_gammatables_trivial ? SHADERPERMUTATION_GAMMARAMPS : 0)
5359                         | (r_glsl_postprocess.integer ? SHADERPERMUTATION_POSTPROCESSING : 0)
5360                         | ((!R_Stereo_ColorMasking() && r_glsl_saturation.value != 1) ? SHADERPERMUTATION_SATURATION : 0);
5361                 R_SetupShader_SetPermutationGLSL(SHADERMODE_POSTPROCESS, permutation);
5362                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First     , viewtexture);
5363                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second    , bloomtexture);
5364                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps       );
5365                 if (r_glsl_permutation->loc_ViewTintColor           >= 0) qglUniform4f(r_glsl_permutation->loc_ViewTintColor     , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
5366                 if (r_glsl_permutation->loc_PixelSize               >= 0) qglUniform2f(r_glsl_permutation->loc_PixelSize         , 1.0/r_fb.screentexturewidth, 1.0/r_fb.screentextureheight);
5367                 if (r_glsl_permutation->loc_UserVec1                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec1          , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]);
5368                 if (r_glsl_permutation->loc_UserVec2                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec2          , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]);
5369                 if (r_glsl_permutation->loc_UserVec3                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec3          , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]);
5370                 if (r_glsl_permutation->loc_UserVec4                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec4          , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]);
5371                 if (r_glsl_permutation->loc_Saturation              >= 0) qglUniform1f(r_glsl_permutation->loc_Saturation        , r_glsl_saturation.value);
5372                 if (r_glsl_permutation->loc_PixelToScreenTexCoord   >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
5373                 if (r_glsl_permutation->loc_BloomColorSubtract      >= 0) qglUniform4f(r_glsl_permutation->loc_BloomColorSubtract   , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f);
5374                 if (r_glsl_permutation->loc_ColorFringe             >= 0) qglUniform1f(r_glsl_permutation->loc_ColorFringe, r_colorfringe.value );
5375                 break;
5376         }
5377         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5378         r_refdef.stats[r_stat_bloom_drawpixels] += r_refdef.view.width * r_refdef.view.height;
5379 }
5380
5381 matrix4x4_t r_waterscrollmatrix;
5382
5383 void R_UpdateFog(void)
5384 {
5385         // Nehahra fog
5386         if (gamemode == GAME_NEHAHRA)
5387         {
5388                 if (gl_fogenable.integer)
5389                 {
5390                         r_refdef.oldgl_fogenable = true;
5391                         r_refdef.fog_density = gl_fogdensity.value;
5392                         r_refdef.fog_red = gl_fogred.value;
5393                         r_refdef.fog_green = gl_foggreen.value;
5394                         r_refdef.fog_blue = gl_fogblue.value;
5395                         r_refdef.fog_alpha = 1;
5396                         r_refdef.fog_start = 0;
5397                         r_refdef.fog_end = gl_skyclip.value;
5398                         r_refdef.fog_height = 1<<30;
5399                         r_refdef.fog_fadedepth = 128;
5400                 }
5401                 else if (r_refdef.oldgl_fogenable)
5402                 {
5403                         r_refdef.oldgl_fogenable = false;
5404                         r_refdef.fog_density = 0;
5405                         r_refdef.fog_red = 0;
5406                         r_refdef.fog_green = 0;
5407                         r_refdef.fog_blue = 0;
5408                         r_refdef.fog_alpha = 0;
5409                         r_refdef.fog_start = 0;
5410                         r_refdef.fog_end = 0;
5411                         r_refdef.fog_height = 1<<30;
5412                         r_refdef.fog_fadedepth = 128;
5413                 }
5414         }
5415
5416         // fog parms
5417         r_refdef.fog_alpha = bound(0, r_refdef.fog_alpha, 1);
5418         r_refdef.fog_start = max(0, r_refdef.fog_start);
5419         r_refdef.fog_end = max(r_refdef.fog_start + 0.01, r_refdef.fog_end);
5420
5421         if (r_refdef.fog_density && r_drawfog.integer)
5422         {
5423                 r_refdef.fogenabled = true;
5424                 // this is the point where the fog reaches 0.9986 alpha, which we
5425                 // consider a good enough cutoff point for the texture
5426                 // (0.9986 * 256 == 255.6)
5427                 if (r_fog_exp2.integer)
5428                         r_refdef.fogrange = 32 / (r_refdef.fog_density * r_refdef.fog_density) + r_refdef.fog_start;
5429                 else
5430                         r_refdef.fogrange = 2048 / r_refdef.fog_density + r_refdef.fog_start;
5431                 r_refdef.fogrange = bound(r_refdef.fog_start, r_refdef.fogrange, r_refdef.fog_end);
5432                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
5433                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
5434                 if (strcmp(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename))
5435                         R_BuildFogHeightTexture();
5436                 // fog color was already set
5437                 // update the fog texture
5438                 if (r_refdef.fogmasktable_start != r_refdef.fog_start || r_refdef.fogmasktable_alpha != r_refdef.fog_alpha || r_refdef.fogmasktable_density != r_refdef.fog_density || r_refdef.fogmasktable_range != r_refdef.fogrange)
5439                         R_BuildFogTexture();
5440                 r_refdef.fog_height_texcoordscale = 1.0f / max(0.125f, r_refdef.fog_fadedepth);
5441                 r_refdef.fog_height_tablescale = r_refdef.fog_height_tablesize * r_refdef.fog_height_texcoordscale;
5442         }
5443         else
5444                 r_refdef.fogenabled = false;
5445
5446         // fog color
5447         if (r_refdef.fog_density)
5448         {
5449                 r_refdef.fogcolor[0] = r_refdef.fog_red;
5450                 r_refdef.fogcolor[1] = r_refdef.fog_green;
5451                 r_refdef.fogcolor[2] = r_refdef.fog_blue;
5452
5453                 Vector4Set(r_refdef.fogplane, 0, 0, 1, -r_refdef.fog_height);
5454                 r_refdef.fogplaneviewdist = DotProduct(r_refdef.fogplane, r_refdef.view.origin) + r_refdef.fogplane[3];
5455                 r_refdef.fogplaneviewabove = r_refdef.fogplaneviewdist >= 0;
5456                 r_refdef.fogheightfade = -0.5f/max(0.125f, r_refdef.fog_fadedepth);
5457
5458                 {
5459                         vec3_t fogvec;
5460                         VectorCopy(r_refdef.fogcolor, fogvec);
5461                         //   color.rgb *= ContrastBoost * SceneBrightness;
5462                         VectorScale(fogvec, r_refdef.view.colorscale, fogvec);
5463                         r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f);
5464                         r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f);
5465                         r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f);
5466                 }
5467         }
5468 }
5469
5470 void R_UpdateVariables(void)
5471 {
5472         R_Textures_Frame();
5473
5474         r_refdef.scene.ambientintensity = r_ambient.value * (1.0f / 64.0f);
5475
5476         r_refdef.farclip = r_farclip_base.value;
5477         if (r_refdef.scene.worldmodel)
5478                 r_refdef.farclip += r_refdef.scene.worldmodel->radius * r_farclip_world.value * 2;
5479         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
5480
5481         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
5482                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
5483         r_refdef.polygonfactor = 0;
5484         r_refdef.polygonoffset = 0;
5485
5486         r_refdef.scene.rtworld = r_shadow_realtime_world.integer != 0;
5487         r_refdef.scene.rtworldshadows = r_shadow_realtime_world_shadows.integer && vid.stencil;
5488         r_refdef.scene.rtdlight = r_shadow_realtime_dlight.integer != 0 && !gl_flashblend.integer && r_dynamic.integer;
5489         r_refdef.scene.rtdlightshadows = r_refdef.scene.rtdlight && r_shadow_realtime_dlight_shadows.integer && vid.stencil;
5490         r_refdef.scene.lightmapintensity = r_refdef.scene.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
5491         if (r_refdef.scene.worldmodel)
5492         {
5493                 r_refdef.scene.lightmapintensity *= r_refdef.scene.worldmodel->lightmapscale;
5494         }
5495         if (r_showsurfaces.integer)
5496         {
5497                 r_refdef.scene.rtworld = false;
5498                 r_refdef.scene.rtworldshadows = false;
5499                 r_refdef.scene.rtdlight = false;
5500                 r_refdef.scene.rtdlightshadows = false;
5501                 r_refdef.scene.lightmapintensity = 0;
5502         }
5503
5504         r_gpuskeletal = false;
5505         switch(vid.renderpath)
5506         {
5507         case RENDERPATH_GL32:
5508                 r_gpuskeletal = r_glsl_skeletal.integer && !r_showsurfaces.integer;
5509         case RENDERPATH_GLES2:
5510                 if(!vid_gammatables_trivial)
5511                 {
5512                         if(!r_texture_gammaramps || vid_gammatables_serial != r_texture_gammaramps_serial)
5513                         {
5514                                 // build GLSL gamma texture
5515 #define RAMPWIDTH 256
5516                                 unsigned short ramp[RAMPWIDTH * 3];
5517                                 unsigned char rampbgr[RAMPWIDTH][4];
5518                                 int i;
5519
5520                                 r_texture_gammaramps_serial = vid_gammatables_serial;
5521
5522                                 VID_BuildGammaTables(&ramp[0], RAMPWIDTH);
5523                                 for(i = 0; i < RAMPWIDTH; ++i)
5524                                 {
5525                                         rampbgr[i][0] = (unsigned char) (ramp[i + 2 * RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5526                                         rampbgr[i][1] = (unsigned char) (ramp[i + RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5527                                         rampbgr[i][2] = (unsigned char) (ramp[i] * 255.0 / 65535.0 + 0.5);
5528                                         rampbgr[i][3] = 0;
5529                                 }
5530                                 if (r_texture_gammaramps)
5531                                 {
5532                                         R_UpdateTexture(r_texture_gammaramps, &rampbgr[0][0], 0, 0, 0, RAMPWIDTH, 1, 1, 0);
5533                                 }
5534                                 else
5535                                 {
5536                                         r_texture_gammaramps = R_LoadTexture2D(r_main_texturepool, "gammaramps", RAMPWIDTH, 1, &rampbgr[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
5537                                 }
5538                         }
5539                 }
5540                 else
5541                 {
5542                         // remove GLSL gamma texture
5543                 }
5544                 break;
5545         }
5546 }
5547
5548 static r_refdef_scene_type_t r_currentscenetype = RST_CLIENT;
5549 static r_refdef_scene_t r_scenes_store[ RST_COUNT ];
5550 /*
5551 ================
5552 R_SelectScene
5553 ================
5554 */
5555 void R_SelectScene( r_refdef_scene_type_t scenetype ) {
5556         if( scenetype != r_currentscenetype ) {
5557                 // store the old scenetype
5558                 r_scenes_store[ r_currentscenetype ] = r_refdef.scene;
5559                 r_currentscenetype = scenetype;
5560                 // move in the new scene
5561                 r_refdef.scene = r_scenes_store[ r_currentscenetype ];
5562         }
5563 }
5564
5565 /*
5566 ================
5567 R_GetScenePointer
5568 ================
5569 */
5570 r_refdef_scene_t * R_GetScenePointer( r_refdef_scene_type_t scenetype )
5571 {
5572         // of course, we could also add a qbool that provides a lock state and a ReleaseScenePointer function..
5573         if( scenetype == r_currentscenetype ) {
5574                 return &r_refdef.scene;
5575         } else {
5576                 return &r_scenes_store[ scenetype ];
5577         }
5578 }
5579
5580 static int R_SortEntities_Compare(const void *ap, const void *bp)
5581 {
5582         const entity_render_t *a = *(const entity_render_t **)ap;
5583         const entity_render_t *b = *(const entity_render_t **)bp;
5584
5585         // 1. compare model
5586         if(a->model < b->model)
5587                 return -1;
5588         if(a->model > b->model)
5589                 return +1;
5590
5591         // 2. compare skin
5592         // TODO possibly calculate the REAL skinnum here first using
5593         // skinscenes?
5594         if(a->skinnum < b->skinnum)
5595                 return -1;
5596         if(a->skinnum > b->skinnum)
5597                 return +1;
5598
5599         // everything we compared is equal
5600         return 0;
5601 }
5602 static void R_SortEntities(void)
5603 {
5604         // below or equal 2 ents, sorting never gains anything
5605         if(r_refdef.scene.numentities <= 2)
5606                 return;
5607         // sort
5608         qsort(r_refdef.scene.entities, r_refdef.scene.numentities, sizeof(*r_refdef.scene.entities), R_SortEntities_Compare);
5609 }
5610
5611 /*
5612 ================
5613 R_RenderView
5614 ================
5615 */
5616 extern cvar_t r_shadow_bouncegrid;
5617 extern cvar_t v_isometric;
5618 extern void V_MakeViewIsometric(void);
5619 void R_RenderView(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int x, int y, int width, int height)
5620 {
5621         matrix4x4_t originalmatrix = r_refdef.view.matrix, offsetmatrix;
5622         int viewfbo = 0;
5623         rtexture_t *viewdepthtexture = NULL;
5624         rtexture_t *viewcolortexture = NULL;
5625         int viewx = r_refdef.view.x, viewy = r_refdef.view.y, viewwidth = r_refdef.view.width, viewheight = r_refdef.view.height;
5626
5627         // finish any 2D rendering that was queued
5628         DrawQ_Finish();
5629
5630         if (r_timereport_active)
5631                 R_TimeReport("start");
5632         r_textureframe++; // used only by R_GetCurrentTexture
5633         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
5634
5635         if(R_CompileShader_CheckStaticParms())
5636                 R_GLSL_Restart_f(cmd_local);
5637
5638         if (!r_drawentities.integer)
5639                 r_refdef.scene.numentities = 0;
5640         else if (r_sortentities.integer)
5641                 R_SortEntities();
5642
5643         R_AnimCache_ClearCache();
5644
5645         /* adjust for stereo display */
5646         if(R_Stereo_Active())
5647         {
5648                 Matrix4x4_CreateFromQuakeEntity(&offsetmatrix, 0, r_stereo_separation.value * (0.5f - r_stereo_side), 0, 0, r_stereo_angle.value * (0.5f - r_stereo_side), 0, 1);
5649                 Matrix4x4_Concat(&r_refdef.view.matrix, &originalmatrix, &offsetmatrix);
5650         }
5651
5652         if (r_refdef.view.isoverlay)
5653         {
5654                 // TODO: FIXME: move this into its own backend function maybe? [2/5/2008 Andreas]
5655                 R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL);
5656                 GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
5657                 R_TimeReport("depthclear");
5658
5659                 r_refdef.view.showdebug = false;
5660
5661                 r_fb.water.enabled = false;
5662                 r_fb.water.numwaterplanes = 0;
5663
5664                 R_RenderScene(0, NULL, NULL, r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
5665
5666                 r_refdef.view.matrix = originalmatrix;
5667
5668                 CHECKGLERROR
5669                 return;
5670         }
5671
5672         if (!r_refdef.scene.entities || r_refdef.view.width * r_refdef.view.height == 0 || !r_renderview.integer || cl_videoplaying/* || !r_refdef.scene.worldmodel*/)
5673         {
5674                 r_refdef.view.matrix = originalmatrix;
5675                 return;
5676         }
5677
5678         r_refdef.view.usevieworiginculling = !r_trippy.value && r_refdef.view.useperspective;
5679         if (v_isometric.integer && r_refdef.view.ismain)
5680                 V_MakeViewIsometric();
5681
5682         r_refdef.view.colorscale = r_hdr_scenebrightness.value * r_hdr_irisadaptation_value.value;
5683
5684         if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
5685                 // in sRGB fallback, behave similar to true sRGB: convert this
5686                 // value from linear to sRGB
5687                 r_refdef.view.colorscale = Image_sRGBFloatFromLinearFloat(r_refdef.view.colorscale);
5688
5689         R_RenderView_UpdateViewVectors();
5690
5691         R_Shadow_UpdateWorldLightSelection();
5692
5693         // this will set up r_fb.rt_screen
5694         R_Bloom_StartFrame();
5695
5696         // apply bloom brightness offset
5697         if(r_fb.rt_bloom)
5698                 r_refdef.view.colorscale *= r_bloom_scenebrightness.value;
5699
5700         // R_Bloom_StartFrame probably set up an fbo for us to render into, it will be rendered to the window later in R_BlendView
5701         if (r_fb.rt_screen)
5702         {
5703                 viewfbo = r_fb.rt_screen->fbo;
5704                 viewdepthtexture = r_fb.rt_screen->depthtexture;
5705                 viewcolortexture = r_fb.rt_screen->colortexture[0];
5706                 viewx = 0;
5707                 viewy = 0;
5708                 viewwidth = r_fb.rt_screen->texturewidth;
5709                 viewheight = r_fb.rt_screen->textureheight;
5710         }
5711
5712         R_Water_StartFrame(viewwidth, viewheight);
5713
5714         CHECKGLERROR
5715         if (r_timereport_active)
5716                 R_TimeReport("viewsetup");
5717
5718         R_ResetViewRendering3D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5719
5720         // clear the whole fbo every frame - otherwise the driver will consider
5721         // it to be an inter-frame texture and stall in multi-gpu configurations
5722         if (r_fb.rt_screen)
5723                 GL_ScissorTest(false);
5724         R_ClearScreen(r_refdef.fogenabled);
5725         if (r_timereport_active)
5726                 R_TimeReport("viewclear");
5727
5728         r_refdef.view.clear = true;
5729
5730         r_refdef.view.showdebug = true;
5731
5732         R_View_Update();
5733         if (r_timereport_active)
5734                 R_TimeReport("visibility");
5735
5736         R_AnimCache_CacheVisibleEntities();
5737         if (r_timereport_active)
5738                 R_TimeReport("animcache");
5739
5740         R_Shadow_UpdateBounceGridTexture();
5741         // R_Shadow_UpdateBounceGridTexture called R_TimeReport a few times internally, so we don't need to do that here.
5742
5743         r_fb.water.numwaterplanes = 0;
5744         if (r_fb.water.enabled)
5745                 R_RenderWaterPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5746
5747         // for the actual view render we use scissoring a fair amount, so scissor
5748         // test needs to be on
5749         if (r_fb.rt_screen)
5750                 GL_ScissorTest(true);
5751         GL_Scissor(viewx, viewy, viewwidth, viewheight);
5752         R_RenderScene(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5753         r_fb.water.numwaterplanes = 0;
5754
5755         // postprocess uses textures that are not aligned with the viewport we're rendering, so no scissoring
5756         GL_ScissorTest(false);
5757
5758         R_BlendView(fbo, depthtexture, colortexture, x, y, width, height);
5759         if (r_timereport_active)
5760                 R_TimeReport("blendview");
5761
5762         r_refdef.view.matrix = originalmatrix;
5763
5764         CHECKGLERROR
5765
5766         // go back to 2d rendering
5767         DrawQ_Start();
5768 }
5769
5770 void R_RenderWaterPlanes(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5771 {
5772         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawAddWaterPlanes)
5773         {
5774                 r_refdef.scene.worldmodel->DrawAddWaterPlanes(r_refdef.scene.worldentity);
5775                 if (r_timereport_active)
5776                         R_TimeReport("waterworld");
5777         }
5778
5779         // don't let sound skip if going slow
5780         if (r_refdef.scene.extraupdate)
5781                 S_ExtraUpdate ();
5782
5783         R_DrawModelsAddWaterPlanes();
5784         if (r_timereport_active)
5785                 R_TimeReport("watermodels");
5786
5787         if (r_fb.water.numwaterplanes)
5788         {
5789                 R_Water_ProcessPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5790                 if (r_timereport_active)
5791                         R_TimeReport("waterscenes");
5792         }
5793 }
5794
5795 extern cvar_t cl_locs_show;
5796 static void R_DrawLocs(void);
5797 static void R_DrawEntityBBoxes(prvm_prog_t *prog);
5798 static void R_DrawModelDecals(void);
5799 extern qbool r_shadow_usingdeferredprepass;
5800 extern int r_shadow_shadowmapatlas_modelshadows_size;
5801 void R_RenderScene(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5802 {
5803         qbool shadowmapping = false;
5804
5805         if (r_timereport_active)
5806                 R_TimeReport("beginscene");
5807
5808         r_refdef.stats[r_stat_renders]++;
5809
5810         R_UpdateFog();
5811
5812         // don't let sound skip if going slow
5813         if (r_refdef.scene.extraupdate)
5814                 S_ExtraUpdate ();
5815
5816         R_MeshQueue_BeginScene();
5817
5818         R_SkyStartFrame();
5819
5820         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.scene.time) * 0.025 * r_waterscroll.value, sin(r_refdef.scene.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
5821
5822         if (r_timereport_active)
5823                 R_TimeReport("skystartframe");
5824
5825         if (cl.csqc_vidvars.drawworld)
5826         {
5827                 // don't let sound skip if going slow
5828                 if (r_refdef.scene.extraupdate)
5829                         S_ExtraUpdate ();
5830
5831                 if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawSky)
5832                 {
5833                         r_refdef.scene.worldmodel->DrawSky(r_refdef.scene.worldentity);
5834                         if (r_timereport_active)
5835                                 R_TimeReport("worldsky");
5836                 }
5837
5838                 if (R_DrawBrushModelsSky() && r_timereport_active)
5839                         R_TimeReport("bmodelsky");
5840
5841                 if (skyrendermasked && skyrenderlater)
5842                 {
5843                         // we have to force off the water clipping plane while rendering sky
5844                         R_SetupView(false, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5845                         R_Sky();
5846                         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5847                         if (r_timereport_active)
5848                                 R_TimeReport("sky");
5849                 }
5850         }
5851
5852         // save the framebuffer info for R_Shadow_RenderMode_Reset during this view render
5853         r_shadow_viewfbo = viewfbo;
5854         r_shadow_viewdepthtexture = viewdepthtexture;
5855         r_shadow_viewcolortexture = viewcolortexture;
5856         r_shadow_viewx = viewx;
5857         r_shadow_viewy = viewy;
5858         r_shadow_viewwidth = viewwidth;
5859         r_shadow_viewheight = viewheight;
5860
5861         R_Shadow_PrepareModelShadows();
5862         R_Shadow_PrepareLights();
5863         if (r_timereport_active)
5864                 R_TimeReport("preparelights");
5865
5866         // render all the shadowmaps that will be used for this view
5867         shadowmapping = R_Shadow_ShadowMappingEnabled();
5868         if (shadowmapping || r_shadow_shadowmapatlas_modelshadows_size)
5869         {
5870                 R_Shadow_DrawShadowMaps();
5871                 if (r_timereport_active)
5872                         R_TimeReport("shadowmaps");
5873         }
5874
5875         // render prepass deferred lighting if r_shadow_deferred is on, this produces light buffers that will be sampled in forward pass
5876         if (r_shadow_usingdeferredprepass)
5877                 R_Shadow_DrawPrepass();
5878
5879         // now we begin the forward pass of the view render
5880         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDepth)
5881         {
5882                 r_refdef.scene.worldmodel->DrawDepth(r_refdef.scene.worldentity);
5883                 if (r_timereport_active)
5884                         R_TimeReport("worlddepth");
5885         }
5886         if (r_depthfirst.integer >= 2)
5887         {
5888                 R_DrawModelsDepth();
5889                 if (r_timereport_active)
5890                         R_TimeReport("modeldepth");
5891         }
5892
5893         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->Draw)
5894         {
5895                 r_refdef.scene.worldmodel->Draw(r_refdef.scene.worldentity);
5896                 if (r_timereport_active)
5897                         R_TimeReport("world");
5898         }
5899
5900         // don't let sound skip if going slow
5901         if (r_refdef.scene.extraupdate)
5902                 S_ExtraUpdate ();
5903
5904         R_DrawModels();
5905         if (r_timereport_active)
5906                 R_TimeReport("models");
5907
5908         // don't let sound skip if going slow
5909         if (r_refdef.scene.extraupdate)
5910                 S_ExtraUpdate ();
5911
5912         if (!r_shadow_usingdeferredprepass)
5913         {
5914                 R_Shadow_DrawLights();
5915                 if (r_timereport_active)
5916                         R_TimeReport("rtlights");
5917         }
5918
5919         // don't let sound skip if going slow
5920         if (r_refdef.scene.extraupdate)
5921                 S_ExtraUpdate ();
5922
5923         if (cl.csqc_vidvars.drawworld)
5924         {
5925                 R_DrawModelDecals();
5926                 if (r_timereport_active)
5927                         R_TimeReport("modeldecals");
5928
5929                 R_DrawParticles();
5930                 if (r_timereport_active)
5931                         R_TimeReport("particles");
5932
5933                 R_DrawExplosions();
5934                 if (r_timereport_active)
5935                         R_TimeReport("explosions");
5936         }
5937
5938         if (r_refdef.view.showdebug)
5939         {
5940                 if (cl_locs_show.integer)
5941                 {
5942                         R_DrawLocs();
5943                         if (r_timereport_active)
5944                                 R_TimeReport("showlocs");
5945                 }
5946
5947                 if (r_drawportals.integer)
5948                 {
5949                         R_DrawPortals();
5950                         if (r_timereport_active)
5951                                 R_TimeReport("portals");
5952                 }
5953
5954                 if (r_showbboxes_client.value > 0)
5955                 {
5956                         R_DrawEntityBBoxes(CLVM_prog);
5957                         if (r_timereport_active)
5958                                 R_TimeReport("clbboxes");
5959                 }
5960                 if (r_showbboxes.value > 0)
5961                 {
5962                         R_DrawEntityBBoxes(SVVM_prog);
5963                         if (r_timereport_active)
5964                                 R_TimeReport("svbboxes");
5965                 }
5966         }
5967
5968         if (r_transparent.integer)
5969         {
5970                 R_MeshQueue_RenderTransparent();
5971                 if (r_timereport_active)
5972                         R_TimeReport("drawtrans");
5973         }
5974
5975         if (r_refdef.view.showdebug && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value != 0 || r_showcollisionbrushes.value > 0 || r_showoverdraw.value > 0))
5976         {
5977                 r_refdef.scene.worldmodel->DrawDebug(r_refdef.scene.worldentity);
5978                 if (r_timereport_active)
5979                         R_TimeReport("worlddebug");
5980                 R_DrawModelsDebug();
5981                 if (r_timereport_active)
5982                         R_TimeReport("modeldebug");
5983         }
5984
5985         if (cl.csqc_vidvars.drawworld)
5986         {
5987                 R_Shadow_DrawCoronas();
5988                 if (r_timereport_active)
5989                         R_TimeReport("coronas");
5990         }
5991
5992         // don't let sound skip if going slow
5993         if (r_refdef.scene.extraupdate)
5994                 S_ExtraUpdate ();
5995 }
5996
5997 static const unsigned short bboxelements[36] =
5998 {
5999         5, 1, 3, 5, 3, 7,
6000         6, 2, 0, 6, 0, 4,
6001         7, 3, 2, 7, 2, 6,
6002         4, 0, 1, 4, 1, 5,
6003         4, 5, 7, 4, 7, 6,
6004         1, 0, 2, 1, 2, 3,
6005 };
6006
6007 #define BBOXEDGES 13
6008 static const float bboxedges[BBOXEDGES][6] = 
6009 {
6010         // whole box
6011         { 0, 0, 0, 1, 1, 1 },
6012         // bottom edges
6013         { 0, 0, 0, 0, 1, 0 },
6014         { 0, 0, 0, 1, 0, 0 },
6015         { 0, 1, 0, 1, 1, 0 },
6016         { 1, 0, 0, 1, 1, 0 },
6017         // top edges
6018         { 0, 0, 1, 0, 1, 1 },
6019         { 0, 0, 1, 1, 0, 1 },
6020         { 0, 1, 1, 1, 1, 1 },
6021         { 1, 0, 1, 1, 1, 1 },
6022         // vertical edges
6023         { 0, 0, 0, 0, 0, 1 },
6024         { 1, 0, 0, 1, 0, 1 },
6025         { 0, 1, 0, 0, 1, 1 },
6026         { 1, 1, 0, 1, 1, 1 },
6027 };
6028
6029 static void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
6030 {
6031         int numvertices = BBOXEDGES * 8;
6032         float vertex3f[BBOXEDGES * 8 * 3], color4f[BBOXEDGES * 8 * 4];
6033         int numtriangles = BBOXEDGES * 12;
6034         unsigned short elements[BBOXEDGES * 36];
6035         int i, edge;
6036         float *v, *c, f1, f2, edgemins[3], edgemaxs[3];
6037
6038         RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);
6039
6040         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6041         GL_DepthMask(false);
6042         GL_DepthRange(0, 1);
6043         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
6044
6045         for (edge = 0; edge < BBOXEDGES; edge++)
6046         {
6047                 for (i = 0; i < 3; i++)
6048                 {
6049                         edgemins[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][i] - 0.25f;
6050                         edgemaxs[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][3 + i] + 0.25f;
6051                 }
6052                 vertex3f[edge * 24 + 0] = edgemins[0]; vertex3f[edge * 24 + 1] = edgemins[1]; vertex3f[edge * 24 + 2] = edgemins[2];
6053                 vertex3f[edge * 24 + 3] = edgemaxs[0]; vertex3f[edge * 24 + 4] = edgemins[1]; vertex3f[edge * 24 + 5] = edgemins[2];
6054                 vertex3f[edge * 24 + 6] = edgemins[0]; vertex3f[edge * 24 + 7] = edgemaxs[1]; vertex3f[edge * 24 + 8] = edgemins[2];
6055                 vertex3f[edge * 24 + 9] = edgemaxs[0]; vertex3f[edge * 24 + 10] = edgemaxs[1]; vertex3f[edge * 24 + 11] = edgemins[2];
6056                 vertex3f[edge * 24 + 12] = edgemins[0]; vertex3f[edge * 24 + 13] = edgemins[1]; vertex3f[edge * 24 + 14] = edgemaxs[2];
6057                 vertex3f[edge * 24 + 15] = edgemaxs[0]; vertex3f[edge * 24 + 16] = edgemins[1]; vertex3f[edge * 24 + 17] = edgemaxs[2];
6058                 vertex3f[edge * 24 + 18] = edgemins[0]; vertex3f[edge * 24 + 19] = edgemaxs[1]; vertex3f[edge * 24 + 20] = edgemaxs[2];
6059                 vertex3f[edge * 24 + 21] = edgemaxs[0]; vertex3f[edge * 24 + 22] = edgemaxs[1]; vertex3f[edge * 24 + 23] = edgemaxs[2];
6060                 for (i = 0; i < 36; i++)
6061                         elements[edge * 36 + i] = edge * 8 + bboxelements[i];
6062         }
6063         R_FillColors(color4f, numvertices, cr, cg, cb, ca);
6064         if (r_refdef.fogenabled)
6065         {
6066                 for (i = 0, v = vertex3f, c = color4f; i < numvertices; i++, v += 3, c += 4)
6067                 {
6068                         f1 = RSurf_FogVertex(v);
6069                         f2 = 1 - f1;
6070                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
6071                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
6072                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
6073                 }
6074         }
6075         R_Mesh_PrepareVertices_Generic_Arrays(numvertices, vertex3f, color4f, NULL);
6076         R_Mesh_ResetTextureState();
6077         R_SetupShader_Generic_NoTexture(false, false);
6078         R_Mesh_Draw(0, numvertices, 0, numtriangles, NULL, NULL, 0, elements, NULL, 0);
6079 }
6080
6081 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6082 {
6083         // hacky overloading of the parameters
6084         prvm_prog_t *prog = (prvm_prog_t *)rtlight;
6085         int i;
6086         float color[4];
6087         prvm_edict_t *edict;
6088
6089         GL_CullFace(GL_NONE);
6090         R_SetupShader_Generic_NoTexture(false, false);
6091
6092         for (i = 0;i < numsurfaces;i++)
6093         {
6094                 edict = PRVM_EDICT_NUM(surfacelist[i]);
6095                 switch ((int)PRVM_serveredictfloat(edict, solid))
6096                 {
6097                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
6098                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
6099                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
6100                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
6101                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
6102                         case SOLID_CORPSE:   Vector4Set(color, 1, 0.5, 0, 0.05);break;
6103                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
6104                 }
6105                 if (prog == CLVM_prog)
6106                         color[3] *= r_showbboxes_client.value;
6107                 else
6108                         color[3] *= r_showbboxes.value;
6109                 color[3] = bound(0, color[3], 1);
6110                 GL_DepthTest(!r_showdisabledepthtest.integer);
6111                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
6112         }
6113 }
6114
6115 static void R_DrawEntityBBoxes(prvm_prog_t *prog)
6116 {
6117         int i;
6118         prvm_edict_t *edict;
6119         vec3_t center;
6120
6121         if (prog == NULL)
6122                 return;
6123
6124         for (i = 0; i < prog->num_edicts; i++)
6125         {
6126                 edict = PRVM_EDICT_NUM(i);
6127                 if (edict->free)
6128                         continue;
6129                 // exclude the following for now, as they don't live in world coordinate space and can't be solid:
6130                 if (PRVM_gameedictedict(edict, tag_entity) != 0)
6131                         continue;
6132                 if (prog == SVVM_prog && PRVM_serveredictedict(edict, viewmodelforclient) != 0)
6133                         continue;
6134                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
6135                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)prog);
6136         }
6137 }
6138
6139 static const int nomodelelement3i[24] =
6140 {
6141         5, 2, 0,
6142         5, 1, 2,
6143         5, 0, 3,
6144         5, 3, 1,
6145         0, 2, 4,
6146         2, 1, 4,
6147         3, 0, 4,
6148         1, 3, 4
6149 };
6150
6151 static const unsigned short nomodelelement3s[24] =
6152 {
6153         5, 2, 0,
6154         5, 1, 2,
6155         5, 0, 3,
6156         5, 3, 1,
6157         0, 2, 4,
6158         2, 1, 4,
6159         3, 0, 4,
6160         1, 3, 4
6161 };
6162
6163 static const float nomodelvertex3f[6*3] =
6164 {
6165         -16,   0,   0,
6166          16,   0,   0,
6167           0, -16,   0,
6168           0,  16,   0,
6169           0,   0, -16,
6170           0,   0,  16
6171 };
6172
6173 static const float nomodelcolor4f[6*4] =
6174 {
6175         0.0f, 0.0f, 0.5f, 1.0f,
6176         0.0f, 0.0f, 0.5f, 1.0f,
6177         0.0f, 0.5f, 0.0f, 1.0f,
6178         0.0f, 0.5f, 0.0f, 1.0f,
6179         0.5f, 0.0f, 0.0f, 1.0f,
6180         0.5f, 0.0f, 0.0f, 1.0f
6181 };
6182
6183 static void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6184 {
6185         int i;
6186         float f1, f2, *c;
6187         float color4f[6*4];
6188
6189         RSurf_ActiveCustomEntity(&ent->matrix, &ent->inversematrix, ent->flags, ent->shadertime, ent->colormod[0], ent->colormod[1], ent->colormod[2], ent->alpha, 6, nomodelvertex3f, NULL, NULL, NULL, NULL, nomodelcolor4f, 8, nomodelelement3i, nomodelelement3s, false, false);
6190
6191         // this is only called once per entity so numsurfaces is always 1, and
6192         // surfacelist is always {0}, so this code does not handle batches
6193
6194         if (rsurface.ent_flags & RENDER_ADDITIVE)
6195         {
6196                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
6197                 GL_DepthMask(false);
6198         }
6199         else if (ent->alpha < 1)
6200         {
6201                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6202                 GL_DepthMask(false);
6203         }
6204         else
6205         {
6206                 GL_BlendFunc(GL_ONE, GL_ZERO);
6207                 GL_DepthMask(true);
6208         }
6209         GL_DepthRange(0, (rsurface.ent_flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
6210         GL_PolygonOffset(rsurface.basepolygonfactor, rsurface.basepolygonoffset);
6211         GL_DepthTest(!(rsurface.ent_flags & RENDER_NODEPTHTEST));
6212         GL_CullFace((rsurface.ent_flags & RENDER_DOUBLESIDED) ? GL_NONE : r_refdef.view.cullface_back);
6213         memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
6214         for (i = 0, c = color4f;i < 6;i++, c += 4)
6215         {
6216                 c[0] *= ent->render_fullbright[0] * r_refdef.view.colorscale;
6217                 c[1] *= ent->render_fullbright[1] * r_refdef.view.colorscale;
6218                 c[2] *= ent->render_fullbright[2] * r_refdef.view.colorscale;
6219                 c[3] *= ent->alpha;
6220         }
6221         if (r_refdef.fogenabled)
6222         {
6223                 for (i = 0, c = color4f;i < 6;i++, c += 4)
6224                 {
6225                         f1 = RSurf_FogVertex(nomodelvertex3f + 3*i);
6226                         f2 = 1 - f1;
6227                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
6228                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
6229                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
6230                 }
6231         }
6232 //      R_Mesh_ResetTextureState();
6233         R_SetupShader_Generic_NoTexture(false, false);
6234         R_Mesh_PrepareVertices_Generic_Arrays(6, nomodelvertex3f, color4f, NULL);
6235         R_Mesh_Draw(0, 6, 0, 8, nomodelelement3i, NULL, 0, nomodelelement3s, NULL, 0);
6236 }
6237
6238 void R_DrawNoModel(entity_render_t *ent)
6239 {
6240         vec3_t org;
6241         Matrix4x4_OriginFromMatrix(&ent->matrix, org);
6242         if ((ent->flags & RENDER_ADDITIVE) || (ent->alpha < 1))
6243                 R_MeshQueue_AddTransparent((ent->flags & RENDER_NODEPTHTEST) ? TRANSPARENTSORT_HUD : TRANSPARENTSORT_DISTANCE, org, R_DrawNoModel_TransparentCallback, ent, 0, rsurface.rtlight);
6244         else
6245                 R_DrawNoModel_TransparentCallback(ent, rsurface.rtlight, 0, NULL);
6246 }
6247
6248 void R_CalcBeam_Vertex3f (float *vert, const float *org1, const float *org2, float width)
6249 {
6250         vec3_t right1, right2, diff, normal;
6251
6252         VectorSubtract (org2, org1, normal);
6253
6254         // calculate 'right' vector for start
6255         VectorSubtract (r_refdef.view.origin, org1, diff);
6256         CrossProduct (normal, diff, right1);
6257         VectorNormalize (right1);
6258
6259         // calculate 'right' vector for end
6260         VectorSubtract (r_refdef.view.origin, org2, diff);
6261         CrossProduct (normal, diff, right2);
6262         VectorNormalize (right2);
6263
6264         vert[ 0] = org1[0] + width * right1[0];
6265         vert[ 1] = org1[1] + width * right1[1];
6266         vert[ 2] = org1[2] + width * right1[2];
6267         vert[ 3] = org1[0] - width * right1[0];
6268         vert[ 4] = org1[1] - width * right1[1];
6269         vert[ 5] = org1[2] - width * right1[2];
6270         vert[ 6] = org2[0] - width * right2[0];
6271         vert[ 7] = org2[1] - width * right2[1];
6272         vert[ 8] = org2[2] - width * right2[2];
6273         vert[ 9] = org2[0] + width * right2[0];
6274         vert[10] = org2[1] + width * right2[1];
6275         vert[11] = org2[2] + width * right2[2];
6276 }
6277
6278 void R_CalcSprite_Vertex3f(float *vertex3f, const vec3_t origin, const vec3_t left, const vec3_t up, float scalex1, float scalex2, float scaley1, float scaley2)
6279 {
6280         vertex3f[ 0] = origin[0] + left[0] * scalex2 + up[0] * scaley1;
6281         vertex3f[ 1] = origin[1] + left[1] * scalex2 + up[1] * scaley1;
6282         vertex3f[ 2] = origin[2] + left[2] * scalex2 + up[2] * scaley1;
6283         vertex3f[ 3] = origin[0] + left[0] * scalex2 + up[0] * scaley2;
6284         vertex3f[ 4] = origin[1] + left[1] * scalex2 + up[1] * scaley2;
6285         vertex3f[ 5] = origin[2] + left[2] * scalex2 + up[2] * scaley2;
6286         vertex3f[ 6] = origin[0] + left[0] * scalex1 + up[0] * scaley2;
6287         vertex3f[ 7] = origin[1] + left[1] * scalex1 + up[1] * scaley2;
6288         vertex3f[ 8] = origin[2] + left[2] * scalex1 + up[2] * scaley2;
6289         vertex3f[ 9] = origin[0] + left[0] * scalex1 + up[0] * scaley1;
6290         vertex3f[10] = origin[1] + left[1] * scalex1 + up[1] * scaley1;
6291         vertex3f[11] = origin[2] + left[2] * scalex1 + up[2] * scaley1;
6292 }
6293
6294 static int R_Mesh_AddVertex(rmesh_t *mesh, float x, float y, float z)
6295 {
6296         int i;
6297         float *vertex3f;
6298         float v[3];
6299         VectorSet(v, x, y, z);
6300         for (i = 0, vertex3f = mesh->vertex3f;i < mesh->numvertices;i++, vertex3f += 3)
6301                 if (VectorDistance2(v, vertex3f) < mesh->epsilon2)
6302                         break;
6303         if (i == mesh->numvertices)
6304         {
6305                 if (mesh->numvertices < mesh->maxvertices)
6306                 {
6307                         VectorCopy(v, vertex3f);
6308                         mesh->numvertices++;
6309                 }
6310                 return mesh->numvertices;
6311         }
6312         else
6313                 return i;
6314 }
6315
6316 void R_Mesh_AddPolygon3f(rmesh_t *mesh, int numvertices, float *vertex3f)
6317 {
6318         int i;
6319         int *e, element[3];
6320         element[0] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6321         element[1] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6322         e = mesh->element3i + mesh->numtriangles * 3;
6323         for (i = 0;i < numvertices - 2;i++, vertex3f += 3)
6324         {
6325                 element[2] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);
6326                 if (mesh->numtriangles < mesh->maxtriangles)
6327                 {
6328                         *e++ = element[0];
6329                         *e++ = element[1];
6330                         *e++ = element[2];
6331                         mesh->numtriangles++;
6332                 }
6333                 element[1] = element[2];
6334         }
6335 }
6336
6337 static void R_Mesh_AddPolygon3d(rmesh_t *mesh, int numvertices, double *vertex3d)
6338 {
6339         int i;
6340         int *e, element[3];
6341         element[0] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6342         element[1] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6343         e = mesh->element3i + mesh->numtriangles * 3;
6344         for (i = 0;i < numvertices - 2;i++, vertex3d += 3)
6345         {
6346                 element[2] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);
6347                 if (mesh->numtriangles < mesh->maxtriangles)
6348                 {
6349                         *e++ = element[0];
6350                         *e++ = element[1];
6351                         *e++ = element[2];
6352                         mesh->numtriangles++;
6353                 }
6354                 element[1] = element[2];
6355         }
6356 }
6357
6358 #define R_MESH_PLANE_DIST_EPSILON (1.0 / 32.0)
6359 void R_Mesh_AddBrushMeshFromPlanes(rmesh_t *mesh, int numplanes, mplane_t *planes)
6360 {
6361         int planenum, planenum2;
6362         int w;
6363         int tempnumpoints;
6364         mplane_t *plane, *plane2;
6365         double maxdist;
6366         double temppoints[2][256*3];
6367         // figure out how large a bounding box we need to properly compute this brush
6368         maxdist = 0;
6369         for (w = 0;w < numplanes;w++)
6370                 maxdist = max(maxdist, fabs(planes[w].dist));
6371         // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
6372         maxdist = floor(maxdist * (4.0 / 1024.0) + 1) * 1024.0;
6373         for (planenum = 0, plane = planes;planenum < numplanes;planenum++, plane++)
6374         {
6375                 w = 0;
6376                 tempnumpoints = 4;
6377                 PolygonD_QuadForPlane(temppoints[w], plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, maxdist);
6378                 for (planenum2 = 0, plane2 = planes;planenum2 < numplanes && tempnumpoints >= 3;planenum2++, plane2++)
6379                 {
6380                         if (planenum2 == planenum)
6381                                 continue;
6382                         PolygonD_Divide(tempnumpoints, temppoints[w], plane2->normal[0], plane2->normal[1], plane2->normal[2], plane2->dist, R_MESH_PLANE_DIST_EPSILON, 0, NULL, NULL, 256, temppoints[!w], &tempnumpoints, NULL);
6383                         w = !w;
6384                 }
6385                 if (tempnumpoints < 3)
6386                         continue;
6387                 // generate elements forming a triangle fan for this polygon
6388                 R_Mesh_AddPolygon3d(mesh, tempnumpoints, temppoints[w]);
6389         }
6390 }
6391
6392 static qbool R_TestQ3WaveFunc(q3wavefunc_t func, const float *parms)
6393 {
6394         if(parms[0] == 0 && parms[1] == 0)
6395                 return false;
6396         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6397                 if(rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)] == 0)
6398                         return false;
6399         return true;
6400 }
6401
6402 static float R_EvaluateQ3WaveFunc(q3wavefunc_t func, const float *parms)
6403 {
6404         double index, f;
6405         index = parms[2] + rsurface.shadertime * parms[3];
6406         index -= floor(index);
6407         switch (func & ((1 << Q3WAVEFUNC_USER_SHIFT) - 1))
6408         {
6409         default:
6410         case Q3WAVEFUNC_NONE:
6411         case Q3WAVEFUNC_NOISE:
6412         case Q3WAVEFUNC_COUNT:
6413                 f = 0;
6414                 break;
6415         case Q3WAVEFUNC_SIN: f = sin(index * M_PI * 2);break;
6416         case Q3WAVEFUNC_SQUARE: f = index < 0.5 ? 1 : -1;break;
6417         case Q3WAVEFUNC_SAWTOOTH: f = index;break;
6418         case Q3WAVEFUNC_INVERSESAWTOOTH: f = 1 - index;break;
6419         case Q3WAVEFUNC_TRIANGLE:
6420                 index *= 4;
6421                 f = index - floor(index);
6422                 if (index < 1)
6423                 {
6424                         // f = f;
6425                 }
6426                 else if (index < 2)
6427                         f = 1 - f;
6428                 else if (index < 3)
6429                         f = -f;
6430                 else
6431                         f = -(1 - f);
6432                 break;
6433         }
6434         f = parms[0] + parms[1] * f;
6435         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6436                 f *= rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)];
6437         return (float) f;
6438 }
6439
6440 static void R_tcMod_ApplyToMatrix(matrix4x4_t *texmatrix, q3shaderinfo_layer_tcmod_t *tcmod, int currentmaterialflags)
6441 {
6442         int w, h, idx;
6443         float shadertime;
6444         float f;
6445         float offsetd[2];
6446         float tcmat[12];
6447         matrix4x4_t matrix, temp;
6448         // if shadertime exceeds about 9 hours (32768 seconds), just wrap it,
6449         // it's better to have one huge fixup every 9 hours than gradual
6450         // degradation over time which looks consistently bad after many hours.
6451         //
6452         // tcmod scroll in particular suffers from this degradation which can't be
6453         // effectively worked around even with floor() tricks because we don't
6454         // know if tcmod scroll is the last tcmod being applied, and for clampmap
6455         // a workaround involving floor() would be incorrect anyway...
6456         shadertime = rsurface.shadertime;
6457         if (shadertime >= 32768.0f)
6458                 shadertime -= floor(rsurface.shadertime * (1.0f / 32768.0f)) * 32768.0f;
6459         switch(tcmod->tcmod)
6460         {
6461                 case Q3TCMOD_COUNT:
6462                 case Q3TCMOD_NONE:
6463                         if (currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6464                                 matrix = r_waterscrollmatrix;
6465                         else
6466                                 matrix = identitymatrix;
6467                         break;
6468                 case Q3TCMOD_ENTITYTRANSLATE:
6469                         // this is used in Q3 to allow the gamecode to control texcoord
6470                         // scrolling on the entity, which is not supported in darkplaces yet.
6471                         Matrix4x4_CreateTranslate(&matrix, 0, 0, 0);
6472                         break;
6473                 case Q3TCMOD_ROTATE:
6474                         Matrix4x4_CreateTranslate(&matrix, 0.5, 0.5, 0);
6475                         Matrix4x4_ConcatRotate(&matrix, tcmod->parms[0] * rsurface.shadertime, 0, 0, 1);
6476                         Matrix4x4_ConcatTranslate(&matrix, -0.5, -0.5, 0);
6477                         break;
6478                 case Q3TCMOD_SCALE:
6479                         Matrix4x4_CreateScale3(&matrix, tcmod->parms[0], tcmod->parms[1], 1);
6480                         break;
6481                 case Q3TCMOD_SCROLL:
6482                         // this particular tcmod is a "bug for bug" compatible one with regards to
6483                         // Quake3, the wrapping is unnecessary with our shadetime fix but quake3
6484                         // specifically did the wrapping and so we must mimic that...
6485                         offsetd[0] = tcmod->parms[0] * rsurface.shadertime;
6486                         offsetd[1] = tcmod->parms[1] * rsurface.shadertime;
6487                         Matrix4x4_CreateTranslate(&matrix, offsetd[0] - floor(offsetd[0]), offsetd[1] - floor(offsetd[1]), 0);
6488                         break;
6489                 case Q3TCMOD_PAGE: // poor man's animmap (to store animations into a single file, useful for HTTP downloaded textures)
6490                         w = (int) tcmod->parms[0];
6491                         h = (int) tcmod->parms[1];
6492                         f = rsurface.shadertime / (tcmod->parms[2] * w * h);
6493                         f = f - floor(f);
6494                         idx = (int) floor(f * w * h);
6495                         Matrix4x4_CreateTranslate(&matrix, (idx % w) / tcmod->parms[0], (idx / w) / tcmod->parms[1], 0);
6496                         break;
6497                 case Q3TCMOD_STRETCH:
6498                         f = 1.0f / R_EvaluateQ3WaveFunc(tcmod->wavefunc, tcmod->waveparms);
6499                         Matrix4x4_CreateFromQuakeEntity(&matrix, 0.5f * (1 - f), 0.5 * (1 - f), 0, 0, 0, 0, f);
6500                         break;
6501                 case Q3TCMOD_TRANSFORM:
6502                         VectorSet(tcmat +  0, tcmod->parms[0], tcmod->parms[1], 0);
6503                         VectorSet(tcmat +  3, tcmod->parms[2], tcmod->parms[3], 0);
6504                         VectorSet(tcmat +  6, 0                   , 0                , 1);
6505                         VectorSet(tcmat +  9, tcmod->parms[4], tcmod->parms[5], 0);
6506                         Matrix4x4_FromArray12FloatGL(&matrix, tcmat);
6507                         break;
6508                 case Q3TCMOD_TURBULENT:
6509                         // this is handled in the RSurf_PrepareVertices function
6510                         matrix = identitymatrix;
6511                         break;
6512         }
6513         temp = *texmatrix;
6514         Matrix4x4_Concat(texmatrix, &matrix, &temp);
6515 }
6516
6517 static void R_LoadQWSkin(r_qwskincache_t *cache, const char *skinname)
6518 {
6519         int textureflags = (r_mipskins.integer ? TEXF_MIPMAP : 0) | TEXF_PICMIP;
6520         char name[MAX_QPATH];
6521         skinframe_t *skinframe;
6522         unsigned char pixels[296*194];
6523         strlcpy(cache->name, skinname, sizeof(cache->name));
6524         dpsnprintf(name, sizeof(name), "skins/%s.pcx", cache->name);
6525         if (developer_loading.integer)
6526                 Con_Printf("loading %s\n", name);
6527         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
6528         if (!skinframe || !skinframe->base)
6529         {
6530                 unsigned char *f;
6531                 fs_offset_t filesize;
6532                 skinframe = NULL;
6533                 f = FS_LoadFile(name, tempmempool, true, &filesize);
6534                 if (f)
6535                 {
6536                         if (LoadPCX_QWSkin(f, (int)filesize, pixels, 296, 194))
6537                                 skinframe = R_SkinFrame_LoadInternalQuake(name, textureflags, true, r_fullbrights.integer, pixels, image_width, image_height);
6538                         Mem_Free(f);
6539                 }
6540         }
6541         cache->skinframe = skinframe;
6542 }
6543
6544 texture_t *R_GetCurrentTexture(texture_t *t)
6545 {
6546         int i, q;
6547         const entity_render_t *ent = rsurface.entity;
6548         model_t *model = ent->model; // when calling this, ent must not be NULL
6549         q3shaderinfo_layer_tcmod_t *tcmod;
6550         float specularscale = 0.0f;
6551
6552         if (t->update_lastrenderframe == r_textureframe && t->update_lastrenderentity == (void *)ent && !rsurface.forcecurrenttextureupdate)
6553                 return t->currentframe;
6554         t->update_lastrenderframe = r_textureframe;
6555         t->update_lastrenderentity = (void *)ent;
6556
6557         if(ent->entitynumber >= MAX_EDICTS && ent->entitynumber < 2 * MAX_EDICTS)
6558                 t->camera_entity = ent->entitynumber;
6559         else
6560                 t->camera_entity = 0;
6561
6562         // switch to an alternate material if this is a q1bsp animated material
6563         {
6564                 texture_t *texture = t;
6565                 int s = rsurface.ent_skinnum;
6566                 if ((unsigned int)s >= (unsigned int)model->numskins)
6567                         s = 0;
6568                 if (model->skinscenes)
6569                 {
6570                         if (model->skinscenes[s].framecount > 1)
6571                                 s = model->skinscenes[s].firstframe + (unsigned int) (rsurface.shadertime * model->skinscenes[s].framerate) % model->skinscenes[s].framecount;
6572                         else
6573                                 s = model->skinscenes[s].firstframe;
6574                 }
6575                 if (s > 0)
6576                         t = t + s * model->num_surfaces;
6577                 if (t->animated)
6578                 {
6579                         // use an alternate animation if the entity's frame is not 0,
6580                         // and only if the texture has an alternate animation
6581                         if (t->animated == 2) // q2bsp
6582                                 t = t->anim_frames[0][ent->framegroupblend[0].frame % t->anim_total[0]];
6583                         else if (rsurface.ent_alttextures && t->anim_total[1])
6584                                 t = t->anim_frames[1][(t->anim_total[1] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[1]) : 0];
6585                         else
6586                                 t = t->anim_frames[0][(t->anim_total[0] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[0]) : 0];
6587                 }
6588                 texture->currentframe = t;
6589         }
6590
6591         // update currentskinframe to be a qw skin or animation frame
6592         if (rsurface.ent_qwskin >= 0)
6593         {
6594                 i = rsurface.ent_qwskin;
6595                 if (!r_qwskincache || r_qwskincache_size != cl.maxclients)
6596                 {
6597                         r_qwskincache_size = cl.maxclients;
6598                         if (r_qwskincache)
6599                                 Mem_Free(r_qwskincache);
6600                         r_qwskincache = (r_qwskincache_t *)Mem_Alloc(r_main_mempool, sizeof(*r_qwskincache) * r_qwskincache_size);
6601                 }
6602                 if (strcmp(r_qwskincache[i].name, cl.scores[i].qw_skin))
6603                         R_LoadQWSkin(&r_qwskincache[i], cl.scores[i].qw_skin);
6604                 t->currentskinframe = r_qwskincache[i].skinframe;
6605                 if (t->materialshaderpass && t->currentskinframe == NULL)
6606                         t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6607         }
6608         else if (t->materialshaderpass && t->materialshaderpass->numframes >= 2)
6609                 t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6610         if (t->backgroundshaderpass && t->backgroundshaderpass->numframes >= 2)
6611                 t->backgroundcurrentskinframe = t->backgroundshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->backgroundshaderpass->framerate, t->backgroundshaderpass->numframes)];
6612
6613         t->currentmaterialflags = t->basematerialflags;
6614         t->currentalpha = rsurface.entity->alpha * t->basealpha;
6615         if (t->basematerialflags & MATERIALFLAG_WATERALPHA && (model->brush.supportwateralpha || r_water.integer || r_novis.integer || r_trippy.integer))
6616                 t->currentalpha *= r_wateralpha.value;
6617         if(t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay)
6618                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; // we apply wateralpha later
6619         if(!r_fb.water.enabled || r_refdef.view.isoverlay)
6620                 t->currentmaterialflags &= ~(MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA);
6621
6622         // decide on which type of lighting to use for this surface
6623         if (rsurface.entity->render_modellight_forced)
6624                 t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT;
6625         if (rsurface.entity->render_rtlight_disabled)
6626                 t->currentmaterialflags |= MATERIALFLAG_NORTLIGHT;
6627         if (rsurface.entity->render_lightgrid)
6628                 t->currentmaterialflags |= MATERIALFLAG_LIGHTGRID;
6629         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND && !(R_BlendFuncFlags(t->customblendfunc[0], t->customblendfunc[1]) & BLENDFUNC_ALLOWS_COLORMOD))
6630         {
6631                 // some CUSTOMBLEND blendfuncs are too weird, we have to ignore colormod and view colorscale
6632                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NORTLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6633                 for (q = 0; q < 3; q++)
6634                 {
6635                         t->render_glowmod[q] = rsurface.entity->glowmod[q];
6636                         t->render_modellight_lightdir_world[q] = q == 2;
6637                         t->render_modellight_lightdir_local[q] = q == 2;
6638                         t->render_modellight_ambient[q] = 1;
6639                         t->render_modellight_diffuse[q] = 0;
6640                         t->render_modellight_specular[q] = 0;
6641                         t->render_lightmap_ambient[q] = 0;
6642                         t->render_lightmap_diffuse[q] = 0;
6643                         t->render_lightmap_specular[q] = 0;
6644                         t->render_rtlight_diffuse[q] = 0;
6645                         t->render_rtlight_specular[q] = 0;
6646                 }
6647         }
6648         else if ((t->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) || !(rsurface.ent_flags & RENDER_LIGHT))
6649         {
6650                 // fullbright is basically MATERIALFLAG_MODELLIGHT but with ambient locked to 1,1,1 and no shading
6651                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_NORTLIGHT | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6652                 for (q = 0; q < 3; q++)
6653                 {
6654                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6655                         t->render_modellight_ambient[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6656                         t->render_modellight_lightdir_world[q] = q == 2;
6657                         t->render_modellight_lightdir_local[q] = q == 2;
6658                         t->render_modellight_diffuse[q] = 0;
6659                         t->render_modellight_specular[q] = 0;
6660                         t->render_lightmap_ambient[q] = 0;
6661                         t->render_lightmap_diffuse[q] = 0;
6662                         t->render_lightmap_specular[q] = 0;
6663                         t->render_rtlight_diffuse[q] = 0;
6664                         t->render_rtlight_specular[q] = 0;
6665                 }
6666         }
6667         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
6668         {
6669                 t->currentmaterialflags &= ~MATERIALFLAG_MODELLIGHT;
6670                 for (q = 0; q < 3; q++)
6671                 {
6672                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6673                         t->render_modellight_lightdir_world[q] = q == 2;
6674                         t->render_modellight_lightdir_local[q] = q == 2;
6675                         t->render_modellight_ambient[q] = 0;
6676                         t->render_modellight_diffuse[q] = 0;
6677                         t->render_modellight_specular[q] = 0;
6678                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6679                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6680                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6681                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6682                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6683                 }
6684         }
6685         else if ((rsurface.ent_flags & (RENDER_DYNAMICMODELLIGHT | RENDER_CUSTOMIZEDMODELLIGHT)) || rsurface.modeltexcoordlightmap2f == NULL)
6686         {
6687                 // ambient + single direction light (modellight)
6688                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6689                 for (q = 0; q < 3; q++)
6690                 {
6691                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6692                         t->render_modellight_lightdir_world[q] = rsurface.entity->render_modellight_lightdir_world[q];
6693                         t->render_modellight_lightdir_local[q] = rsurface.entity->render_modellight_lightdir_local[q];
6694                         t->render_modellight_ambient[q] = rsurface.entity->render_modellight_ambient[q] * r_refdef.view.colorscale;
6695                         t->render_modellight_diffuse[q] = rsurface.entity->render_modellight_diffuse[q] * r_refdef.view.colorscale;
6696                         t->render_modellight_specular[q] = rsurface.entity->render_modellight_specular[q] * r_refdef.view.colorscale;
6697                         t->render_lightmap_ambient[q] = 0;
6698                         t->render_lightmap_diffuse[q] = 0;
6699                         t->render_lightmap_specular[q] = 0;
6700                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6701                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6702                 }
6703         }
6704         else
6705         {
6706                 // lightmap - 2x diffuse and specular brightness because bsp files have 0-2 colors as 0-1
6707                 for (q = 0; q < 3; q++)
6708                 {
6709                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6710                         t->render_modellight_lightdir_world[q] = q == 2;
6711                         t->render_modellight_lightdir_local[q] = q == 2;
6712                         t->render_modellight_ambient[q] = 0;
6713                         t->render_modellight_diffuse[q] = 0;
6714                         t->render_modellight_specular[q] = 0;
6715                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6716                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6717                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6718                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6719                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6720                 }
6721         }
6722
6723         if (t->currentmaterialflags & MATERIALFLAG_VERTEXCOLOR)
6724         {
6725                 // since MATERIALFLAG_VERTEXCOLOR uses the lightmapcolor4f vertex
6726                 // attribute, we punt it to the lightmap path and hope for the best,
6727                 // but lighting doesn't work.
6728                 //
6729                 // FIXME: this is fine for effects but CSQC polygons should be subject
6730                 // to lighting.
6731                 t->currentmaterialflags &= ~(MATERIALFLAG_MODELLIGHT | MATERIALFLAG_LIGHTGRID);
6732                 for (q = 0; q < 3; q++)
6733                 {
6734                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6735                         t->render_modellight_lightdir_world[q] = q == 2;
6736                         t->render_modellight_lightdir_local[q] = q == 2;
6737                         t->render_modellight_ambient[q] = 0;
6738                         t->render_modellight_diffuse[q] = 0;
6739                         t->render_modellight_specular[q] = 0;
6740                         t->render_lightmap_ambient[q] = 0;
6741                         t->render_lightmap_diffuse[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6742                         t->render_lightmap_specular[q] = 0;
6743                         t->render_rtlight_diffuse[q] = 0;
6744                         t->render_rtlight_specular[q] = 0;
6745                 }
6746         }
6747
6748         for (q = 0; q < 3; q++)
6749         {
6750                 t->render_colormap_pants[q] = rsurface.entity->colormap_pantscolor[q];
6751                 t->render_colormap_shirt[q] = rsurface.entity->colormap_shirtcolor[q];
6752         }
6753
6754         if (rsurface.ent_flags & RENDER_ADDITIVE)
6755                 t->currentmaterialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6756         else if (t->currentalpha < 1)
6757                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6758         // LadyHavoc: prevent bugs where code checks add or alpha at higher priority than customblend by clearing these flags
6759         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6760                 t->currentmaterialflags &= ~(MATERIALFLAG_ADD | MATERIALFLAG_ALPHA);
6761         if (rsurface.ent_flags & RENDER_DOUBLESIDED)
6762                 t->currentmaterialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_NOCULLFACE;
6763         if (rsurface.ent_flags & (RENDER_NODEPTHTEST | RENDER_VIEWMODEL))
6764                 t->currentmaterialflags |= MATERIALFLAG_SHORTDEPTHRANGE;
6765         if (t->backgroundshaderpass)
6766                 t->currentmaterialflags |= MATERIALFLAG_VERTEXTEXTUREBLEND;
6767         if (t->currentmaterialflags & MATERIALFLAG_BLENDED)
6768         {
6769                 if (t->currentmaterialflags & (MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA))
6770                         t->currentmaterialflags &= ~MATERIALFLAG_BLENDED;
6771         }
6772         else
6773                 t->currentmaterialflags &= ~(MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA);
6774         if (vid.allowalphatocoverage && r_transparent_alphatocoverage.integer >= 2 && ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA | MATERIALFLAG_ADD | MATERIALFLAG_CUSTOMBLEND)) == (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)))
6775         {
6776                 // promote alphablend to alphatocoverage (a type of alphatest) if antialiasing is on
6777                 t->currentmaterialflags = (t->currentmaterialflags & ~(MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)) | MATERIALFLAG_ALPHATEST;
6778         }
6779         if ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST)) == MATERIALFLAG_BLENDED && r_transparentdepthmasking.integer && !(t->basematerialflags & MATERIALFLAG_BLENDED))
6780                 t->currentmaterialflags |= MATERIALFLAG_TRANSDEPTH;
6781
6782         // there is no tcmod
6783         if (t->currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6784         {
6785                 t->currenttexmatrix = r_waterscrollmatrix;
6786                 t->currentbackgroundtexmatrix = r_waterscrollmatrix;
6787         }
6788         else if (!(t->currentmaterialflags & MATERIALFLAG_CUSTOMSURFACE))
6789         {
6790                 Matrix4x4_CreateIdentity(&t->currenttexmatrix);
6791                 Matrix4x4_CreateIdentity(&t->currentbackgroundtexmatrix);
6792         }
6793
6794         if (t->materialshaderpass)
6795                 for (i = 0, tcmod = t->materialshaderpass->tcmods;i < Q3MAXTCMODS && tcmod->tcmod;i++, tcmod++)
6796                         R_tcMod_ApplyToMatrix(&t->currenttexmatrix, tcmod, t->currentmaterialflags);
6797
6798         t->colormapping = VectorLength2(t->render_colormap_pants) + VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f);
6799         if (t->currentskinframe->qpixels)
6800                 R_SkinFrame_GenerateTexturesFromQPixels(t->currentskinframe, t->colormapping);
6801         t->basetexture = (!t->colormapping && t->currentskinframe->merged) ? t->currentskinframe->merged : t->currentskinframe->base;
6802         if (!t->basetexture)
6803                 t->basetexture = r_texture_notexture;
6804         t->pantstexture = t->colormapping ? t->currentskinframe->pants : NULL;
6805         t->shirttexture = t->colormapping ? t->currentskinframe->shirt : NULL;
6806         t->nmaptexture = t->currentskinframe->nmap;
6807         if (!t->nmaptexture)
6808                 t->nmaptexture = r_texture_blanknormalmap;
6809         t->glosstexture = r_texture_black;
6810         t->glowtexture = t->currentskinframe->glow;
6811         t->fogtexture = t->currentskinframe->fog;
6812         t->reflectmasktexture = t->currentskinframe->reflect;
6813         if (t->backgroundshaderpass)
6814         {
6815                 for (i = 0, tcmod = t->backgroundshaderpass->tcmods; i < Q3MAXTCMODS && tcmod->tcmod; i++, tcmod++)
6816                         R_tcMod_ApplyToMatrix(&t->currentbackgroundtexmatrix, tcmod, t->currentmaterialflags);
6817                 t->backgroundbasetexture = (!t->colormapping && t->backgroundcurrentskinframe->merged) ? t->backgroundcurrentskinframe->merged : t->backgroundcurrentskinframe->base;
6818                 t->backgroundnmaptexture = t->backgroundcurrentskinframe->nmap;
6819                 t->backgroundglosstexture = r_texture_black;
6820                 t->backgroundglowtexture = t->backgroundcurrentskinframe->glow;
6821                 if (!t->backgroundnmaptexture)
6822                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6823                 // make sure that if glow is going to be used, both textures are not NULL
6824                 if (!t->backgroundglowtexture && t->glowtexture)
6825                         t->backgroundglowtexture = r_texture_black;
6826                 if (!t->glowtexture && t->backgroundglowtexture)
6827                         t->glowtexture = r_texture_black;
6828         }
6829         else
6830         {
6831                 t->backgroundbasetexture = r_texture_white;
6832                 t->backgroundnmaptexture = r_texture_blanknormalmap;
6833                 t->backgroundglosstexture = r_texture_black;
6834                 t->backgroundglowtexture = NULL;
6835         }
6836         t->specularpower = r_shadow_glossexponent.value;
6837         // TODO: store reference values for these in the texture?
6838         if (r_shadow_gloss.integer > 0)
6839         {
6840                 if (t->currentskinframe->gloss || (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss))
6841                 {
6842                         if (r_shadow_glossintensity.value > 0)
6843                         {
6844                                 t->glosstexture = t->currentskinframe->gloss ? t->currentskinframe->gloss : r_texture_white;
6845                                 t->backgroundglosstexture = (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss) ? t->backgroundcurrentskinframe->gloss : r_texture_white;
6846                                 specularscale = r_shadow_glossintensity.value;
6847                         }
6848                 }
6849                 else if (r_shadow_gloss.integer >= 2 && r_shadow_gloss2intensity.value > 0)
6850                 {
6851                         t->glosstexture = r_texture_white;
6852                         t->backgroundglosstexture = r_texture_white;
6853                         specularscale = r_shadow_gloss2intensity.value;
6854                         t->specularpower = r_shadow_gloss2exponent.value;
6855                 }
6856         }
6857         specularscale *= t->specularscalemod;
6858         t->specularpower *= t->specularpowermod;
6859
6860         // lightmaps mode looks bad with dlights using actual texturing, so turn
6861         // off the colormap and glossmap, but leave the normalmap on as it still
6862         // accurately represents the shading involved
6863         if (gl_lightmaps.integer && ent != &cl_meshentities[MESH_UI].render)
6864         {
6865                 t->basetexture = r_texture_grey128;
6866                 t->pantstexture = r_texture_black;
6867                 t->shirttexture = r_texture_black;
6868                 if (gl_lightmaps.integer < 2)
6869                         t->nmaptexture = r_texture_blanknormalmap;
6870                 t->glosstexture = r_texture_black;
6871                 t->glowtexture = NULL;
6872                 t->fogtexture = NULL;
6873                 t->reflectmasktexture = NULL;
6874                 t->backgroundbasetexture = NULL;
6875                 if (gl_lightmaps.integer < 2)
6876                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6877                 t->backgroundglosstexture = r_texture_black;
6878                 t->backgroundglowtexture = NULL;
6879                 specularscale = 0;
6880                 t->currentmaterialflags = MATERIALFLAG_WALL | (t->currentmaterialflags & (MATERIALFLAG_NOCULLFACE | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SHORTDEPTHRANGE));
6881         }
6882
6883         if (specularscale != 1.0f)
6884         {
6885                 for (q = 0; q < 3; q++)
6886                 {
6887                         t->render_modellight_specular[q] *= specularscale;
6888                         t->render_lightmap_specular[q] *= specularscale;
6889                         t->render_rtlight_specular[q] *= specularscale;
6890                 }
6891         }
6892
6893         t->currentblendfunc[0] = GL_ONE;
6894         t->currentblendfunc[1] = GL_ZERO;
6895         if (t->currentmaterialflags & MATERIALFLAG_ADD)
6896         {
6897                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6898                 t->currentblendfunc[1] = GL_ONE;
6899         }
6900         else if (t->currentmaterialflags & MATERIALFLAG_ALPHA)
6901         {
6902                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6903                 t->currentblendfunc[1] = GL_ONE_MINUS_SRC_ALPHA;
6904         }
6905         else if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6906         {
6907                 t->currentblendfunc[0] = t->customblendfunc[0];
6908                 t->currentblendfunc[1] = t->customblendfunc[1];
6909         }
6910
6911         return t;
6912 }
6913
6914 rsurfacestate_t rsurface;
6915
6916 void RSurf_ActiveModelEntity(const entity_render_t *ent, qbool wantnormals, qbool wanttangents, qbool prepass)
6917 {
6918         model_t *model = ent->model;
6919         //if (rsurface.entity == ent && (!model->surfmesh.isanimated || (!wantnormals && !wanttangents)))
6920         //      return;
6921         rsurface.entity = (entity_render_t *)ent;
6922         rsurface.skeleton = ent->skeleton;
6923         memcpy(rsurface.userwavefunc_param, ent->userwavefunc_param, sizeof(rsurface.userwavefunc_param));
6924         rsurface.ent_skinnum = ent->skinnum;
6925         rsurface.ent_qwskin = (ent->entitynumber <= cl.maxclients && ent->entitynumber >= 1 && cls.protocol == PROTOCOL_QUAKEWORLD && cl.scores[ent->entitynumber - 1].qw_skin[0] && !strcmp(ent->model->name, "progs/player.mdl")) ? (ent->entitynumber - 1) : -1;
6926         rsurface.ent_flags = ent->flags;
6927         if (r_fullbright_directed.integer && (r_fullbright.integer || !model->lit))
6928                 rsurface.ent_flags |= RENDER_LIGHT | RENDER_DYNAMICMODELLIGHT;
6929         rsurface.shadertime = r_refdef.scene.time - ent->shadertime;
6930         rsurface.matrix = ent->matrix;
6931         rsurface.inversematrix = ent->inversematrix;
6932         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
6933         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
6934         R_EntityMatrix(&rsurface.matrix);
6935         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
6936         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
6937         rsurface.fogplaneviewdist = r_refdef.fogplaneviewdist * rsurface.inversematrixscale;
6938         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
6939         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
6940         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
6941         memcpy(rsurface.frameblend, ent->frameblend, sizeof(ent->frameblend));
6942         rsurface.ent_alttextures = ent->framegroupblend[0].frame != 0;
6943         rsurface.basepolygonfactor = r_refdef.polygonfactor;
6944         rsurface.basepolygonoffset = r_refdef.polygonoffset;
6945         if (ent->model->brush.submodel && !prepass)
6946         {
6947                 rsurface.basepolygonfactor += r_polygonoffset_submodel_factor.value;
6948                 rsurface.basepolygonoffset += r_polygonoffset_submodel_offset.value;
6949         }
6950         // if the animcache code decided it should use the shader path, skip the deform step
6951         rsurface.entityskeletaltransform3x4 = ent->animcache_skeletaltransform3x4;
6952         rsurface.entityskeletaltransform3x4buffer = ent->animcache_skeletaltransform3x4buffer;
6953         rsurface.entityskeletaltransform3x4offset = ent->animcache_skeletaltransform3x4offset;
6954         rsurface.entityskeletaltransform3x4size = ent->animcache_skeletaltransform3x4size;
6955         rsurface.entityskeletalnumtransforms = rsurface.entityskeletaltransform3x4 ? model->num_bones : 0;
6956         if (model->surfmesh.isanimated && model->AnimateVertices && !rsurface.entityskeletaltransform3x4)
6957         {
6958                 if (ent->animcache_vertex3f)
6959                 {
6960                         r_refdef.stats[r_stat_batch_entitycache_count]++;
6961                         r_refdef.stats[r_stat_batch_entitycache_surfaces] += model->num_surfaces;
6962                         r_refdef.stats[r_stat_batch_entitycache_vertices] += model->surfmesh.num_vertices;
6963                         r_refdef.stats[r_stat_batch_entitycache_triangles] += model->surfmesh.num_triangles;
6964                         rsurface.modelvertex3f = ent->animcache_vertex3f;
6965                         rsurface.modelvertex3f_vertexbuffer = ent->animcache_vertex3f_vertexbuffer;
6966                         rsurface.modelvertex3f_bufferoffset = ent->animcache_vertex3f_bufferoffset;
6967                         rsurface.modelsvector3f = wanttangents ? ent->animcache_svector3f : NULL;
6968                         rsurface.modelsvector3f_vertexbuffer = wanttangents ? ent->animcache_svector3f_vertexbuffer : NULL;
6969                         rsurface.modelsvector3f_bufferoffset = wanttangents ? ent->animcache_svector3f_bufferoffset : 0;
6970                         rsurface.modeltvector3f = wanttangents ? ent->animcache_tvector3f : NULL;
6971                         rsurface.modeltvector3f_vertexbuffer = wanttangents ? ent->animcache_tvector3f_vertexbuffer : NULL;
6972                         rsurface.modeltvector3f_bufferoffset = wanttangents ? ent->animcache_tvector3f_bufferoffset : 0;
6973                         rsurface.modelnormal3f = wantnormals ? ent->animcache_normal3f : NULL;
6974                         rsurface.modelnormal3f_vertexbuffer = wantnormals ? ent->animcache_normal3f_vertexbuffer : NULL;
6975                         rsurface.modelnormal3f_bufferoffset = wantnormals ? ent->animcache_normal3f_bufferoffset : 0;
6976                 }
6977                 else if (wanttangents)
6978                 {
6979                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
6980                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
6981                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
6982                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
6983                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6984                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6985                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6986                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6987                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, rsurface.modelsvector3f, rsurface.modeltvector3f);
6988                         rsurface.modelvertex3f_vertexbuffer = NULL;
6989                         rsurface.modelvertex3f_bufferoffset = 0;
6990                         rsurface.modelvertex3f_vertexbuffer = 0;
6991                         rsurface.modelvertex3f_bufferoffset = 0;
6992                         rsurface.modelsvector3f_vertexbuffer = 0;
6993                         rsurface.modelsvector3f_bufferoffset = 0;
6994                         rsurface.modeltvector3f_vertexbuffer = 0;
6995                         rsurface.modeltvector3f_bufferoffset = 0;
6996                         rsurface.modelnormal3f_vertexbuffer = 0;
6997                         rsurface.modelnormal3f_bufferoffset = 0;
6998                 }
6999                 else if (wantnormals)
7000                 {
7001                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7002                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7003                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7004                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7005                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7006                         rsurface.modelsvector3f = NULL;
7007                         rsurface.modeltvector3f = NULL;
7008                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7009                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, NULL, NULL);
7010                         rsurface.modelvertex3f_vertexbuffer = NULL;
7011                         rsurface.modelvertex3f_bufferoffset = 0;
7012                         rsurface.modelvertex3f_vertexbuffer = 0;
7013                         rsurface.modelvertex3f_bufferoffset = 0;
7014                         rsurface.modelsvector3f_vertexbuffer = 0;
7015                         rsurface.modelsvector3f_bufferoffset = 0;
7016                         rsurface.modeltvector3f_vertexbuffer = 0;
7017                         rsurface.modeltvector3f_bufferoffset = 0;
7018                         rsurface.modelnormal3f_vertexbuffer = 0;
7019                         rsurface.modelnormal3f_bufferoffset = 0;
7020                 }
7021                 else
7022                 {
7023                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7024                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7025                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7026                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7027                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7028                         rsurface.modelsvector3f = NULL;
7029                         rsurface.modeltvector3f = NULL;
7030                         rsurface.modelnormal3f = NULL;
7031                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, NULL, NULL, NULL);
7032                         rsurface.modelvertex3f_vertexbuffer = NULL;
7033                         rsurface.modelvertex3f_bufferoffset = 0;
7034                         rsurface.modelvertex3f_vertexbuffer = 0;
7035                         rsurface.modelvertex3f_bufferoffset = 0;
7036                         rsurface.modelsvector3f_vertexbuffer = 0;
7037                         rsurface.modelsvector3f_bufferoffset = 0;
7038                         rsurface.modeltvector3f_vertexbuffer = 0;
7039                         rsurface.modeltvector3f_bufferoffset = 0;
7040                         rsurface.modelnormal3f_vertexbuffer = 0;
7041                         rsurface.modelnormal3f_bufferoffset = 0;
7042                 }
7043                 rsurface.modelgeneratedvertex = true;
7044         }
7045         else
7046         {
7047                 if (rsurface.entityskeletaltransform3x4)
7048                 {
7049                         r_refdef.stats[r_stat_batch_entityskeletal_count]++;
7050                         r_refdef.stats[r_stat_batch_entityskeletal_surfaces] += model->num_surfaces;
7051                         r_refdef.stats[r_stat_batch_entityskeletal_vertices] += model->surfmesh.num_vertices;
7052                         r_refdef.stats[r_stat_batch_entityskeletal_triangles] += model->surfmesh.num_triangles;
7053                 }
7054                 else
7055                 {
7056                         r_refdef.stats[r_stat_batch_entitystatic_count]++;
7057                         r_refdef.stats[r_stat_batch_entitystatic_surfaces] += model->num_surfaces;
7058                         r_refdef.stats[r_stat_batch_entitystatic_vertices] += model->surfmesh.num_vertices;
7059                         r_refdef.stats[r_stat_batch_entitystatic_triangles] += model->surfmesh.num_triangles;
7060                 }
7061                 rsurface.modelvertex3f  = model->surfmesh.data_vertex3f;
7062                 rsurface.modelvertex3f_vertexbuffer = model->surfmesh.data_vertex3f_vertexbuffer;
7063                 rsurface.modelvertex3f_bufferoffset = model->surfmesh.data_vertex3f_bufferoffset;
7064                 rsurface.modelsvector3f = model->surfmesh.data_svector3f;
7065                 rsurface.modelsvector3f_vertexbuffer = model->surfmesh.data_svector3f_vertexbuffer;
7066                 rsurface.modelsvector3f_bufferoffset = model->surfmesh.data_svector3f_bufferoffset;
7067                 rsurface.modeltvector3f = model->surfmesh.data_tvector3f;
7068                 rsurface.modeltvector3f_vertexbuffer = model->surfmesh.data_tvector3f_vertexbuffer;
7069                 rsurface.modeltvector3f_bufferoffset = model->surfmesh.data_tvector3f_bufferoffset;
7070                 rsurface.modelnormal3f  = model->surfmesh.data_normal3f;
7071                 rsurface.modelnormal3f_vertexbuffer = model->surfmesh.data_normal3f_vertexbuffer;
7072                 rsurface.modelnormal3f_bufferoffset = model->surfmesh.data_normal3f_bufferoffset;
7073                 rsurface.modelgeneratedvertex = false;
7074         }
7075         rsurface.modellightmapcolor4f  = model->surfmesh.data_lightmapcolor4f;
7076         rsurface.modellightmapcolor4f_vertexbuffer = model->surfmesh.data_lightmapcolor4f_vertexbuffer;
7077         rsurface.modellightmapcolor4f_bufferoffset = model->surfmesh.data_lightmapcolor4f_bufferoffset;
7078         rsurface.modeltexcoordtexture2f  = model->surfmesh.data_texcoordtexture2f;
7079         rsurface.modeltexcoordtexture2f_vertexbuffer = model->surfmesh.data_texcoordtexture2f_vertexbuffer;
7080         rsurface.modeltexcoordtexture2f_bufferoffset = model->surfmesh.data_texcoordtexture2f_bufferoffset;
7081         rsurface.modeltexcoordlightmap2f  = model->surfmesh.data_texcoordlightmap2f;
7082         rsurface.modeltexcoordlightmap2f_vertexbuffer = model->surfmesh.data_texcoordlightmap2f_vertexbuffer;
7083         rsurface.modeltexcoordlightmap2f_bufferoffset = model->surfmesh.data_texcoordlightmap2f_bufferoffset;
7084         rsurface.modelskeletalindex4ub = model->surfmesh.data_skeletalindex4ub;
7085         rsurface.modelskeletalindex4ub_vertexbuffer = model->surfmesh.data_skeletalindex4ub_vertexbuffer;
7086         rsurface.modelskeletalindex4ub_bufferoffset = model->surfmesh.data_skeletalindex4ub_bufferoffset;
7087         rsurface.modelskeletalweight4ub = model->surfmesh.data_skeletalweight4ub;
7088         rsurface.modelskeletalweight4ub_vertexbuffer = model->surfmesh.data_skeletalweight4ub_vertexbuffer;
7089         rsurface.modelskeletalweight4ub_bufferoffset = model->surfmesh.data_skeletalweight4ub_bufferoffset;
7090         rsurface.modelelement3i = model->surfmesh.data_element3i;
7091         rsurface.modelelement3i_indexbuffer = model->surfmesh.data_element3i_indexbuffer;
7092         rsurface.modelelement3i_bufferoffset = model->surfmesh.data_element3i_bufferoffset;
7093         rsurface.modelelement3s = model->surfmesh.data_element3s;
7094         rsurface.modelelement3s_indexbuffer = model->surfmesh.data_element3s_indexbuffer;
7095         rsurface.modelelement3s_bufferoffset = model->surfmesh.data_element3s_bufferoffset;
7096         rsurface.modellightmapoffsets = model->surfmesh.data_lightmapoffsets;
7097         rsurface.modelnumvertices = model->surfmesh.num_vertices;
7098         rsurface.modelnumtriangles = model->surfmesh.num_triangles;
7099         rsurface.modelsurfaces = model->data_surfaces;
7100         rsurface.batchgeneratedvertex = false;
7101         rsurface.batchfirstvertex = 0;
7102         rsurface.batchnumvertices = 0;
7103         rsurface.batchfirsttriangle = 0;
7104         rsurface.batchnumtriangles = 0;
7105         rsurface.batchvertex3f  = NULL;
7106         rsurface.batchvertex3f_vertexbuffer = NULL;
7107         rsurface.batchvertex3f_bufferoffset = 0;
7108         rsurface.batchsvector3f = NULL;
7109         rsurface.batchsvector3f_vertexbuffer = NULL;
7110         rsurface.batchsvector3f_bufferoffset = 0;
7111         rsurface.batchtvector3f = NULL;
7112         rsurface.batchtvector3f_vertexbuffer = NULL;
7113         rsurface.batchtvector3f_bufferoffset = 0;
7114         rsurface.batchnormal3f  = NULL;
7115         rsurface.batchnormal3f_vertexbuffer = NULL;
7116         rsurface.batchnormal3f_bufferoffset = 0;
7117         rsurface.batchlightmapcolor4f = NULL;
7118         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7119         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7120         rsurface.batchtexcoordtexture2f = NULL;
7121         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7122         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7123         rsurface.batchtexcoordlightmap2f = NULL;
7124         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7125         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7126         rsurface.batchskeletalindex4ub = NULL;
7127         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7128         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7129         rsurface.batchskeletalweight4ub = NULL;
7130         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7131         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7132         rsurface.batchelement3i = NULL;
7133         rsurface.batchelement3i_indexbuffer = NULL;
7134         rsurface.batchelement3i_bufferoffset = 0;
7135         rsurface.batchelement3s = NULL;
7136         rsurface.batchelement3s_indexbuffer = NULL;
7137         rsurface.batchelement3s_bufferoffset = 0;
7138         rsurface.forcecurrenttextureupdate = false;
7139 }
7140
7141 void RSurf_ActiveCustomEntity(const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, int entflags, double shadertime, float r, float g, float b, float a, int numvertices, const float *vertex3f, const float *texcoord2f, const float *normal3f, const float *svector3f, const float *tvector3f, const float *color4f, int numtriangles, const int *element3i, const unsigned short *element3s, qbool wantnormals, qbool wanttangents)
7142 {
7143         rsurface.entity = r_refdef.scene.worldentity;
7144         if (r != 1.0f || g != 1.0f || b != 1.0f || a != 1.0f) {
7145                 // HACK to provide a valid entity with modded colors to R_GetCurrentTexture.
7146                 // A better approach could be making this copy only once per frame.
7147                 static entity_render_t custom_entity;
7148                 int q;
7149                 custom_entity = *rsurface.entity;
7150                 for (q = 0; q < 3; ++q) {
7151                         float colormod = q == 0 ? r : q == 1 ? g : b;
7152                         custom_entity.render_fullbright[q] *= colormod;
7153                         custom_entity.render_modellight_ambient[q] *= colormod;
7154                         custom_entity.render_modellight_diffuse[q] *= colormod;
7155                         custom_entity.render_lightmap_ambient[q] *= colormod;
7156                         custom_entity.render_lightmap_diffuse[q] *= colormod;
7157                         custom_entity.render_rtlight_diffuse[q] *= colormod;
7158                 }
7159                 custom_entity.alpha *= a;
7160                 rsurface.entity = &custom_entity;
7161         }
7162         rsurface.skeleton = NULL;
7163         rsurface.ent_skinnum = 0;
7164         rsurface.ent_qwskin = -1;
7165         rsurface.ent_flags = entflags;
7166         rsurface.shadertime = r_refdef.scene.time - shadertime;
7167         rsurface.modelnumvertices = numvertices;
7168         rsurface.modelnumtriangles = numtriangles;
7169         rsurface.matrix = *matrix;
7170         rsurface.inversematrix = *inversematrix;
7171         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
7172         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
7173         R_EntityMatrix(&rsurface.matrix);
7174         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
7175         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
7176         rsurface.fogplaneviewdist *= rsurface.inversematrixscale;
7177         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
7178         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
7179         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
7180         memset(rsurface.frameblend, 0, sizeof(rsurface.frameblend));
7181         rsurface.frameblend[0].lerp = 1;
7182         rsurface.ent_alttextures = false;
7183         rsurface.basepolygonfactor = r_refdef.polygonfactor;
7184         rsurface.basepolygonoffset = r_refdef.polygonoffset;
7185         rsurface.entityskeletaltransform3x4 = NULL;
7186         rsurface.entityskeletaltransform3x4buffer = NULL;
7187         rsurface.entityskeletaltransform3x4offset = 0;
7188         rsurface.entityskeletaltransform3x4size = 0;
7189         rsurface.entityskeletalnumtransforms = 0;
7190         r_refdef.stats[r_stat_batch_entitycustom_count]++;
7191         r_refdef.stats[r_stat_batch_entitycustom_surfaces] += 1;
7192         r_refdef.stats[r_stat_batch_entitycustom_vertices] += rsurface.modelnumvertices;
7193         r_refdef.stats[r_stat_batch_entitycustom_triangles] += rsurface.modelnumtriangles;
7194         if (wanttangents)
7195         {
7196                 rsurface.modelvertex3f = (float *)vertex3f;
7197                 rsurface.modelsvector3f = svector3f ? (float *)svector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7198                 rsurface.modeltvector3f = tvector3f ? (float *)tvector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7199                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7200         }
7201         else if (wantnormals)
7202         {
7203                 rsurface.modelvertex3f = (float *)vertex3f;
7204                 rsurface.modelsvector3f = NULL;
7205                 rsurface.modeltvector3f = NULL;
7206                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7207         }
7208         else
7209         {
7210                 rsurface.modelvertex3f = (float *)vertex3f;
7211                 rsurface.modelsvector3f = NULL;
7212                 rsurface.modeltvector3f = NULL;
7213                 rsurface.modelnormal3f = NULL;
7214         }
7215         rsurface.modelvertex3f_vertexbuffer = 0;
7216         rsurface.modelvertex3f_bufferoffset = 0;
7217         rsurface.modelsvector3f_vertexbuffer = 0;
7218         rsurface.modelsvector3f_bufferoffset = 0;
7219         rsurface.modeltvector3f_vertexbuffer = 0;
7220         rsurface.modeltvector3f_bufferoffset = 0;
7221         rsurface.modelnormal3f_vertexbuffer = 0;
7222         rsurface.modelnormal3f_bufferoffset = 0;
7223         rsurface.modelgeneratedvertex = true;
7224         rsurface.modellightmapcolor4f  = (float *)color4f;
7225         rsurface.modellightmapcolor4f_vertexbuffer = 0;
7226         rsurface.modellightmapcolor4f_bufferoffset = 0;
7227         rsurface.modeltexcoordtexture2f  = (float *)texcoord2f;
7228         rsurface.modeltexcoordtexture2f_vertexbuffer = 0;
7229         rsurface.modeltexcoordtexture2f_bufferoffset = 0;
7230         rsurface.modeltexcoordlightmap2f  = NULL;
7231         rsurface.modeltexcoordlightmap2f_vertexbuffer = 0;
7232         rsurface.modeltexcoordlightmap2f_bufferoffset = 0;
7233         rsurface.modelskeletalindex4ub = NULL;
7234         rsurface.modelskeletalindex4ub_vertexbuffer = NULL;
7235         rsurface.modelskeletalindex4ub_bufferoffset = 0;
7236         rsurface.modelskeletalweight4ub = NULL;
7237         rsurface.modelskeletalweight4ub_vertexbuffer = NULL;
7238         rsurface.modelskeletalweight4ub_bufferoffset = 0;
7239         rsurface.modelelement3i = (int *)element3i;
7240         rsurface.modelelement3i_indexbuffer = NULL;
7241         rsurface.modelelement3i_bufferoffset = 0;
7242         rsurface.modelelement3s = (unsigned short *)element3s;
7243         rsurface.modelelement3s_indexbuffer = NULL;
7244         rsurface.modelelement3s_bufferoffset = 0;
7245         rsurface.modellightmapoffsets = NULL;
7246         rsurface.modelsurfaces = NULL;
7247         rsurface.batchgeneratedvertex = false;
7248         rsurface.batchfirstvertex = 0;
7249         rsurface.batchnumvertices = 0;
7250         rsurface.batchfirsttriangle = 0;
7251         rsurface.batchnumtriangles = 0;
7252         rsurface.batchvertex3f  = NULL;
7253         rsurface.batchvertex3f_vertexbuffer = NULL;
7254         rsurface.batchvertex3f_bufferoffset = 0;
7255         rsurface.batchsvector3f = NULL;
7256         rsurface.batchsvector3f_vertexbuffer = NULL;
7257         rsurface.batchsvector3f_bufferoffset = 0;
7258         rsurface.batchtvector3f = NULL;
7259         rsurface.batchtvector3f_vertexbuffer = NULL;
7260         rsurface.batchtvector3f_bufferoffset = 0;
7261         rsurface.batchnormal3f  = NULL;
7262         rsurface.batchnormal3f_vertexbuffer = NULL;
7263         rsurface.batchnormal3f_bufferoffset = 0;
7264         rsurface.batchlightmapcolor4f = NULL;
7265         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7266         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7267         rsurface.batchtexcoordtexture2f = NULL;
7268         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7269         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7270         rsurface.batchtexcoordlightmap2f = NULL;
7271         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7272         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7273         rsurface.batchskeletalindex4ub = NULL;
7274         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7275         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7276         rsurface.batchskeletalweight4ub = NULL;
7277         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7278         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7279         rsurface.batchelement3i = NULL;
7280         rsurface.batchelement3i_indexbuffer = NULL;
7281         rsurface.batchelement3i_bufferoffset = 0;
7282         rsurface.batchelement3s = NULL;
7283         rsurface.batchelement3s_indexbuffer = NULL;
7284         rsurface.batchelement3s_bufferoffset = 0;
7285         rsurface.forcecurrenttextureupdate = true;
7286
7287         if (rsurface.modelnumvertices && rsurface.modelelement3i)
7288         {
7289                 if ((wantnormals || wanttangents) && !normal3f)
7290                 {
7291                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7292                         Mod_BuildNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modelelement3i, rsurface.modelnormal3f, r_smoothnormals_areaweighting.integer != 0);
7293                 }
7294                 if (wanttangents && !svector3f)
7295                 {
7296                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7297                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7298                         Mod_BuildTextureVectorsFromNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modeltexcoordtexture2f, rsurface.modelnormal3f, rsurface.modelelement3i, rsurface.modelsvector3f, rsurface.modeltvector3f, r_smoothnormals_areaweighting.integer != 0);
7299                 }
7300         }
7301 }
7302
7303 float RSurf_FogPoint(const float *v)
7304 {
7305         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7306         float FogPlaneViewDist = r_refdef.fogplaneviewdist;
7307         float FogPlaneVertexDist = DotProduct(r_refdef.fogplane, v) + r_refdef.fogplane[3];
7308         float FogHeightFade = r_refdef.fogheightfade;
7309         float fogfrac;
7310         unsigned int fogmasktableindex;
7311         if (r_refdef.fogplaneviewabove)
7312                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7313         else
7314                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7315         fogmasktableindex = (unsigned int)(VectorDistance(r_refdef.view.origin, v) * fogfrac * r_refdef.fogmasktabledistmultiplier);
7316         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7317 }
7318
7319 float RSurf_FogVertex(const float *v)
7320 {
7321         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7322         float FogPlaneViewDist = rsurface.fogplaneviewdist;
7323         float FogPlaneVertexDist = DotProduct(rsurface.fogplane, v) + rsurface.fogplane[3];
7324         float FogHeightFade = rsurface.fogheightfade;
7325         float fogfrac;
7326         unsigned int fogmasktableindex;
7327         if (r_refdef.fogplaneviewabove)
7328                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7329         else
7330                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7331         fogmasktableindex = (unsigned int)(VectorDistance(rsurface.localvieworigin, v) * fogfrac * rsurface.fogmasktabledistmultiplier);
7332         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7333 }
7334
7335 void RSurf_UploadBuffersForBatch(void)
7336 {
7337         // upload buffer data for generated vertex data (dynamicvertex case) or index data (copytriangles case) and models that lack it to begin with (e.g. DrawQ_FlushUI)
7338         // note that if rsurface.batchvertex3f_vertexbuffer is NULL, dynamicvertex is forced as we don't account for the proper base vertex here.
7339         if (rsurface.batchvertex3f && !rsurface.batchvertex3f_vertexbuffer)
7340                 rsurface.batchvertex3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f, R_BUFFERDATA_VERTEX, &rsurface.batchvertex3f_bufferoffset);
7341         if (rsurface.batchsvector3f && !rsurface.batchsvector3f_vertexbuffer)
7342                 rsurface.batchsvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchsvector3f_bufferoffset);
7343         if (rsurface.batchtvector3f && !rsurface.batchtvector3f_vertexbuffer)
7344                 rsurface.batchtvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchtvector3f_bufferoffset);
7345         if (rsurface.batchnormal3f && !rsurface.batchnormal3f_vertexbuffer)
7346                 rsurface.batchnormal3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f, R_BUFFERDATA_VERTEX, &rsurface.batchnormal3f_bufferoffset);
7347         if (rsurface.batchlightmapcolor4f && !rsurface.batchlightmapcolor4f_vertexbuffer)
7348                 rsurface.batchlightmapcolor4f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[4]), rsurface.batchlightmapcolor4f, R_BUFFERDATA_VERTEX, &rsurface.batchlightmapcolor4f_bufferoffset);
7349         if (rsurface.batchtexcoordtexture2f && !rsurface.batchtexcoordtexture2f_vertexbuffer)
7350                 rsurface.batchtexcoordtexture2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordtexture2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordtexture2f_bufferoffset);
7351         if (rsurface.batchtexcoordlightmap2f && !rsurface.batchtexcoordlightmap2f_vertexbuffer)
7352                 rsurface.batchtexcoordlightmap2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordlightmap2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordlightmap2f_bufferoffset);
7353         if (rsurface.batchskeletalindex4ub && !rsurface.batchskeletalindex4ub_vertexbuffer)
7354                 rsurface.batchskeletalindex4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalindex4ub_bufferoffset);
7355         if (rsurface.batchskeletalweight4ub && !rsurface.batchskeletalweight4ub_vertexbuffer)
7356                 rsurface.batchskeletalweight4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalweight4ub_bufferoffset);
7357
7358         if (rsurface.batchelement3s && !rsurface.batchelement3s_indexbuffer)
7359                 rsurface.batchelement3s_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(short[3]), rsurface.batchelement3s, R_BUFFERDATA_INDEX16, &rsurface.batchelement3s_bufferoffset);
7360         else if (rsurface.batchelement3i && !rsurface.batchelement3i_indexbuffer)
7361                 rsurface.batchelement3i_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(int[3]), rsurface.batchelement3i, R_BUFFERDATA_INDEX32, &rsurface.batchelement3i_bufferoffset);
7362
7363         R_Mesh_VertexPointer(     3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
7364         R_Mesh_ColorPointer(      4, GL_FLOAT, sizeof(float[4]), rsurface.batchlightmapcolor4f, rsurface.batchlightmapcolor4f_vertexbuffer, rsurface.batchlightmapcolor4f_bufferoffset);
7365         R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
7366         R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchsvector3f, rsurface.batchsvector3f_vertexbuffer, rsurface.batchsvector3f_bufferoffset);
7367         R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchtvector3f, rsurface.batchtvector3f_vertexbuffer, rsurface.batchtvector3f_bufferoffset);
7368         R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchnormal3f, rsurface.batchnormal3f_vertexbuffer, rsurface.batchnormal3f_bufferoffset);
7369         R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset);
7370         R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
7371         R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, rsurface.batchskeletalindex4ub_vertexbuffer, rsurface.batchskeletalindex4ub_bufferoffset);
7372         R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, rsurface.batchskeletalweight4ub_vertexbuffer, rsurface.batchskeletalweight4ub_bufferoffset);
7373 }
7374
7375 static void RSurf_RenumberElements(const int *inelement3i, int *outelement3i, int numelements, int adjust)
7376 {
7377         int i;
7378         for (i = 0;i < numelements;i++)
7379                 outelement3i[i] = inelement3i[i] + adjust;
7380 }
7381
7382 static const int quadedges[6][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}};
7383 void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const msurface_t **texturesurfacelist)
7384 {
7385         int deformindex;
7386         int firsttriangle;
7387         int numtriangles;
7388         int firstvertex;
7389         int endvertex;
7390         int numvertices;
7391         int surfacefirsttriangle;
7392         int surfacenumtriangles;
7393         int surfacefirstvertex;
7394         int surfaceendvertex;
7395         int surfacenumvertices;
7396         int batchnumsurfaces = texturenumsurfaces;
7397         int batchnumvertices;
7398         int batchnumtriangles;
7399         int i, j;
7400         qbool gaps;
7401         qbool dynamicvertex;
7402         float amplitude;
7403         float animpos;
7404         float center[3], forward[3], right[3], up[3], v[3], newforward[3], newright[3], newup[3];
7405         float waveparms[4];
7406         unsigned char *ub;
7407         q3shaderinfo_deform_t *deform;
7408         const msurface_t *surface, *firstsurface;
7409         if (!texturenumsurfaces)
7410                 return;
7411         // find vertex range of this surface batch
7412         gaps = false;
7413         firstsurface = texturesurfacelist[0];
7414         firsttriangle = firstsurface->num_firsttriangle;
7415         batchnumvertices = 0;
7416         batchnumtriangles = 0;
7417         firstvertex = endvertex = firstsurface->num_firstvertex;
7418         for (i = 0;i < texturenumsurfaces;i++)
7419         {
7420                 surface = texturesurfacelist[i];
7421                 if (surface != firstsurface + i)
7422                         gaps = true;
7423                 surfacefirstvertex = surface->num_firstvertex;
7424                 surfaceendvertex = surfacefirstvertex + surface->num_vertices;
7425                 surfacenumvertices = surface->num_vertices;
7426                 surfacenumtriangles = surface->num_triangles;
7427                 if (firstvertex > surfacefirstvertex)
7428                         firstvertex = surfacefirstvertex;
7429                 if (endvertex < surfaceendvertex)
7430                         endvertex = surfaceendvertex;
7431                 batchnumvertices += surfacenumvertices;
7432                 batchnumtriangles += surfacenumtriangles;
7433         }
7434
7435         r_refdef.stats[r_stat_batch_batches]++;
7436         if (gaps)
7437                 r_refdef.stats[r_stat_batch_withgaps]++;
7438         r_refdef.stats[r_stat_batch_surfaces] += batchnumsurfaces;
7439         r_refdef.stats[r_stat_batch_vertices] += batchnumvertices;
7440         r_refdef.stats[r_stat_batch_triangles] += batchnumtriangles;
7441
7442         // we now know the vertex range used, and if there are any gaps in it
7443         rsurface.batchfirstvertex = firstvertex;
7444         rsurface.batchnumvertices = endvertex - firstvertex;
7445         rsurface.batchfirsttriangle = firsttriangle;
7446         rsurface.batchnumtriangles = batchnumtriangles;
7447
7448         // check if any dynamic vertex processing must occur
7449         dynamicvertex = false;
7450
7451         // we must use vertexbuffers for rendering, we can upload vertex buffers
7452         // easily enough but if the basevertex is non-zero it becomes more
7453         // difficult, so force dynamicvertex path in that case - it's suboptimal
7454         // but the most optimal case is to have the geometry sources provide their
7455         // own anyway.
7456         if (!rsurface.modelvertex3f_vertexbuffer && firstvertex != 0)
7457                 dynamicvertex = true;
7458
7459         // a cvar to force the dynamic vertex path to be taken, for debugging
7460         if (r_batch_debugdynamicvertexpath.integer)
7461         {
7462                 if (!dynamicvertex)
7463                 {
7464                         r_refdef.stats[r_stat_batch_dynamic_batches_because_cvar] += 1;
7465                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_cvar] += batchnumsurfaces;
7466                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_cvar] += batchnumvertices;
7467                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_cvar] += batchnumtriangles;
7468                 }
7469                 dynamicvertex = true;
7470         }
7471
7472         // if there is a chance of animated vertex colors, it's a dynamic batch
7473         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
7474         {
7475                 if (!dynamicvertex)
7476                 {
7477                         r_refdef.stats[r_stat_batch_dynamic_batches_because_lightmapvertex] += 1;
7478                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_lightmapvertex] += batchnumsurfaces;
7479                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_lightmapvertex] += batchnumvertices;
7480                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_lightmapvertex] += batchnumtriangles;
7481                 }
7482                 dynamicvertex = true;
7483         }
7484
7485         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
7486         {
7487                 switch (deform->deform)
7488                 {
7489                 default:
7490                 case Q3DEFORM_PROJECTIONSHADOW:
7491                 case Q3DEFORM_TEXT0:
7492                 case Q3DEFORM_TEXT1:
7493                 case Q3DEFORM_TEXT2:
7494                 case Q3DEFORM_TEXT3:
7495                 case Q3DEFORM_TEXT4:
7496                 case Q3DEFORM_TEXT5:
7497                 case Q3DEFORM_TEXT6:
7498                 case Q3DEFORM_TEXT7:
7499                 case Q3DEFORM_NONE:
7500                         break;
7501                 case Q3DEFORM_AUTOSPRITE:
7502                         if (!dynamicvertex)
7503                         {
7504                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite] += 1;
7505                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite] += batchnumsurfaces;
7506                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite] += batchnumvertices;
7507                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite] += batchnumtriangles;
7508                         }
7509                         dynamicvertex = true;
7510                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_TEXCOORD;
7511                         break;
7512                 case Q3DEFORM_AUTOSPRITE2:
7513                         if (!dynamicvertex)
7514                         {
7515                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite2] += 1;
7516                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite2] += batchnumsurfaces;
7517                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite2] += batchnumvertices;
7518                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite2] += batchnumtriangles;
7519                         }
7520                         dynamicvertex = true;
7521                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7522                         break;
7523                 case Q3DEFORM_NORMAL:
7524                         if (!dynamicvertex)
7525                         {
7526                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_normal] += 1;
7527                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_normal] += batchnumsurfaces;
7528                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_normal] += batchnumvertices;
7529                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_normal] += batchnumtriangles;
7530                         }
7531                         dynamicvertex = true;
7532                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7533                         break;
7534                 case Q3DEFORM_WAVE:
7535                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7536                                 break; // if wavefunc is a nop, ignore this transform
7537                         if (!dynamicvertex)
7538                         {
7539                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_wave] += 1;
7540                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_wave] += batchnumsurfaces;
7541                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_wave] += batchnumvertices;
7542                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_wave] += batchnumtriangles;
7543                         }
7544                         dynamicvertex = true;
7545                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7546                         break;
7547                 case Q3DEFORM_BULGE:
7548                         if (!dynamicvertex)
7549                         {
7550                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_bulge] += 1;
7551                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_bulge] += batchnumsurfaces;
7552                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_bulge] += batchnumvertices;
7553                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_bulge] += batchnumtriangles;
7554                         }
7555                         dynamicvertex = true;
7556                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7557                         break;
7558                 case Q3DEFORM_MOVE:
7559                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7560                                 break; // if wavefunc is a nop, ignore this transform
7561                         if (!dynamicvertex)
7562                         {
7563                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_move] += 1;
7564                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_move] += batchnumsurfaces;
7565                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_move] += batchnumvertices;
7566                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_move] += batchnumtriangles;
7567                         }
7568                         dynamicvertex = true;
7569                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7570                         break;
7571                 }
7572         }
7573         if (rsurface.texture->materialshaderpass)
7574         {
7575                 switch (rsurface.texture->materialshaderpass->tcgen.tcgen)
7576                 {
7577                 default:
7578                 case Q3TCGEN_TEXTURE:
7579                         break;
7580                 case Q3TCGEN_LIGHTMAP:
7581                         if (!dynamicvertex)
7582                         {
7583                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_lightmap] += 1;
7584                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_lightmap] += batchnumsurfaces;
7585                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_lightmap] += batchnumvertices;
7586                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_lightmap] += batchnumtriangles;
7587                         }
7588                         dynamicvertex = true;
7589                         batchneed |= BATCHNEED_ARRAY_LIGHTMAP;
7590                         break;
7591                 case Q3TCGEN_VECTOR:
7592                         if (!dynamicvertex)
7593                         {
7594                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_vector] += 1;
7595                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_vector] += batchnumsurfaces;
7596                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_vector] += batchnumvertices;
7597                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_vector] += batchnumtriangles;
7598                         }
7599                         dynamicvertex = true;
7600                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7601                         break;
7602                 case Q3TCGEN_ENVIRONMENT:
7603                         if (!dynamicvertex)
7604                         {
7605                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_environment] += 1;
7606                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_environment] += batchnumsurfaces;
7607                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_environment] += batchnumvertices;
7608                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_environment] += batchnumtriangles;
7609                         }
7610                         dynamicvertex = true;
7611                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL;
7612                         break;
7613                 }
7614                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
7615                 {
7616                         if (!dynamicvertex)
7617                         {
7618                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcmod_turbulent] += 1;
7619                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcmod_turbulent] += batchnumsurfaces;
7620                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcmod_turbulent] += batchnumvertices;
7621                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcmod_turbulent] += batchnumtriangles;
7622                         }
7623                         dynamicvertex = true;
7624                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7625                 }
7626         }
7627
7628         // the caller can specify BATCHNEED_NOGAPS to force a batch with
7629         // firstvertex = 0 and endvertex = numvertices (no gaps, no firstvertex),
7630         // we ensure this by treating the vertex batch as dynamic...
7631         if ((batchneed & BATCHNEED_ALWAYSCOPY) || ((batchneed & BATCHNEED_NOGAPS) && (gaps || firstvertex > 0)))
7632         {
7633                 if (!dynamicvertex)
7634                 {
7635                         r_refdef.stats[r_stat_batch_dynamic_batches_because_nogaps] += 1;
7636                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_nogaps] += batchnumsurfaces;
7637                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_nogaps] += batchnumvertices;
7638                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_nogaps] += batchnumtriangles;
7639                 }
7640                 dynamicvertex = true;
7641         }
7642
7643         // if we're going to have to apply the skeletal transform manually, we need to batch the skeletal data
7644         if (dynamicvertex && rsurface.entityskeletaltransform3x4)
7645                 batchneed |= BATCHNEED_ARRAY_SKELETAL;
7646
7647         rsurface.batchvertex3f = rsurface.modelvertex3f;
7648         rsurface.batchvertex3f_vertexbuffer = rsurface.modelvertex3f_vertexbuffer;
7649         rsurface.batchvertex3f_bufferoffset = rsurface.modelvertex3f_bufferoffset;
7650         rsurface.batchsvector3f = rsurface.modelsvector3f;
7651         rsurface.batchsvector3f_vertexbuffer = rsurface.modelsvector3f_vertexbuffer;
7652         rsurface.batchsvector3f_bufferoffset = rsurface.modelsvector3f_bufferoffset;
7653         rsurface.batchtvector3f = rsurface.modeltvector3f;
7654         rsurface.batchtvector3f_vertexbuffer = rsurface.modeltvector3f_vertexbuffer;
7655         rsurface.batchtvector3f_bufferoffset = rsurface.modeltvector3f_bufferoffset;
7656         rsurface.batchnormal3f = rsurface.modelnormal3f;
7657         rsurface.batchnormal3f_vertexbuffer = rsurface.modelnormal3f_vertexbuffer;
7658         rsurface.batchnormal3f_bufferoffset = rsurface.modelnormal3f_bufferoffset;
7659         rsurface.batchlightmapcolor4f = rsurface.modellightmapcolor4f;
7660         rsurface.batchlightmapcolor4f_vertexbuffer  = rsurface.modellightmapcolor4f_vertexbuffer;
7661         rsurface.batchlightmapcolor4f_bufferoffset  = rsurface.modellightmapcolor4f_bufferoffset;
7662         rsurface.batchtexcoordtexture2f = rsurface.modeltexcoordtexture2f;
7663         rsurface.batchtexcoordtexture2f_vertexbuffer  = rsurface.modeltexcoordtexture2f_vertexbuffer;
7664         rsurface.batchtexcoordtexture2f_bufferoffset  = rsurface.modeltexcoordtexture2f_bufferoffset;
7665         rsurface.batchtexcoordlightmap2f = rsurface.modeltexcoordlightmap2f;
7666         rsurface.batchtexcoordlightmap2f_vertexbuffer = rsurface.modeltexcoordlightmap2f_vertexbuffer;
7667         rsurface.batchtexcoordlightmap2f_bufferoffset = rsurface.modeltexcoordlightmap2f_bufferoffset;
7668         rsurface.batchskeletalindex4ub = rsurface.modelskeletalindex4ub;
7669         rsurface.batchskeletalindex4ub_vertexbuffer = rsurface.modelskeletalindex4ub_vertexbuffer;
7670         rsurface.batchskeletalindex4ub_bufferoffset = rsurface.modelskeletalindex4ub_bufferoffset;
7671         rsurface.batchskeletalweight4ub = rsurface.modelskeletalweight4ub;
7672         rsurface.batchskeletalweight4ub_vertexbuffer = rsurface.modelskeletalweight4ub_vertexbuffer;
7673         rsurface.batchskeletalweight4ub_bufferoffset = rsurface.modelskeletalweight4ub_bufferoffset;
7674         rsurface.batchelement3i = rsurface.modelelement3i;
7675         rsurface.batchelement3i_indexbuffer = rsurface.modelelement3i_indexbuffer;
7676         rsurface.batchelement3i_bufferoffset = rsurface.modelelement3i_bufferoffset;
7677         rsurface.batchelement3s = rsurface.modelelement3s;
7678         rsurface.batchelement3s_indexbuffer = rsurface.modelelement3s_indexbuffer;
7679         rsurface.batchelement3s_bufferoffset = rsurface.modelelement3s_bufferoffset;
7680         rsurface.batchskeletaltransform3x4 = rsurface.entityskeletaltransform3x4;
7681         rsurface.batchskeletaltransform3x4buffer = rsurface.entityskeletaltransform3x4buffer;
7682         rsurface.batchskeletaltransform3x4offset = rsurface.entityskeletaltransform3x4offset;
7683         rsurface.batchskeletaltransform3x4size = rsurface.entityskeletaltransform3x4size;
7684         rsurface.batchskeletalnumtransforms = rsurface.entityskeletalnumtransforms;
7685
7686         // if any dynamic vertex processing has to occur in software, we copy the
7687         // entire surface list together before processing to rebase the vertices
7688         // to start at 0 (otherwise we waste a lot of room in a vertex buffer).
7689         //
7690         // if any gaps exist and we do not have a static vertex buffer, we have to
7691         // copy the surface list together to avoid wasting upload bandwidth on the
7692         // vertices in the gaps.
7693         //
7694         // if gaps exist and we have a static vertex buffer, we can choose whether
7695         // to combine the index buffer ranges into one dynamic index buffer or
7696         // simply issue multiple glDrawElements calls (BATCHNEED_ALLOWMULTIDRAW).
7697         //
7698         // in many cases the batch is reduced to one draw call.
7699
7700         rsurface.batchmultidraw = false;
7701         rsurface.batchmultidrawnumsurfaces = 0;
7702         rsurface.batchmultidrawsurfacelist = NULL;
7703
7704         if (!dynamicvertex)
7705         {
7706                 // static vertex data, just set pointers...
7707                 rsurface.batchgeneratedvertex = false;
7708                 // if there are gaps, we want to build a combined index buffer,
7709                 // otherwise use the original static buffer with an appropriate offset
7710                 if (gaps)
7711                 {
7712                         r_refdef.stats[r_stat_batch_copytriangles_batches] += 1;
7713                         r_refdef.stats[r_stat_batch_copytriangles_surfaces] += batchnumsurfaces;
7714                         r_refdef.stats[r_stat_batch_copytriangles_vertices] += batchnumvertices;
7715                         r_refdef.stats[r_stat_batch_copytriangles_triangles] += batchnumtriangles;
7716                         if ((batchneed & BATCHNEED_ALLOWMULTIDRAW) && r_batch_multidraw.integer && batchnumtriangles >= r_batch_multidraw_mintriangles.integer)
7717                         {
7718                                 rsurface.batchmultidraw = true;
7719                                 rsurface.batchmultidrawnumsurfaces = texturenumsurfaces;
7720                                 rsurface.batchmultidrawsurfacelist = texturesurfacelist;
7721                                 return;
7722                         }
7723                         // build a new triangle elements array for this batch
7724                         rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7725                         rsurface.batchfirsttriangle = 0;
7726                         numtriangles = 0;
7727                         for (i = 0;i < texturenumsurfaces;i++)
7728                         {
7729                                 surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7730                                 surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7731                                 memcpy(rsurface.batchelement3i + 3*numtriangles, rsurface.modelelement3i + 3*surfacefirsttriangle, surfacenumtriangles*sizeof(int[3]));
7732                                 numtriangles += surfacenumtriangles;
7733                         }
7734                         rsurface.batchelement3i_indexbuffer = NULL;
7735                         rsurface.batchelement3i_bufferoffset = 0;
7736                         rsurface.batchelement3s = NULL;
7737                         rsurface.batchelement3s_indexbuffer = NULL;
7738                         rsurface.batchelement3s_bufferoffset = 0;
7739                         if (endvertex <= 65536)
7740                         {
7741                                 // make a 16bit (unsigned short) index array if possible
7742                                 rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7743                                 for (i = 0;i < numtriangles*3;i++)
7744                                         rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7745                         }
7746                 }
7747                 else
7748                 {
7749                         r_refdef.stats[r_stat_batch_fast_batches] += 1;
7750                         r_refdef.stats[r_stat_batch_fast_surfaces] += batchnumsurfaces;
7751                         r_refdef.stats[r_stat_batch_fast_vertices] += batchnumvertices;
7752                         r_refdef.stats[r_stat_batch_fast_triangles] += batchnumtriangles;
7753                 }
7754                 return;
7755         }
7756
7757         // something needs software processing, do it for real...
7758         // we only directly handle separate array data in this case and then
7759         // generate interleaved data if needed...
7760         rsurface.batchgeneratedvertex = true;
7761         r_refdef.stats[r_stat_batch_dynamic_batches] += 1;
7762         r_refdef.stats[r_stat_batch_dynamic_surfaces] += batchnumsurfaces;
7763         r_refdef.stats[r_stat_batch_dynamic_vertices] += batchnumvertices;
7764         r_refdef.stats[r_stat_batch_dynamic_triangles] += batchnumtriangles;
7765
7766         // now copy the vertex data into a combined array and make an index array
7767         // (this is what Quake3 does all the time)
7768         // we also apply any skeletal animation here that would have been done in
7769         // the vertex shader, because most of the dynamic vertex animation cases
7770         // need actual vertex positions and normals
7771         //if (dynamicvertex)
7772         {
7773                 rsurface.batchvertex3f = NULL;
7774                 rsurface.batchvertex3f_vertexbuffer = NULL;
7775                 rsurface.batchvertex3f_bufferoffset = 0;
7776                 rsurface.batchsvector3f = NULL;
7777                 rsurface.batchsvector3f_vertexbuffer = NULL;
7778                 rsurface.batchsvector3f_bufferoffset = 0;
7779                 rsurface.batchtvector3f = NULL;
7780                 rsurface.batchtvector3f_vertexbuffer = NULL;
7781                 rsurface.batchtvector3f_bufferoffset = 0;
7782                 rsurface.batchnormal3f = NULL;
7783                 rsurface.batchnormal3f_vertexbuffer = NULL;
7784                 rsurface.batchnormal3f_bufferoffset = 0;
7785                 rsurface.batchlightmapcolor4f = NULL;
7786                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7787                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
7788                 rsurface.batchtexcoordtexture2f = NULL;
7789                 rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7790                 rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7791                 rsurface.batchtexcoordlightmap2f = NULL;
7792                 rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7793                 rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7794                 rsurface.batchskeletalindex4ub = NULL;
7795                 rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7796                 rsurface.batchskeletalindex4ub_bufferoffset = 0;
7797                 rsurface.batchskeletalweight4ub = NULL;
7798                 rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7799                 rsurface.batchskeletalweight4ub_bufferoffset = 0;
7800                 rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7801                 rsurface.batchelement3i_indexbuffer = NULL;
7802                 rsurface.batchelement3i_bufferoffset = 0;
7803                 rsurface.batchelement3s = NULL;
7804                 rsurface.batchelement3s_indexbuffer = NULL;
7805                 rsurface.batchelement3s_bufferoffset = 0;
7806                 rsurface.batchskeletaltransform3x4buffer = NULL;
7807                 rsurface.batchskeletaltransform3x4offset = 0;
7808                 rsurface.batchskeletaltransform3x4size = 0;
7809                 // we'll only be setting up certain arrays as needed
7810                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7811                         rsurface.batchvertex3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7812                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7813                         rsurface.batchnormal3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7814                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7815                 {
7816                         rsurface.batchsvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7817                         rsurface.batchtvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7818                 }
7819                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7820                         rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
7821                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7822                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7823                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7824                         rsurface.batchtexcoordlightmap2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7825                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7826                 {
7827                         rsurface.batchskeletalindex4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7828                         rsurface.batchskeletalweight4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7829                 }
7830                 numvertices = 0;
7831                 numtriangles = 0;
7832                 for (i = 0;i < texturenumsurfaces;i++)
7833                 {
7834                         surfacefirstvertex = texturesurfacelist[i]->num_firstvertex;
7835                         surfacenumvertices = texturesurfacelist[i]->num_vertices;
7836                         surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7837                         surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7838                         // copy only the data requested
7839                         if (batchneed & (BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ARRAY_LIGHTMAP))
7840                         {
7841                                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7842                                 {
7843                                         if (rsurface.batchvertex3f)
7844                                                 memcpy(rsurface.batchvertex3f + 3*numvertices, rsurface.modelvertex3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7845                                         else
7846                                                 memset(rsurface.batchvertex3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7847                                 }
7848                                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7849                                 {
7850                                         if (rsurface.modelnormal3f)
7851                                                 memcpy(rsurface.batchnormal3f + 3*numvertices, rsurface.modelnormal3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7852                                         else
7853                                                 memset(rsurface.batchnormal3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7854                                 }
7855                                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7856                                 {
7857                                         if (rsurface.modelsvector3f)
7858                                         {
7859                                                 memcpy(rsurface.batchsvector3f + 3*numvertices, rsurface.modelsvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7860                                                 memcpy(rsurface.batchtvector3f + 3*numvertices, rsurface.modeltvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7861                                         }
7862                                         else
7863                                         {
7864                                                 memset(rsurface.batchsvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7865                                                 memset(rsurface.batchtvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7866                                         }
7867                                 }
7868                                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7869                                 {
7870                                         if (rsurface.modellightmapcolor4f)
7871                                                 memcpy(rsurface.batchlightmapcolor4f + 4*numvertices, rsurface.modellightmapcolor4f + 4*surfacefirstvertex, surfacenumvertices * sizeof(float[4]));
7872                                         else
7873                                                 memset(rsurface.batchlightmapcolor4f + 4*numvertices, 0, surfacenumvertices * sizeof(float[4]));
7874                                 }
7875                                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7876                                 {
7877                                         if (rsurface.modeltexcoordtexture2f)
7878                                                 memcpy(rsurface.batchtexcoordtexture2f + 2*numvertices, rsurface.modeltexcoordtexture2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7879                                         else
7880                                                 memset(rsurface.batchtexcoordtexture2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7881                                 }
7882                                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7883                                 {
7884                                         if (rsurface.modeltexcoordlightmap2f)
7885                                                 memcpy(rsurface.batchtexcoordlightmap2f + 2*numvertices, rsurface.modeltexcoordlightmap2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7886                                         else
7887                                                 memset(rsurface.batchtexcoordlightmap2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7888                                 }
7889                                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7890                                 {
7891                                         if (rsurface.modelskeletalindex4ub)
7892                                         {
7893                                                 memcpy(rsurface.batchskeletalindex4ub + 4*numvertices, rsurface.modelskeletalindex4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7894                                                 memcpy(rsurface.batchskeletalweight4ub + 4*numvertices, rsurface.modelskeletalweight4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7895                                         }
7896                                         else
7897                                         {
7898                                                 memset(rsurface.batchskeletalindex4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7899                                                 memset(rsurface.batchskeletalweight4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7900                                                 ub = rsurface.batchskeletalweight4ub + 4*numvertices;
7901                                                 for (j = 0;j < surfacenumvertices;j++)
7902                                                         ub[j*4] = 255;
7903                                         }
7904                                 }
7905                         }
7906                         RSurf_RenumberElements(rsurface.modelelement3i + 3*surfacefirsttriangle, rsurface.batchelement3i + 3*numtriangles, 3*surfacenumtriangles, numvertices - surfacefirstvertex);
7907                         numvertices += surfacenumvertices;
7908                         numtriangles += surfacenumtriangles;
7909                 }
7910
7911                 // generate a 16bit index array as well if possible
7912                 // (in general, dynamic batches fit)
7913                 if (numvertices <= 65536)
7914                 {
7915                         rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7916                         for (i = 0;i < numtriangles*3;i++)
7917                                 rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7918                 }
7919
7920                 // since we've copied everything, the batch now starts at 0
7921                 rsurface.batchfirstvertex = 0;
7922                 rsurface.batchnumvertices = batchnumvertices;
7923                 rsurface.batchfirsttriangle = 0;
7924                 rsurface.batchnumtriangles = batchnumtriangles;
7925         }
7926
7927         // apply skeletal animation that would have been done in the vertex shader
7928         if (rsurface.batchskeletaltransform3x4)
7929         {
7930                 const unsigned char *si;
7931                 const unsigned char *sw;
7932                 const float *t[4];
7933                 const float *b = rsurface.batchskeletaltransform3x4;
7934                 float *vp, *vs, *vt, *vn;
7935                 float w[4];
7936                 float m[3][4], n[3][4];
7937                 float tp[3], ts[3], tt[3], tn[3];
7938                 r_refdef.stats[r_stat_batch_dynamicskeletal_batches] += 1;
7939                 r_refdef.stats[r_stat_batch_dynamicskeletal_surfaces] += batchnumsurfaces;
7940                 r_refdef.stats[r_stat_batch_dynamicskeletal_vertices] += batchnumvertices;
7941                 r_refdef.stats[r_stat_batch_dynamicskeletal_triangles] += batchnumtriangles;
7942                 si = rsurface.batchskeletalindex4ub;
7943                 sw = rsurface.batchskeletalweight4ub;
7944                 vp = rsurface.batchvertex3f;
7945                 vs = rsurface.batchsvector3f;
7946                 vt = rsurface.batchtvector3f;
7947                 vn = rsurface.batchnormal3f;
7948                 memset(m[0], 0, sizeof(m));
7949                 memset(n[0], 0, sizeof(n));
7950                 for (i = 0;i < batchnumvertices;i++)
7951                 {
7952                         t[0] = b + si[0]*12;
7953                         if (sw[0] == 255)
7954                         {
7955                                 // common case - only one matrix
7956                                 m[0][0] = t[0][ 0];
7957                                 m[0][1] = t[0][ 1];
7958                                 m[0][2] = t[0][ 2];
7959                                 m[0][3] = t[0][ 3];
7960                                 m[1][0] = t[0][ 4];
7961                                 m[1][1] = t[0][ 5];
7962                                 m[1][2] = t[0][ 6];
7963                                 m[1][3] = t[0][ 7];
7964                                 m[2][0] = t[0][ 8];
7965                                 m[2][1] = t[0][ 9];
7966                                 m[2][2] = t[0][10];
7967                                 m[2][3] = t[0][11];
7968                         }
7969                         else if (sw[2] + sw[3])
7970                         {
7971                                 // blend 4 matrices
7972                                 t[1] = b + si[1]*12;
7973                                 t[2] = b + si[2]*12;
7974                                 t[3] = b + si[3]*12;
7975                                 w[0] = sw[0] * (1.0f / 255.0f);
7976                                 w[1] = sw[1] * (1.0f / 255.0f);
7977                                 w[2] = sw[2] * (1.0f / 255.0f);
7978                                 w[3] = sw[3] * (1.0f / 255.0f);
7979                                 // blend the matrices
7980                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1] + t[2][ 0] * w[2] + t[3][ 0] * w[3];
7981                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1] + t[2][ 1] * w[2] + t[3][ 1] * w[3];
7982                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1] + t[2][ 2] * w[2] + t[3][ 2] * w[3];
7983                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1] + t[2][ 3] * w[2] + t[3][ 3] * w[3];
7984                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1] + t[2][ 4] * w[2] + t[3][ 4] * w[3];
7985                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1] + t[2][ 5] * w[2] + t[3][ 5] * w[3];
7986                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1] + t[2][ 6] * w[2] + t[3][ 6] * w[3];
7987                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1] + t[2][ 7] * w[2] + t[3][ 7] * w[3];
7988                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1] + t[2][ 8] * w[2] + t[3][ 8] * w[3];
7989                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1] + t[2][ 9] * w[2] + t[3][ 9] * w[3];
7990                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1] + t[2][10] * w[2] + t[3][10] * w[3];
7991                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1] + t[2][11] * w[2] + t[3][11] * w[3];
7992                         }
7993                         else
7994                         {
7995                                 // blend 2 matrices
7996                                 t[1] = b + si[1]*12;
7997                                 w[0] = sw[0] * (1.0f / 255.0f);
7998                                 w[1] = sw[1] * (1.0f / 255.0f);
7999                                 // blend the matrices
8000                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1];
8001                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1];
8002                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1];
8003                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1];
8004                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1];
8005                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1];
8006                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1];
8007                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1];
8008                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1];
8009                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1];
8010                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1];
8011                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1];
8012                         }
8013                         si += 4;
8014                         sw += 4;
8015                         // modify the vertex
8016                         VectorCopy(vp, tp);
8017                         vp[0] = tp[0] * m[0][0] + tp[1] * m[0][1] + tp[2] * m[0][2] + m[0][3];
8018                         vp[1] = tp[0] * m[1][0] + tp[1] * m[1][1] + tp[2] * m[1][2] + m[1][3];
8019                         vp[2] = tp[0] * m[2][0] + tp[1] * m[2][1] + tp[2] * m[2][2] + m[2][3];
8020                         vp += 3;
8021                         if (vn)
8022                         {
8023                                 // the normal transformation matrix is a set of cross products...
8024                                 CrossProduct(m[1], m[2], n[0]);
8025                                 CrossProduct(m[2], m[0], n[1]);
8026                                 CrossProduct(m[0], m[1], n[2]); // is actually transpose(inverse(m)) * det(m)
8027                                 VectorCopy(vn, tn);
8028                                 vn[0] = tn[0] * n[0][0] + tn[1] * n[0][1] + tn[2] * n[0][2];
8029                                 vn[1] = tn[0] * n[1][0] + tn[1] * n[1][1] + tn[2] * n[1][2];
8030                                 vn[2] = tn[0] * n[2][0] + tn[1] * n[2][1] + tn[2] * n[2][2];
8031                                 VectorNormalize(vn);
8032                                 vn += 3;
8033                                 if (vs)
8034                                 {
8035                                         VectorCopy(vs, ts);
8036                                         vs[0] = ts[0] * n[0][0] + ts[1] * n[0][1] + ts[2] * n[0][2];
8037                                         vs[1] = ts[0] * n[1][0] + ts[1] * n[1][1] + ts[2] * n[1][2];
8038                                         vs[2] = ts[0] * n[2][0] + ts[1] * n[2][1] + ts[2] * n[2][2];
8039                                         VectorNormalize(vs);
8040                                         vs += 3;
8041                                         VectorCopy(vt, tt);
8042                                         vt[0] = tt[0] * n[0][0] + tt[1] * n[0][1] + tt[2] * n[0][2];
8043                                         vt[1] = tt[0] * n[1][0] + tt[1] * n[1][1] + tt[2] * n[1][2];
8044                                         vt[2] = tt[0] * n[2][0] + tt[1] * n[2][1] + tt[2] * n[2][2];
8045                                         VectorNormalize(vt);
8046                                         vt += 3;
8047                                 }
8048                         }
8049                 }
8050                 rsurface.batchskeletaltransform3x4 = NULL;
8051                 rsurface.batchskeletalnumtransforms = 0;
8052         }
8053
8054         // q1bsp surfaces rendered in vertex color mode have to have colors
8055         // calculated based on lightstyles
8056         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
8057         {
8058                 // generate color arrays for the surfaces in this list
8059                 int c[4];
8060                 int scale;
8061                 int size3;
8062                 const int *offsets;
8063                 const unsigned char *lm;
8064                 rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
8065                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
8066                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
8067                 numvertices = 0;
8068                 for (i = 0;i < texturenumsurfaces;i++)
8069                 {
8070                         surface = texturesurfacelist[i];
8071                         offsets = rsurface.modellightmapoffsets + surface->num_firstvertex;
8072                         surfacenumvertices = surface->num_vertices;
8073                         if (surface->lightmapinfo->samples)
8074                         {
8075                                 for (j = 0;j < surfacenumvertices;j++)
8076                                 {
8077                                         lm = surface->lightmapinfo->samples + offsets[j];
8078                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[0]];
8079                                         VectorScale(lm, scale, c);
8080                                         if (surface->lightmapinfo->styles[1] != 255)
8081                                         {
8082                                                 size3 = ((surface->lightmapinfo->extents[0]>>4)+1)*((surface->lightmapinfo->extents[1]>>4)+1)*3;
8083                                                 lm += size3;
8084                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[1]];
8085                                                 VectorMA(c, scale, lm, c);
8086                                                 if (surface->lightmapinfo->styles[2] != 255)
8087                                                 {
8088                                                         lm += size3;
8089                                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[2]];
8090                                                         VectorMA(c, scale, lm, c);
8091                                                         if (surface->lightmapinfo->styles[3] != 255)
8092                                                         {
8093                                                                 lm += size3;
8094                                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[3]];
8095                                                                 VectorMA(c, scale, lm, c);
8096                                                         }
8097                                                 }
8098                                         }
8099                                         c[0] >>= 7;
8100                                         c[1] >>= 7;
8101                                         c[2] >>= 7;
8102                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, min(c[0], 255) * (1.0f / 255.0f), min(c[1], 255) * (1.0f / 255.0f), min(c[2], 255) * (1.0f / 255.0f), 1);
8103                                         numvertices++;
8104                                 }
8105                         }
8106                         else
8107                         {
8108                                 for (j = 0;j < surfacenumvertices;j++)
8109                                 {
8110                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, 0, 0, 0, 1);
8111                                         numvertices++;
8112                                 }
8113                         }
8114                 }
8115         }
8116
8117         // if vertices are deformed (sprite flares and things in maps, possibly
8118         // water waves, bulges and other deformations), modify the copied vertices
8119         // in place
8120         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
8121         {
8122                 float scale;
8123                 switch (deform->deform)
8124                 {
8125                 default:
8126                 case Q3DEFORM_PROJECTIONSHADOW:
8127                 case Q3DEFORM_TEXT0:
8128                 case Q3DEFORM_TEXT1:
8129                 case Q3DEFORM_TEXT2:
8130                 case Q3DEFORM_TEXT3:
8131                 case Q3DEFORM_TEXT4:
8132                 case Q3DEFORM_TEXT5:
8133                 case Q3DEFORM_TEXT6:
8134                 case Q3DEFORM_TEXT7:
8135                 case Q3DEFORM_NONE:
8136                         break;
8137                 case Q3DEFORM_AUTOSPRITE:
8138                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8139                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8140                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8141                         VectorNormalize(newforward);
8142                         VectorNormalize(newright);
8143                         VectorNormalize(newup);
8144 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8145 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8146 //                      rsurface.batchvertex3f_bufferoffset = 0;
8147 //                      rsurface.batchsvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f);
8148 //                      rsurface.batchsvector3f_vertexbuffer = NULL;
8149 //                      rsurface.batchsvector3f_bufferoffset = 0;
8150 //                      rsurface.batchtvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f);
8151 //                      rsurface.batchtvector3f_vertexbuffer = NULL;
8152 //                      rsurface.batchtvector3f_bufferoffset = 0;
8153 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8154 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8155 //                      rsurface.batchnormal3f_bufferoffset = 0;
8156                         // sometimes we're on a renderpath that does not use vectors (GL11/GL13/GLES1)
8157                         if (!VectorLength2(rsurface.batchnormal3f + 3*rsurface.batchfirstvertex))
8158                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8159                         if (!VectorLength2(rsurface.batchsvector3f + 3*rsurface.batchfirstvertex))
8160                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8161                         // a single autosprite surface can contain multiple sprites...
8162                         for (j = 0;j < batchnumvertices - 3;j += 4)
8163                         {
8164                                 VectorClear(center);
8165                                 for (i = 0;i < 4;i++)
8166                                         VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8167                                 VectorScale(center, 0.25f, center);
8168                                 VectorCopy(rsurface.batchnormal3f + 3*j, forward);
8169                                 VectorCopy(rsurface.batchsvector3f + 3*j, right);
8170                                 VectorCopy(rsurface.batchtvector3f + 3*j, up);
8171                                 for (i = 0;i < 4;i++)
8172                                 {
8173                                         VectorSubtract(rsurface.batchvertex3f + 3*(j+i), center, v);
8174                                         VectorMAMAMAM(1, center, DotProduct(forward, v), newforward, DotProduct(right, v), newright, DotProduct(up, v), newup, rsurface.batchvertex3f + 3*(j+i));
8175                                 }
8176                         }
8177                         // if we get here, BATCHNEED_ARRAY_NORMAL and BATCHNEED_ARRAY_VECTOR are in batchneed, so no need to check
8178                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8179                         Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8180                         break;
8181                 case Q3DEFORM_AUTOSPRITE2:
8182                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8183                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8184                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8185                         VectorNormalize(newforward);
8186                         VectorNormalize(newright);
8187                         VectorNormalize(newup);
8188 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8189 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8190 //                      rsurface.batchvertex3f_bufferoffset = 0;
8191                         {
8192                                 const float *v1, *v2;
8193                                 vec3_t start, end;
8194                                 float f, l;
8195                                 struct
8196                                 {
8197                                         float length2;
8198                                         const float *v1;
8199                                         const float *v2;
8200                                 }
8201                                 shortest[2];
8202                                 memset(shortest, 0, sizeof(shortest));
8203                                 // a single autosprite surface can contain multiple sprites...
8204                                 for (j = 0;j < batchnumvertices - 3;j += 4)
8205                                 {
8206                                         VectorClear(center);
8207                                         for (i = 0;i < 4;i++)
8208                                                 VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8209                                         VectorScale(center, 0.25f, center);
8210                                         // find the two shortest edges, then use them to define the
8211                                         // axis vectors for rotating around the central axis
8212                                         for (i = 0;i < 6;i++)
8213                                         {
8214                                                 v1 = rsurface.batchvertex3f + 3*(j+quadedges[i][0]);
8215                                                 v2 = rsurface.batchvertex3f + 3*(j+quadedges[i][1]);
8216                                                 l = VectorDistance2(v1, v2);
8217                                                 // this length bias tries to make sense of square polygons, assuming they are meant to be upright
8218                                                 if (v1[2] != v2[2])
8219                                                         l += (1.0f / 1024.0f);
8220                                                 if (shortest[0].length2 > l || i == 0)
8221                                                 {
8222                                                         shortest[1] = shortest[0];
8223                                                         shortest[0].length2 = l;
8224                                                         shortest[0].v1 = v1;
8225                                                         shortest[0].v2 = v2;
8226                                                 }
8227                                                 else if (shortest[1].length2 > l || i == 1)
8228                                                 {
8229                                                         shortest[1].length2 = l;
8230                                                         shortest[1].v1 = v1;
8231                                                         shortest[1].v2 = v2;
8232                                                 }
8233                                         }
8234                                         VectorLerp(shortest[0].v1, 0.5f, shortest[0].v2, start);
8235                                         VectorLerp(shortest[1].v1, 0.5f, shortest[1].v2, end);
8236                                         // this calculates the right vector from the shortest edge
8237                                         // and the up vector from the edge midpoints
8238                                         VectorSubtract(shortest[0].v1, shortest[0].v2, right);
8239                                         VectorNormalize(right);
8240                                         VectorSubtract(end, start, up);
8241                                         VectorNormalize(up);
8242                                         // calculate a forward vector to use instead of the original plane normal (this is how we get a new right vector)
8243                                         VectorSubtract(rsurface.localvieworigin, center, forward);
8244                                         //Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, forward);
8245                                         VectorNegate(forward, forward);
8246                                         VectorReflect(forward, 0, up, forward);
8247                                         VectorNormalize(forward);
8248                                         CrossProduct(up, forward, newright);
8249                                         VectorNormalize(newright);
8250                                         // rotate the quad around the up axis vector, this is made
8251                                         // especially easy by the fact we know the quad is flat,
8252                                         // so we only have to subtract the center position and
8253                                         // measure distance along the right vector, and then
8254                                         // multiply that by the newright vector and add back the
8255                                         // center position
8256                                         // we also need to subtract the old position to undo the
8257                                         // displacement from the center, which we do with a
8258                                         // DotProduct, the subtraction/addition of center is also
8259                                         // optimized into DotProducts here
8260                                         l = DotProduct(right, center);
8261                                         for (i = 0;i < 4;i++)
8262                                         {
8263                                                 v1 = rsurface.batchvertex3f + 3*(j+i);
8264                                                 f = DotProduct(right, v1) - l;
8265                                                 VectorMAMAM(1, v1, -f, right, f, newright, rsurface.batchvertex3f + 3*(j+i));
8266                                         }
8267                                 }
8268                         }
8269                         if(batchneed & (BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR)) // otherwise these can stay NULL
8270                         {
8271 //                              rsurface.batchnormal3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8272 //                              rsurface.batchnormal3f_vertexbuffer = NULL;
8273 //                              rsurface.batchnormal3f_bufferoffset = 0;
8274                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8275                         }
8276                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8277                         {
8278 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8279 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8280 //                              rsurface.batchsvector3f_bufferoffset = 0;
8281 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8282 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8283 //                              rsurface.batchtvector3f_bufferoffset = 0;
8284                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8285                         }
8286                         break;
8287                 case Q3DEFORM_NORMAL:
8288                         // deform the normals to make reflections wavey
8289                         rsurface.batchnormal3f = (float *)R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8290                         rsurface.batchnormal3f_vertexbuffer = NULL;
8291                         rsurface.batchnormal3f_bufferoffset = 0;
8292                         for (j = 0;j < batchnumvertices;j++)
8293                         {
8294                                 float vertex[3];
8295                                 float *normal = rsurface.batchnormal3f + 3*j;
8296                                 VectorScale(rsurface.batchvertex3f + 3*j, 0.98f, vertex);
8297                                 normal[0] = rsurface.batchnormal3f[j*3+0] + deform->parms[0] * noise4f(      vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8298                                 normal[1] = rsurface.batchnormal3f[j*3+1] + deform->parms[0] * noise4f( 98 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8299                                 normal[2] = rsurface.batchnormal3f[j*3+2] + deform->parms[0] * noise4f(196 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8300                                 VectorNormalize(normal);
8301                         }
8302                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8303                         {
8304 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8305 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8306 //                              rsurface.batchsvector3f_bufferoffset = 0;
8307 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8308 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8309 //                              rsurface.batchtvector3f_bufferoffset = 0;
8310                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8311                         }
8312                         break;
8313                 case Q3DEFORM_WAVE:
8314                         // deform vertex array to make wavey water and flags and such
8315                         waveparms[0] = deform->waveparms[0];
8316                         waveparms[1] = deform->waveparms[1];
8317                         waveparms[2] = deform->waveparms[2];
8318                         waveparms[3] = deform->waveparms[3];
8319                         if(!R_TestQ3WaveFunc(deform->wavefunc, waveparms))
8320                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8321                         // this is how a divisor of vertex influence on deformation
8322                         animpos = deform->parms[0] ? 1.0f / deform->parms[0] : 100.0f;
8323                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8324 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8325 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8326 //                      rsurface.batchvertex3f_bufferoffset = 0;
8327 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8328 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8329 //                      rsurface.batchnormal3f_bufferoffset = 0;
8330                         for (j = 0;j < batchnumvertices;j++)
8331                         {
8332                                 // if the wavefunc depends on time, evaluate it per-vertex
8333                                 if (waveparms[3])
8334                                 {
8335                                         waveparms[2] = deform->waveparms[2] + (rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+1] + rsurface.batchvertex3f[j*3+2]) * animpos;
8336                                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8337                                 }
8338                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8339                         }
8340                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8341                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8342                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8343                         {
8344 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8345 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8346 //                              rsurface.batchsvector3f_bufferoffset = 0;
8347 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8348 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8349 //                              rsurface.batchtvector3f_bufferoffset = 0;
8350                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8351                         }
8352                         break;
8353                 case Q3DEFORM_BULGE:
8354                         // deform vertex array to make the surface have moving bulges
8355 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8356 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8357 //                      rsurface.batchvertex3f_bufferoffset = 0;
8358 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8359 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8360 //                      rsurface.batchnormal3f_bufferoffset = 0;
8361                         for (j = 0;j < batchnumvertices;j++)
8362                         {
8363                                 scale = sin(rsurface.batchtexcoordtexture2f[j*2+0] * deform->parms[0] + rsurface.shadertime * deform->parms[2]) * deform->parms[1];
8364                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8365                         }
8366                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8367                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8368                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8369                         {
8370 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8371 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8372 //                              rsurface.batchsvector3f_bufferoffset = 0;
8373 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8374 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8375 //                              rsurface.batchtvector3f_bufferoffset = 0;
8376                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8377                         }
8378                         break;
8379                 case Q3DEFORM_MOVE:
8380                         // deform vertex array
8381                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
8382                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8383                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, deform->waveparms);
8384                         VectorScale(deform->parms, scale, waveparms);
8385 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8386 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8387 //                      rsurface.batchvertex3f_bufferoffset = 0;
8388                         for (j = 0;j < batchnumvertices;j++)
8389                                 VectorAdd(rsurface.batchvertex3f + 3*j, waveparms, rsurface.batchvertex3f + 3*j);
8390                         break;
8391                 }
8392         }
8393
8394         if (rsurface.batchtexcoordtexture2f && rsurface.texture->materialshaderpass)
8395         {
8396         // generate texcoords based on the chosen texcoord source
8397                 switch(rsurface.texture->materialshaderpass->tcgen.tcgen)
8398                 {
8399                 default:
8400                 case Q3TCGEN_TEXTURE:
8401                         break;
8402                 case Q3TCGEN_LIGHTMAP:
8403         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8404         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8405         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8406                         if (rsurface.batchtexcoordlightmap2f)
8407                                 memcpy(rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordlightmap2f, batchnumvertices * sizeof(float[2]));
8408                         break;
8409                 case Q3TCGEN_VECTOR:
8410         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8411         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8412         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8413                         for (j = 0;j < batchnumvertices;j++)
8414                         {
8415                                 rsurface.batchtexcoordtexture2f[j*2+0] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms);
8416                                 rsurface.batchtexcoordtexture2f[j*2+1] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms + 3);
8417                         }
8418                         break;
8419                 case Q3TCGEN_ENVIRONMENT:
8420                         // make environment reflections using a spheremap
8421                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8422                         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8423                         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8424                         for (j = 0;j < batchnumvertices;j++)
8425                         {
8426                                 // identical to Q3A's method, but executed in worldspace so
8427                                 // carried models can be shiny too
8428
8429                                 float viewer[3], d, reflected[3], worldreflected[3];
8430
8431                                 VectorSubtract(rsurface.localvieworigin, rsurface.batchvertex3f + 3*j, viewer);
8432                                 // VectorNormalize(viewer);
8433
8434                                 d = DotProduct(rsurface.batchnormal3f + 3*j, viewer);
8435
8436                                 reflected[0] = rsurface.batchnormal3f[j*3+0]*2*d - viewer[0];
8437                                 reflected[1] = rsurface.batchnormal3f[j*3+1]*2*d - viewer[1];
8438                                 reflected[2] = rsurface.batchnormal3f[j*3+2]*2*d - viewer[2];
8439                                 // note: this is proportinal to viewer, so we can normalize later
8440
8441                                 Matrix4x4_Transform3x3(&rsurface.matrix, reflected, worldreflected);
8442                                 VectorNormalize(worldreflected);
8443
8444                                 // note: this sphere map only uses world x and z!
8445                                 // so positive and negative y will LOOK THE SAME.
8446                                 rsurface.batchtexcoordtexture2f[j*2+0] = 0.5 + 0.5 * worldreflected[1];
8447                                 rsurface.batchtexcoordtexture2f[j*2+1] = 0.5 - 0.5 * worldreflected[2];
8448                         }
8449                         break;
8450                 }
8451                 // the only tcmod that needs software vertex processing is turbulent, so
8452                 // check for it here and apply the changes if needed
8453                 // and we only support that as the first one
8454                 // (handling a mixture of turbulent and other tcmods would be problematic
8455                 //  without punting it entirely to a software path)
8456                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
8457                 {
8458                         amplitude = rsurface.texture->materialshaderpass->tcmods[0].parms[1];
8459                         animpos = rsurface.texture->materialshaderpass->tcmods[0].parms[2] + rsurface.shadertime * rsurface.texture->materialshaderpass->tcmods[0].parms[3];
8460         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8461         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8462         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8463                         for (j = 0;j < batchnumvertices;j++)
8464                         {
8465                                 rsurface.batchtexcoordtexture2f[j*2+0] += amplitude * sin(((rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+2]) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8466                                 rsurface.batchtexcoordtexture2f[j*2+1] += amplitude * sin(((rsurface.batchvertex3f[j*3+1]                                ) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8467                         }
8468                 }
8469         }
8470 }
8471
8472 void RSurf_DrawBatch(void)
8473 {
8474         // sometimes a zero triangle surface (usually a degenerate patch) makes it
8475         // through the pipeline, killing it earlier in the pipeline would have
8476         // per-surface overhead rather than per-batch overhead, so it's best to
8477         // reject it here, before it hits glDraw.
8478         if (rsurface.batchnumtriangles == 0)
8479                 return;
8480 #if 0
8481         // batch debugging code
8482         if (r_test.integer && rsurface.entity == r_refdef.scene.worldentity && rsurface.batchvertex3f == r_refdef.scene.worldentity->model->surfmesh.data_vertex3f)
8483         {
8484                 int i;
8485                 int j;
8486                 int c;
8487                 const int *e;
8488                 e = rsurface.batchelement3i + rsurface.batchfirsttriangle*3;
8489                 for (i = 0;i < rsurface.batchnumtriangles*3;i++)
8490                 {
8491                         c = e[i];
8492                         for (j = 0;j < rsurface.entity->model->num_surfaces;j++)
8493                         {
8494                                 if (c >= rsurface.modelsurfaces[j].num_firstvertex && c < (rsurface.modelsurfaces[j].num_firstvertex + rsurface.modelsurfaces[j].num_vertices))
8495                                 {
8496                                         if (rsurface.modelsurfaces[j].texture != rsurface.texture)
8497                                                 Sys_Error("RSurf_DrawBatch: index %i uses different texture (%s) than surface %i which it belongs to (which uses %s)\n", c, rsurface.texture->name, j, rsurface.modelsurfaces[j].texture->name);
8498                                         break;
8499                                 }
8500                         }
8501                 }
8502         }
8503 #endif
8504         if (rsurface.batchmultidraw)
8505         {
8506                 // issue multiple draws rather than copying index data
8507                 int numsurfaces = rsurface.batchmultidrawnumsurfaces;
8508                 const msurface_t **surfacelist = rsurface.batchmultidrawsurfacelist;
8509                 int i, j, k, firstvertex, endvertex, firsttriangle, endtriangle;
8510                 for (i = 0;i < numsurfaces;)
8511                 {
8512                         // combine consecutive surfaces as one draw
8513                         for (k = i, j = i + 1;j < numsurfaces;k = j, j++)
8514                                 if (surfacelist[j] != surfacelist[k] + 1)
8515                                         break;
8516                         firstvertex = surfacelist[i]->num_firstvertex;
8517                         endvertex = surfacelist[k]->num_firstvertex + surfacelist[k]->num_vertices;
8518                         firsttriangle = surfacelist[i]->num_firsttriangle;
8519                         endtriangle = surfacelist[k]->num_firsttriangle + surfacelist[k]->num_triangles;
8520                         R_Mesh_Draw(firstvertex, endvertex - firstvertex, firsttriangle, endtriangle - firsttriangle, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8521                         i = j;
8522                 }
8523         }
8524         else
8525         {
8526                 // there is only one consecutive run of index data (may have been combined)
8527                 R_Mesh_Draw(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchfirsttriangle, rsurface.batchnumtriangles, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8528         }
8529 }
8530
8531 static int RSurf_FindWaterPlaneForSurface(const msurface_t *surface)
8532 {
8533         // pick the closest matching water plane
8534         int planeindex, vertexindex, bestplaneindex = -1;
8535         float d, bestd;
8536         vec3_t vert;
8537         const float *v;
8538         r_waterstate_waterplane_t *p;
8539         qbool prepared = false;
8540         bestd = 0;
8541         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
8542         {
8543                 if(p->camera_entity != rsurface.texture->camera_entity)
8544                         continue;
8545                 d = 0;
8546                 if(!prepared)
8547                 {
8548                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX, 1, &surface);
8549                         prepared = true;
8550                         if(rsurface.batchnumvertices == 0)
8551                                 break;
8552                 }
8553                 for (vertexindex = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3;vertexindex < rsurface.batchnumvertices;vertexindex++, v += 3)
8554                 {
8555                         Matrix4x4_Transform(&rsurface.matrix, v, vert);
8556                         d += fabs(PlaneDiff(vert, &p->plane));
8557                 }
8558                 if (bestd > d || bestplaneindex < 0)
8559                 {
8560                         bestd = d;
8561                         bestplaneindex = planeindex;
8562                 }
8563         }
8564         return bestplaneindex;
8565         // NOTE: this MAY return a totally unrelated water plane; we can ignore
8566         // this situation though, as it might be better to render single larger
8567         // batches with useless stuff (backface culled for example) than to
8568         // render multiple smaller batches
8569 }
8570
8571 void RSurf_SetupDepthAndCulling(void)
8572 {
8573         // submodels are biased to avoid z-fighting with world surfaces that they
8574         // may be exactly overlapping (avoids z-fighting artifacts on certain
8575         // doors and things in Quake maps)
8576         GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1);
8577         GL_PolygonOffset(rsurface.basepolygonfactor + rsurface.texture->biaspolygonfactor, rsurface.basepolygonoffset + rsurface.texture->biaspolygonoffset);
8578         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST));
8579         GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
8580 }
8581
8582 static void R_DrawTextureSurfaceList_Sky(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8583 {
8584         int j;
8585         const float *v;
8586         float p[3], mins[3], maxs[3];
8587         int scissor[4];
8588         // transparent sky would be ridiculous
8589         if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8590                 return;
8591         R_SetupShader_Generic_NoTexture(false, false);
8592         skyrenderlater = true;
8593         RSurf_SetupDepthAndCulling();
8594         GL_DepthMask(true);
8595
8596         // add the vertices of the surfaces to a world bounding box so we can scissor the sky render later
8597         if (r_sky_scissor.integer)
8598         {
8599                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8600                 for (j = 0, v = rsurface.batchvertex3f + 3 * rsurface.batchfirstvertex; j < rsurface.batchnumvertices; j++, v += 3)
8601                 {
8602                         Matrix4x4_Transform(&rsurface.matrix, v, p);
8603                         if (j > 0)
8604                         {
8605                                 if (mins[0] > p[0]) mins[0] = p[0];
8606                                 if (mins[1] > p[1]) mins[1] = p[1];
8607                                 if (mins[2] > p[2]) mins[2] = p[2];
8608                                 if (maxs[0] < p[0]) maxs[0] = p[0];
8609                                 if (maxs[1] < p[1]) maxs[1] = p[1];
8610                                 if (maxs[2] < p[2]) maxs[2] = p[2];
8611                         }
8612                         else
8613                         {
8614                                 VectorCopy(p, mins);
8615                                 VectorCopy(p, maxs);
8616                         }
8617                 }
8618                 if (!R_ScissorForBBox(mins, maxs, scissor))
8619                 {
8620                         if (skyscissor[2])
8621                         {
8622                                 if (skyscissor[0] > scissor[0])
8623                                 {
8624                                         skyscissor[2] += skyscissor[0] - scissor[0];
8625                                         skyscissor[0] = scissor[0];
8626                                 }
8627                                 if (skyscissor[1] > scissor[1])
8628                                 {
8629                                         skyscissor[3] += skyscissor[1] - scissor[1];
8630                                         skyscissor[1] = scissor[1];
8631                                 }
8632                                 if (skyscissor[0] + skyscissor[2] < scissor[0] + scissor[2])
8633                                         skyscissor[2] = scissor[0] + scissor[2] - skyscissor[0];
8634                                 if (skyscissor[1] + skyscissor[3] < scissor[1] + scissor[3])
8635                                         skyscissor[3] = scissor[1] + scissor[3] - skyscissor[1];
8636                         }
8637                         else
8638                                 Vector4Copy(scissor, skyscissor);
8639                 }
8640         }
8641
8642         // LadyHavoc: HalfLife maps have freaky skypolys so don't use
8643         // skymasking on them, and Quake3 never did sky masking (unlike
8644         // software Quake and software Quake2), so disable the sky masking
8645         // in Quake3 maps as it causes problems with q3map2 sky tricks,
8646         // and skymasking also looks very bad when noclipping outside the
8647         // level, so don't use it then either.
8648         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.skymasking && (r_refdef.scene.worldmodel->brush.isq3bsp ? r_q3bsp_renderskydepth.integer : r_q1bsp_skymasking.integer) && !r_refdef.viewcache.world_novis && !r_trippy.integer)
8649         {
8650                 R_Mesh_ResetTextureState();
8651                 if (skyrendermasked)
8652                 {
8653                         R_SetupShader_DepthOrShadow(false, false, false);
8654                         // depth-only (masking)
8655                         GL_ColorMask(0, 0, 0, 0);
8656                         // just to make sure that braindead drivers don't draw
8657                         // anything despite that colormask...
8658                         GL_BlendFunc(GL_ZERO, GL_ONE);
8659                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8660                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8661                 }
8662                 else
8663                 {
8664                         R_SetupShader_Generic_NoTexture(false, false);
8665                         // fog sky
8666                         GL_BlendFunc(GL_ONE, GL_ZERO);
8667                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8668                         GL_Color(r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], 1);
8669                         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
8670                 }
8671                 RSurf_DrawBatch();
8672                 if (skyrendermasked)
8673                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8674         }
8675         R_Mesh_ResetTextureState();
8676         GL_Color(1, 1, 1, 1);
8677 }
8678
8679 extern rtexture_t *r_shadow_prepasslightingdiffusetexture;
8680 extern rtexture_t *r_shadow_prepasslightingspeculartexture;
8681 static void R_DrawTextureSurfaceList_GL20(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8682 {
8683         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)))
8684                 return;
8685         if (prepass)
8686         {
8687                 // render screenspace normalmap to texture
8688                 GL_DepthMask(true);
8689                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_DEFERREDGEOMETRY, texturenumsurfaces, texturesurfacelist, NULL, false, false);
8690                 RSurf_DrawBatch();
8691                 return;
8692         }
8693
8694         // bind lightmap texture
8695
8696         // water/refraction/reflection/camera surfaces have to be handled specially
8697         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA | MATERIALFLAG_REFLECTION)))
8698         {
8699                 int start, end, startplaneindex;
8700                 for (start = 0;start < texturenumsurfaces;start = end)
8701                 {
8702                         startplaneindex = RSurf_FindWaterPlaneForSurface(texturesurfacelist[start]);
8703                         if(startplaneindex < 0)
8704                         {
8705                                 // this happens if the plane e.g. got backface culled and thus didn't get a water plane. We can just ignore this.
8706                                 // Con_Printf("No matching water plane for surface with material flags 0x%08x - PLEASE DEBUG THIS\n", rsurface.texture->currentmaterialflags);
8707                                 end = start + 1;
8708                                 continue;
8709                         }
8710                         for (end = start + 1;end < texturenumsurfaces && startplaneindex == RSurf_FindWaterPlaneForSurface(texturesurfacelist[end]);end++)
8711                                 ;
8712                         // now that we have a batch using the same planeindex, render it
8713                         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA)))
8714                         {
8715                                 // render water or distortion background
8716                                 GL_DepthMask(true);
8717                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BACKGROUND, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false, false);
8718                                 RSurf_DrawBatch();
8719                                 // blend surface on top
8720                                 GL_DepthMask(false);
8721                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, NULL, false, false);
8722                                 RSurf_DrawBatch();
8723                         }
8724                         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION))
8725                         {
8726                                 // render surface with reflection texture as input
8727                                 GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8728                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false, false);
8729                                 RSurf_DrawBatch();
8730                         }
8731                 }
8732                 return;
8733         }
8734
8735         // render surface batch normally
8736         GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8737         R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, texturenumsurfaces, texturesurfacelist, NULL, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) != 0 || ui, ui);
8738         RSurf_DrawBatch();
8739 }
8740
8741 static void R_DrawTextureSurfaceList_ShowSurfaces(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth)
8742 {
8743         int vi;
8744         int j;
8745         int texturesurfaceindex;
8746         int k;
8747         const msurface_t *surface;
8748         float surfacecolor4f[4];
8749
8750 //      R_Mesh_ResetTextureState();
8751         R_SetupShader_Generic_NoTexture(false, false);
8752
8753         GL_BlendFunc(GL_ONE, GL_ZERO);
8754         GL_DepthMask(writedepth);
8755
8756         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ALWAYSCOPY, texturenumsurfaces, texturesurfacelist);
8757         vi = 0;
8758         for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++)
8759         {
8760                 surface = texturesurfacelist[texturesurfaceindex];
8761                 k = (int)(((size_t)surface) / sizeof(msurface_t));
8762                 Vector4Set(surfacecolor4f, (k & 0xF) * (1.0f / 16.0f), (k & 0xF0) * (1.0f / 256.0f), (k & 0xF00) * (1.0f / 4096.0f), 1);
8763                 for (j = 0;j < surface->num_vertices;j++)
8764                 {
8765                         Vector4Copy(surfacecolor4f, rsurface.batchlightmapcolor4f + 4 * vi);
8766                         vi++;
8767                 }
8768         }
8769         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchlightmapcolor4f, rsurface.batchtexcoordtexture2f);
8770         RSurf_DrawBatch();
8771 }
8772
8773 static void R_DrawModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8774 {
8775         CHECKGLERROR
8776         RSurf_SetupDepthAndCulling();
8777         if (r_showsurfaces.integer && r_refdef.view.showdebug)
8778         {
8779                 R_DrawTextureSurfaceList_ShowSurfaces(texturenumsurfaces, texturesurfacelist, writedepth);
8780                 return;
8781         }
8782         switch (vid.renderpath)
8783         {
8784         case RENDERPATH_GL32:
8785         case RENDERPATH_GLES2:
8786                 R_DrawTextureSurfaceList_GL20(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8787                 break;
8788         }
8789         CHECKGLERROR
8790 }
8791
8792 static void R_DrawSurface_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
8793 {
8794         int i, j;
8795         int texturenumsurfaces, endsurface;
8796         texture_t *texture;
8797         const msurface_t *surface;
8798         const msurface_t *texturesurfacelist[MESHQUEUE_TRANSPARENT_BATCHSIZE];
8799
8800         RSurf_ActiveModelEntity(ent, true, true, false);
8801
8802         if (r_transparentdepthmasking.integer)
8803         {
8804                 qbool setup = false;
8805                 for (i = 0;i < numsurfaces;i = j)
8806                 {
8807                         j = i + 1;
8808                         surface = rsurface.modelsurfaces + surfacelist[i];
8809                         texture = surface->texture;
8810                         rsurface.texture = R_GetCurrentTexture(texture);
8811                         rsurface.lightmaptexture = NULL;
8812                         rsurface.deluxemaptexture = NULL;
8813                         rsurface.uselightmaptexture = false;
8814                         // scan ahead until we find a different texture
8815                         endsurface = min(i + 1024, numsurfaces);
8816                         texturenumsurfaces = 0;
8817                         texturesurfacelist[texturenumsurfaces++] = surface;
8818                         for (;j < endsurface;j++)
8819                         {
8820                                 surface = rsurface.modelsurfaces + surfacelist[j];
8821                                 if (texture != surface->texture)
8822                                         break;
8823                                 texturesurfacelist[texturenumsurfaces++] = surface;
8824                         }
8825                         if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_TRANSDEPTH))
8826                                 continue;
8827                         // render the range of surfaces as depth
8828                         if (!setup)
8829                         {
8830                                 setup = true;
8831                                 GL_ColorMask(0,0,0,0);
8832                                 GL_Color(1,1,1,1);
8833                                 GL_DepthTest(true);
8834                                 GL_BlendFunc(GL_ONE, GL_ZERO);
8835                                 GL_DepthMask(true);
8836 //                              R_Mesh_ResetTextureState();
8837                         }
8838                         RSurf_SetupDepthAndCulling();
8839                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8840                         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8841                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8842                         RSurf_DrawBatch();
8843                 }
8844                 if (setup)
8845                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8846         }
8847
8848         for (i = 0;i < numsurfaces;i = j)
8849         {
8850                 j = i + 1;
8851                 surface = rsurface.modelsurfaces + surfacelist[i];
8852                 texture = surface->texture;
8853                 rsurface.texture = R_GetCurrentTexture(texture);
8854                 // scan ahead until we find a different texture
8855                 endsurface = min(i + MESHQUEUE_TRANSPARENT_BATCHSIZE, numsurfaces);
8856                 texturenumsurfaces = 0;
8857                 texturesurfacelist[texturenumsurfaces++] = surface;
8858                         rsurface.lightmaptexture = surface->lightmaptexture;
8859                         rsurface.deluxemaptexture = surface->deluxemaptexture;
8860                         rsurface.uselightmaptexture = surface->lightmaptexture != NULL;
8861                         for (;j < endsurface;j++)
8862                         {
8863                                 surface = rsurface.modelsurfaces + surfacelist[j];
8864                                 if (texture != surface->texture || rsurface.lightmaptexture != surface->lightmaptexture)
8865                                         break;
8866                                 texturesurfacelist[texturenumsurfaces++] = surface;
8867                         }
8868                 // render the range of surfaces
8869                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, false, false, false);
8870         }
8871         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
8872 }
8873
8874 static void R_ProcessTransparentTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8875 {
8876         // transparent surfaces get pushed off into the transparent queue
8877         int surfacelistindex;
8878         const msurface_t *surface;
8879         vec3_t tempcenter, center;
8880         for (surfacelistindex = 0;surfacelistindex < texturenumsurfaces;surfacelistindex++)
8881         {
8882                 surface = texturesurfacelist[surfacelistindex];
8883                 if (r_transparent_sortsurfacesbynearest.integer)
8884                 {
8885                         tempcenter[0] = bound(surface->mins[0], rsurface.localvieworigin[0], surface->maxs[0]);
8886                         tempcenter[1] = bound(surface->mins[1], rsurface.localvieworigin[1], surface->maxs[1]);
8887                         tempcenter[2] = bound(surface->mins[2], rsurface.localvieworigin[2], surface->maxs[2]);
8888                 }
8889                 else
8890                 {
8891                         tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f;
8892                         tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f;
8893                         tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f;
8894                 }
8895                 Matrix4x4_Transform(&rsurface.matrix, tempcenter, center);
8896                 if (rsurface.entity->transparent_offset) // transparent offset
8897                 {
8898                         center[0] += r_refdef.view.forward[0]*rsurface.entity->transparent_offset;
8899                         center[1] += r_refdef.view.forward[1]*rsurface.entity->transparent_offset;
8900                         center[2] += r_refdef.view.forward[2]*rsurface.entity->transparent_offset;
8901                 }
8902                 R_MeshQueue_AddTransparent((rsurface.entity->flags & RENDER_WORLDOBJECT) ? TRANSPARENTSORT_SKY : (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) ? TRANSPARENTSORT_HUD : rsurface.texture->transparentsort, center, R_DrawSurface_TransparentCallback, rsurface.entity, surface - rsurface.modelsurfaces, rsurface.rtlight);
8903         }
8904 }
8905
8906 static void R_DrawTextureSurfaceList_DepthOnly(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8907 {
8908         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHATEST)))
8909                 return;
8910         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION)))
8911                 return;
8912         RSurf_SetupDepthAndCulling();
8913         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8914         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8915         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8916         RSurf_DrawBatch();
8917 }
8918
8919 static void R_ProcessModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
8920 {
8921         CHECKGLERROR
8922         if (ui)
8923                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8924         else if (depthonly)
8925                 R_DrawTextureSurfaceList_DepthOnly(texturenumsurfaces, texturesurfacelist);
8926         else if (prepass)
8927         {
8928                 if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8929                         return;
8930                 if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8931                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8932                 else
8933                         R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8934         }
8935         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) && (!r_showsurfaces.integer || r_showsurfaces.integer == 3))
8936                 R_DrawTextureSurfaceList_Sky(texturenumsurfaces, texturesurfacelist);
8937         else if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8938                 return;
8939         else if (((rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) || (r_showsurfaces.integer == 3 && (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST))))
8940         {
8941                 // in the deferred case, transparent surfaces were queued during prepass
8942                 if (!r_shadow_usingdeferredprepass)
8943                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8944         }
8945         else
8946         {
8947                 // the alphatest check is to make sure we write depth for anything we skipped on the depth-only pass earlier
8948                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST), prepass, ui);
8949         }
8950         CHECKGLERROR
8951 }
8952
8953 static void R_QueueModelSurfaceList(entity_render_t *ent, int numsurfaces, const msurface_t **surfacelist, int flagsmask, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
8954 {
8955         int i, j;
8956         texture_t *texture;
8957         R_FrameData_SetMark();
8958         // break the surface list down into batches by texture and use of lightmapping
8959         for (i = 0;i < numsurfaces;i = j)
8960         {
8961                 j = i + 1;
8962                 // texture is the base texture pointer, rsurface.texture is the
8963                 // current frame/skin the texture is directing us to use (for example
8964                 // if a model has 2 skins and it is on skin 1, then skin 0 tells us to
8965                 // use skin 1 instead)
8966                 texture = surfacelist[i]->texture;
8967                 rsurface.texture = R_GetCurrentTexture(texture);
8968                 if (!(rsurface.texture->currentmaterialflags & flagsmask) || (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODRAW))
8969                 {
8970                         // if this texture is not the kind we want, skip ahead to the next one
8971                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
8972                                 ;
8973                         continue;
8974                 }
8975                 if(depthonly || prepass)
8976                 {
8977                         rsurface.lightmaptexture = NULL;
8978                         rsurface.deluxemaptexture = NULL;
8979                         rsurface.uselightmaptexture = false;
8980                         // simply scan ahead until we find a different texture or lightmap state
8981                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
8982                                 ;
8983                 }
8984                 else
8985                 {
8986                         rsurface.lightmaptexture = surfacelist[i]->lightmaptexture;
8987                         rsurface.deluxemaptexture = surfacelist[i]->deluxemaptexture;
8988                         rsurface.uselightmaptexture = surfacelist[i]->lightmaptexture != NULL;
8989                         // simply scan ahead until we find a different texture or lightmap state
8990                         for (;j < numsurfaces && texture == surfacelist[j]->texture && rsurface.lightmaptexture == surfacelist[j]->lightmaptexture;j++)
8991                                 ;
8992                 }
8993                 // render the range of surfaces
8994                 R_ProcessModelTextureSurfaceList(j - i, surfacelist + i, writedepth, depthonly, prepass, ui);
8995         }
8996         R_FrameData_ReturnToMark();
8997 }
8998
8999 float locboxvertex3f[6*4*3] =
9000 {
9001         1,0,1, 1,0,0, 1,1,0, 1,1,1,
9002         0,1,1, 0,1,0, 0,0,0, 0,0,1,
9003         1,1,1, 1,1,0, 0,1,0, 0,1,1,
9004         0,0,1, 0,0,0, 1,0,0, 1,0,1,
9005         0,0,1, 1,0,1, 1,1,1, 0,1,1,
9006         1,0,0, 0,0,0, 0,1,0, 1,1,0
9007 };
9008
9009 unsigned short locboxelements[6*2*3] =
9010 {
9011          0, 1, 2, 0, 2, 3,
9012          4, 5, 6, 4, 6, 7,
9013          8, 9,10, 8,10,11,
9014         12,13,14, 12,14,15,
9015         16,17,18, 16,18,19,
9016         20,21,22, 20,22,23
9017 };
9018
9019 static void R_DrawLoc_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
9020 {
9021         int i, j;
9022         cl_locnode_t *loc = (cl_locnode_t *)ent;
9023         vec3_t mins, size;
9024         float vertex3f[6*4*3];
9025         CHECKGLERROR
9026         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9027         GL_DepthMask(false);
9028         GL_DepthRange(0, 1);
9029         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9030         GL_DepthTest(true);
9031         GL_CullFace(GL_NONE);
9032         R_EntityMatrix(&identitymatrix);
9033
9034 //      R_Mesh_ResetTextureState();
9035
9036         i = surfacelist[0];
9037         GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9038                          ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9039                          ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9040                         surfacelist[0] < 0 ? 0.5f : 0.125f);
9041
9042         if (VectorCompare(loc->mins, loc->maxs))
9043         {
9044                 VectorSet(size, 2, 2, 2);
9045                 VectorMA(loc->mins, -0.5f, size, mins);
9046         }
9047         else
9048         {
9049                 VectorCopy(loc->mins, mins);
9050                 VectorSubtract(loc->maxs, loc->mins, size);
9051         }
9052
9053         for (i = 0;i < 6*4*3;)
9054                 for (j = 0;j < 3;j++, i++)
9055                         vertex3f[i] = mins[j] + size[j] * locboxvertex3f[i];
9056
9057         R_Mesh_PrepareVertices_Generic_Arrays(6*4, vertex3f, NULL, NULL);
9058         R_SetupShader_Generic_NoTexture(false, false);
9059         R_Mesh_Draw(0, 6*4, 0, 6*2, NULL, NULL, 0, locboxelements, NULL, 0);
9060 }
9061
9062 void R_DrawLocs(void)
9063 {
9064         int index;
9065         cl_locnode_t *loc, *nearestloc;
9066         vec3_t center;
9067         nearestloc = CL_Locs_FindNearest(cl.movement_origin);
9068         for (loc = cl.locnodes, index = 0;loc;loc = loc->next, index++)
9069         {
9070                 VectorLerp(loc->mins, 0.5f, loc->maxs, center);
9071                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawLoc_Callback, (entity_render_t *)loc, loc == nearestloc ? -1 : index, NULL);
9072         }
9073 }
9074
9075 void R_DecalSystem_Reset(decalsystem_t *decalsystem)
9076 {
9077         if (decalsystem->decals)
9078                 Mem_Free(decalsystem->decals);
9079         memset(decalsystem, 0, sizeof(*decalsystem));
9080 }
9081
9082 static void R_DecalSystem_SpawnTriangle(decalsystem_t *decalsystem, const float *v0, const float *v1, const float *v2, const float *t0, const float *t1, const float *t2, const float *c0, const float *c1, const float *c2, int triangleindex, int surfaceindex, unsigned int decalsequence)
9083 {
9084         tridecal_t *decal;
9085         tridecal_t *decals;
9086         int i;
9087
9088         // expand or initialize the system
9089         if (decalsystem->maxdecals <= decalsystem->numdecals)
9090         {
9091                 decalsystem_t old = *decalsystem;
9092                 qbool useshortelements;
9093                 decalsystem->maxdecals = max(16, decalsystem->maxdecals * 2);
9094                 useshortelements = decalsystem->maxdecals * 3 <= 65536;
9095                 decalsystem->decals = (tridecal_t *)Mem_Alloc(cls.levelmempool, decalsystem->maxdecals * (sizeof(tridecal_t) + sizeof(float[3][3]) + sizeof(float[3][2]) + sizeof(float[3][4]) + sizeof(int[3]) + (useshortelements ? sizeof(unsigned short[3]) : 0)));
9096                 decalsystem->color4f = (float *)(decalsystem->decals + decalsystem->maxdecals);
9097                 decalsystem->texcoord2f = (float *)(decalsystem->color4f + decalsystem->maxdecals*12);
9098                 decalsystem->vertex3f = (float *)(decalsystem->texcoord2f + decalsystem->maxdecals*6);
9099                 decalsystem->element3i = (int *)(decalsystem->vertex3f + decalsystem->maxdecals*9);
9100                 decalsystem->element3s = (useshortelements ? ((unsigned short *)(decalsystem->element3i + decalsystem->maxdecals*3)) : NULL);
9101                 if (decalsystem->numdecals)
9102                         memcpy(decalsystem->decals, old.decals, decalsystem->numdecals * sizeof(tridecal_t));
9103                 if (old.decals)
9104                         Mem_Free(old.decals);
9105                 for (i = 0;i < decalsystem->maxdecals*3;i++)
9106                         decalsystem->element3i[i] = i;
9107                 if (useshortelements)
9108                         for (i = 0;i < decalsystem->maxdecals*3;i++)
9109                                 decalsystem->element3s[i] = i;
9110         }
9111
9112         // grab a decal and search for another free slot for the next one
9113         decals = decalsystem->decals;
9114         decal = decalsystem->decals + (i = decalsystem->freedecal++);
9115         for (i = decalsystem->freedecal;i < decalsystem->numdecals && decals[i].color4f[0][3];i++)
9116                 ;
9117         decalsystem->freedecal = i;
9118         if (decalsystem->numdecals <= i)
9119                 decalsystem->numdecals = i + 1;
9120
9121         // initialize the decal
9122         decal->lived = 0;
9123         decal->triangleindex = triangleindex;
9124         decal->surfaceindex = surfaceindex;
9125         decal->decalsequence = decalsequence;
9126         decal->color4f[0][0] = c0[0];
9127         decal->color4f[0][1] = c0[1];
9128         decal->color4f[0][2] = c0[2];
9129         decal->color4f[0][3] = 1;
9130         decal->color4f[1][0] = c1[0];
9131         decal->color4f[1][1] = c1[1];
9132         decal->color4f[1][2] = c1[2];
9133         decal->color4f[1][3] = 1;
9134         decal->color4f[2][0] = c2[0];
9135         decal->color4f[2][1] = c2[1];
9136         decal->color4f[2][2] = c2[2];
9137         decal->color4f[2][3] = 1;
9138         decal->vertex3f[0][0] = v0[0];
9139         decal->vertex3f[0][1] = v0[1];
9140         decal->vertex3f[0][2] = v0[2];
9141         decal->vertex3f[1][0] = v1[0];
9142         decal->vertex3f[1][1] = v1[1];
9143         decal->vertex3f[1][2] = v1[2];
9144         decal->vertex3f[2][0] = v2[0];
9145         decal->vertex3f[2][1] = v2[1];
9146         decal->vertex3f[2][2] = v2[2];
9147         decal->texcoord2f[0][0] = t0[0];
9148         decal->texcoord2f[0][1] = t0[1];
9149         decal->texcoord2f[1][0] = t1[0];
9150         decal->texcoord2f[1][1] = t1[1];
9151         decal->texcoord2f[2][0] = t2[0];
9152         decal->texcoord2f[2][1] = t2[1];
9153         TriangleNormal(v0, v1, v2, decal->plane);
9154         VectorNormalize(decal->plane);
9155         decal->plane[3] = DotProduct(v0, decal->plane);
9156 }
9157
9158 extern cvar_t cl_decals_bias;
9159 extern cvar_t cl_decals_models;
9160 extern cvar_t cl_decals_newsystem_intensitymultiplier;
9161 // baseparms, parms, temps
9162 static void R_DecalSystem_SplatTriangle(decalsystem_t *decalsystem, float r, float g, float b, float a, float s1, float t1, float s2, float t2, unsigned int decalsequence, qbool dynamic, float (*planes)[4], matrix4x4_t *projection, int triangleindex, int surfaceindex)
9163 {
9164         int cornerindex;
9165         int index;
9166         float v[9][3];
9167         const float *vertex3f;
9168         const float *normal3f;
9169         int numpoints;
9170         float points[2][9][3];
9171         float temp[3];
9172         float tc[9][2];
9173         float f;
9174         float c[9][4];
9175         const int *e;
9176
9177         e = rsurface.modelelement3i + 3*triangleindex;
9178
9179         vertex3f = rsurface.modelvertex3f;
9180         normal3f = rsurface.modelnormal3f;
9181
9182         if (normal3f)
9183         {
9184                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9185                 {
9186                         index = 3*e[cornerindex];
9187                         VectorMA(vertex3f + index, cl_decals_bias.value, normal3f + index, v[cornerindex]);
9188                 }
9189         }
9190         else
9191         {
9192                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9193                 {
9194                         index = 3*e[cornerindex];
9195                         VectorCopy(vertex3f + index, v[cornerindex]);
9196                 }
9197         }
9198
9199         // cull backfaces
9200         //TriangleNormal(v[0], v[1], v[2], normal);
9201         //if (DotProduct(normal, localnormal) < 0.0f)
9202         //      continue;
9203         // clip by each of the box planes formed from the projection matrix
9204         // if anything survives, we emit the decal
9205         numpoints = PolygonF_Clip(3        , v[0]        , planes[0][0], planes[0][1], planes[0][2], planes[0][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9206         if (numpoints < 3)
9207                 return;
9208         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[1][0], planes[1][1], planes[1][2], planes[1][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9209         if (numpoints < 3)
9210                 return;
9211         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[2][0], planes[2][1], planes[2][2], planes[2][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9212         if (numpoints < 3)
9213                 return;
9214         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[3][0], planes[3][1], planes[3][2], planes[3][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9215         if (numpoints < 3)
9216                 return;
9217         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[4][0], planes[4][1], planes[4][2], planes[4][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9218         if (numpoints < 3)
9219                 return;
9220         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[5][0], planes[5][1], planes[5][2], planes[5][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), v[0]);
9221         if (numpoints < 3)
9222                 return;
9223         // some part of the triangle survived, so we have to accept it...
9224         if (dynamic)
9225         {
9226                 // dynamic always uses the original triangle
9227                 numpoints = 3;
9228                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9229                 {
9230                         index = 3*e[cornerindex];
9231                         VectorCopy(vertex3f + index, v[cornerindex]);
9232                 }
9233         }
9234         for (cornerindex = 0;cornerindex < numpoints;cornerindex++)
9235         {
9236                 // convert vertex positions to texcoords
9237                 Matrix4x4_Transform(projection, v[cornerindex], temp);
9238                 tc[cornerindex][0] = (temp[1]+1.0f)*0.5f * (s2-s1) + s1;
9239                 tc[cornerindex][1] = (temp[2]+1.0f)*0.5f * (t2-t1) + t1;
9240                 // calculate distance fade from the projection origin
9241                 f = a * (1.0f-fabs(temp[0])) * cl_decals_newsystem_intensitymultiplier.value;
9242                 f = bound(0.0f, f, 1.0f);
9243                 c[cornerindex][0] = r * f;
9244                 c[cornerindex][1] = g * f;
9245                 c[cornerindex][2] = b * f;
9246                 c[cornerindex][3] = 1.0f;
9247                 //VectorMA(v[cornerindex], cl_decals_bias.value, localnormal, v[cornerindex]);
9248         }
9249         if (dynamic)
9250                 R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[1], v[2], tc[0], tc[1], tc[2], c[0], c[1], c[2], triangleindex, surfaceindex, decalsequence);
9251         else
9252                 for (cornerindex = 0;cornerindex < numpoints-2;cornerindex++)
9253                         R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[cornerindex+1], v[cornerindex+2], tc[0], tc[cornerindex+1], tc[cornerindex+2], c[0], c[cornerindex+1], c[cornerindex+2], -1, surfaceindex, decalsequence);
9254 }
9255 static void R_DecalSystem_SplatEntity(entity_render_t *ent, const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9256 {
9257         matrix4x4_t projection;
9258         decalsystem_t *decalsystem;
9259         qbool dynamic;
9260         model_t *model;
9261         const msurface_t *surface;
9262         const msurface_t *surfaces;
9263         const texture_t *texture;
9264         int numtriangles;
9265         int surfaceindex;
9266         int triangleindex;
9267         float localorigin[3];
9268         float localnormal[3];
9269         float localmins[3];
9270         float localmaxs[3];
9271         float localsize;
9272         //float normal[3];
9273         float planes[6][4];
9274         float angles[3];
9275         bih_t *bih;
9276         int bih_triangles_count;
9277         int bih_triangles[256];
9278         int bih_surfaces[256];
9279
9280         decalsystem = &ent->decalsystem;
9281         model = ent->model;
9282         if (!model || !ent->allowdecals || ent->alpha < 1 || (ent->flags & (RENDER_ADDITIVE | RENDER_NODEPTHTEST)))
9283         {
9284                 R_DecalSystem_Reset(&ent->decalsystem);
9285                 return;
9286         }
9287
9288         if (!model->brush.data_leafs && !cl_decals_models.integer)
9289         {
9290                 if (decalsystem->model)
9291                         R_DecalSystem_Reset(decalsystem);
9292                 return;
9293         }
9294
9295         if (decalsystem->model != model)
9296                 R_DecalSystem_Reset(decalsystem);
9297         decalsystem->model = model;
9298
9299         RSurf_ActiveModelEntity(ent, true, false, false);
9300
9301         Matrix4x4_Transform(&rsurface.inversematrix, worldorigin, localorigin);
9302         Matrix4x4_Transform3x3(&rsurface.inversematrix, worldnormal, localnormal);
9303         VectorNormalize(localnormal);
9304         localsize = worldsize*rsurface.inversematrixscale;
9305         localmins[0] = localorigin[0] - localsize;
9306         localmins[1] = localorigin[1] - localsize;
9307         localmins[2] = localorigin[2] - localsize;
9308         localmaxs[0] = localorigin[0] + localsize;
9309         localmaxs[1] = localorigin[1] + localsize;
9310         localmaxs[2] = localorigin[2] + localsize;
9311
9312         //VectorCopy(localnormal, planes[4]);
9313         //VectorVectors(planes[4], planes[2], planes[0]);
9314         AnglesFromVectors(angles, localnormal, NULL, false);
9315         AngleVectors(angles, planes[0], planes[2], planes[4]);
9316         VectorNegate(planes[0], planes[1]);
9317         VectorNegate(planes[2], planes[3]);
9318         VectorNegate(planes[4], planes[5]);
9319         planes[0][3] = DotProduct(planes[0], localorigin) - localsize;
9320         planes[1][3] = DotProduct(planes[1], localorigin) - localsize;
9321         planes[2][3] = DotProduct(planes[2], localorigin) - localsize;
9322         planes[3][3] = DotProduct(planes[3], localorigin) - localsize;
9323         planes[4][3] = DotProduct(planes[4], localorigin) - localsize;
9324         planes[5][3] = DotProduct(planes[5], localorigin) - localsize;
9325
9326 #if 1
9327 // works
9328 {
9329         matrix4x4_t forwardprojection;
9330         Matrix4x4_CreateFromQuakeEntity(&forwardprojection, localorigin[0], localorigin[1], localorigin[2], angles[0], angles[1], angles[2], localsize);
9331         Matrix4x4_Invert_Simple(&projection, &forwardprojection);
9332 }
9333 #else
9334 // broken
9335 {
9336         float projectionvector[4][3];
9337         VectorScale(planes[0], ilocalsize, projectionvector[0]);
9338         VectorScale(planes[2], ilocalsize, projectionvector[1]);
9339         VectorScale(planes[4], ilocalsize, projectionvector[2]);
9340         projectionvector[0][0] = planes[0][0] * ilocalsize;
9341         projectionvector[0][1] = planes[1][0] * ilocalsize;
9342         projectionvector[0][2] = planes[2][0] * ilocalsize;
9343         projectionvector[1][0] = planes[0][1] * ilocalsize;
9344         projectionvector[1][1] = planes[1][1] * ilocalsize;
9345         projectionvector[1][2] = planes[2][1] * ilocalsize;
9346         projectionvector[2][0] = planes[0][2] * ilocalsize;
9347         projectionvector[2][1] = planes[1][2] * ilocalsize;
9348         projectionvector[2][2] = planes[2][2] * ilocalsize;
9349         projectionvector[3][0] = -(localorigin[0]*projectionvector[0][0]+localorigin[1]*projectionvector[1][0]+localorigin[2]*projectionvector[2][0]);
9350         projectionvector[3][1] = -(localorigin[0]*projectionvector[0][1]+localorigin[1]*projectionvector[1][1]+localorigin[2]*projectionvector[2][1]);
9351         projectionvector[3][2] = -(localorigin[0]*projectionvector[0][2]+localorigin[1]*projectionvector[1][2]+localorigin[2]*projectionvector[2][2]);
9352         Matrix4x4_FromVectors(&projection, projectionvector[0], projectionvector[1], projectionvector[2], projectionvector[3]);
9353 }
9354 #endif
9355
9356         dynamic = model->surfmesh.isanimated;
9357         surfaces = model->data_surfaces;
9358
9359         bih = NULL;
9360         bih_triangles_count = -1;
9361         if(!dynamic)
9362         {
9363                 if(model->render_bih.numleafs)
9364                         bih = &model->render_bih;
9365                 else if(model->collision_bih.numleafs)
9366                         bih = &model->collision_bih;
9367         }
9368         if(bih)
9369                 bih_triangles_count = BIH_GetTriangleListForBox(bih, sizeof(bih_triangles) / sizeof(*bih_triangles), bih_triangles, bih_surfaces, localmins, localmaxs);
9370         if(bih_triangles_count == 0)
9371                 return;
9372         if(bih_triangles_count > (int) (sizeof(bih_triangles) / sizeof(*bih_triangles))) // hit too many, likely bad anyway
9373                 return;
9374         if(bih_triangles_count > 0)
9375         {
9376                 for (triangleindex = 0; triangleindex < bih_triangles_count; ++triangleindex)
9377                 {
9378                         surfaceindex = bih_surfaces[triangleindex];
9379                         surface = surfaces + surfaceindex;
9380                         texture = surface->texture;
9381                         if (!texture)
9382                                 continue;
9383                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9384                                 continue;
9385                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9386                                 continue;
9387                         R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, bih_triangles[triangleindex], surfaceindex);
9388                 }
9389         }
9390         else
9391         {
9392                 for (surfaceindex = model->submodelsurfaces_start;surfaceindex < model->submodelsurfaces_end;surfaceindex++)
9393                 {
9394                         surface = surfaces + surfaceindex;
9395                         // check cull box first because it rejects more than any other check
9396                         if (!dynamic && !BoxesOverlap(surface->mins, surface->maxs, localmins, localmaxs))
9397                                 continue;
9398                         // skip transparent surfaces
9399                         texture = surface->texture;
9400                         if (!texture)
9401                                 continue;
9402                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9403                                 continue;
9404                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9405                                 continue;
9406                         numtriangles = surface->num_triangles;
9407                         for (triangleindex = 0; triangleindex < numtriangles; triangleindex++)
9408                                 R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, triangleindex + surface->num_firsttriangle, surfaceindex);
9409                 }
9410         }
9411 }
9412
9413 // do not call this outside of rendering code - use R_DecalSystem_SplatEntities instead
9414 static void R_DecalSystem_ApplySplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9415 {
9416         int renderentityindex;
9417         float worldmins[3];
9418         float worldmaxs[3];
9419         entity_render_t *ent;
9420
9421         worldmins[0] = worldorigin[0] - worldsize;
9422         worldmins[1] = worldorigin[1] - worldsize;
9423         worldmins[2] = worldorigin[2] - worldsize;
9424         worldmaxs[0] = worldorigin[0] + worldsize;
9425         worldmaxs[1] = worldorigin[1] + worldsize;
9426         worldmaxs[2] = worldorigin[2] + worldsize;
9427
9428         R_DecalSystem_SplatEntity(r_refdef.scene.worldentity, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9429
9430         for (renderentityindex = 0;renderentityindex < r_refdef.scene.numentities;renderentityindex++)
9431         {
9432                 ent = r_refdef.scene.entities[renderentityindex];
9433                 if (!BoxesOverlap(ent->mins, ent->maxs, worldmins, worldmaxs))
9434                         continue;
9435
9436                 R_DecalSystem_SplatEntity(ent, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9437         }
9438 }
9439
9440 typedef struct r_decalsystem_splatqueue_s
9441 {
9442         vec3_t worldorigin;
9443         vec3_t worldnormal;
9444         float color[4];
9445         float tcrange[4];
9446         float worldsize;
9447         unsigned int decalsequence;
9448 }
9449 r_decalsystem_splatqueue_t;
9450
9451 int r_decalsystem_numqueued = 0;
9452 r_decalsystem_splatqueue_t r_decalsystem_queue[MAX_DECALSYSTEM_QUEUE];
9453
9454 void R_DecalSystem_SplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize)
9455 {
9456         r_decalsystem_splatqueue_t *queue;
9457
9458         if (r_decalsystem_numqueued == MAX_DECALSYSTEM_QUEUE)
9459                 return;
9460
9461         queue = &r_decalsystem_queue[r_decalsystem_numqueued++];
9462         VectorCopy(worldorigin, queue->worldorigin);
9463         VectorCopy(worldnormal, queue->worldnormal);
9464         Vector4Set(queue->color, r, g, b, a);
9465         Vector4Set(queue->tcrange, s1, t1, s2, t2);
9466         queue->worldsize = worldsize;
9467         queue->decalsequence = cl.decalsequence++;
9468 }
9469
9470 static void R_DecalSystem_ApplySplatEntitiesQueue(void)
9471 {
9472         int i;
9473         r_decalsystem_splatqueue_t *queue;
9474
9475         for (i = 0, queue = r_decalsystem_queue;i < r_decalsystem_numqueued;i++, queue++)
9476                 R_DecalSystem_ApplySplatEntities(queue->worldorigin, queue->worldnormal, queue->color[0], queue->color[1], queue->color[2], queue->color[3], queue->tcrange[0], queue->tcrange[1], queue->tcrange[2], queue->tcrange[3], queue->worldsize, queue->decalsequence);
9477         r_decalsystem_numqueued = 0;
9478 }
9479
9480 extern cvar_t cl_decals_max;
9481 static void R_DrawModelDecals_FadeEntity(entity_render_t *ent)
9482 {
9483         int i;
9484         decalsystem_t *decalsystem = &ent->decalsystem;
9485         int numdecals;
9486         unsigned int killsequence;
9487         tridecal_t *decal;
9488         float frametime;
9489         float lifetime;
9490
9491         if (!decalsystem->numdecals)
9492                 return;
9493
9494         if (r_showsurfaces.integer)
9495                 return;
9496
9497         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9498         {
9499                 R_DecalSystem_Reset(decalsystem);
9500                 return;
9501         }
9502
9503         killsequence = cl.decalsequence - bound(1, (unsigned int) cl_decals_max.integer, cl.decalsequence);
9504         lifetime = cl_decals_time.value + cl_decals_fadetime.value;
9505
9506         if (decalsystem->lastupdatetime)
9507                 frametime = (r_refdef.scene.time - decalsystem->lastupdatetime);
9508         else
9509                 frametime = 0;
9510         decalsystem->lastupdatetime = r_refdef.scene.time;
9511         numdecals = decalsystem->numdecals;
9512
9513         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9514         {
9515                 if (decal->color4f[0][3])
9516                 {
9517                         decal->lived += frametime;
9518                         if (killsequence > decal->decalsequence || decal->lived >= lifetime)
9519                         {
9520                                 memset(decal, 0, sizeof(*decal));
9521                                 if (decalsystem->freedecal > i)
9522                                         decalsystem->freedecal = i;
9523                         }
9524                 }
9525         }
9526         decal = decalsystem->decals;
9527         while (numdecals > 0 && !decal[numdecals-1].color4f[0][3])
9528                 numdecals--;
9529
9530         // collapse the array by shuffling the tail decals into the gaps
9531         for (;;)
9532         {
9533                 while (decalsystem->freedecal < numdecals && decal[decalsystem->freedecal].color4f[0][3])
9534                         decalsystem->freedecal++;
9535                 if (decalsystem->freedecal == numdecals)
9536                         break;
9537                 decal[decalsystem->freedecal] = decal[--numdecals];
9538         }
9539
9540         decalsystem->numdecals = numdecals;
9541
9542         if (numdecals <= 0)
9543         {
9544                 // if there are no decals left, reset decalsystem
9545                 R_DecalSystem_Reset(decalsystem);
9546         }
9547 }
9548
9549 extern skinframe_t *decalskinframe;
9550 static void R_DrawModelDecals_Entity(entity_render_t *ent)
9551 {
9552         int i;
9553         decalsystem_t *decalsystem = &ent->decalsystem;
9554         int numdecals;
9555         tridecal_t *decal;
9556         float faderate;
9557         float alpha;
9558         float *v3f;
9559         float *c4f;
9560         float *t2f;
9561         const int *e;
9562         const unsigned char *surfacevisible = ent == r_refdef.scene.worldentity ? r_refdef.viewcache.world_surfacevisible : NULL;
9563         int numtris = 0;
9564
9565         numdecals = decalsystem->numdecals;
9566         if (!numdecals)
9567                 return;
9568
9569         if (r_showsurfaces.integer)
9570                 return;
9571
9572         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9573         {
9574                 R_DecalSystem_Reset(decalsystem);
9575                 return;
9576         }
9577
9578         // if the model is static it doesn't matter what value we give for
9579         // wantnormals and wanttangents, so this logic uses only rules applicable
9580         // to a model, knowing that they are meaningless otherwise
9581         RSurf_ActiveModelEntity(ent, false, false, false);
9582
9583         decalsystem->lastupdatetime = r_refdef.scene.time;
9584
9585         faderate = 1.0f / max(0.001f, cl_decals_fadetime.value);
9586
9587         // update vertex positions for animated models
9588         v3f = decalsystem->vertex3f;
9589         c4f = decalsystem->color4f;
9590         t2f = decalsystem->texcoord2f;
9591         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9592         {
9593                 if (!decal->color4f[0][3])
9594                         continue;
9595
9596                 if (surfacevisible && !surfacevisible[decal->surfaceindex])
9597                         continue;
9598
9599                 // skip backfaces
9600                 if (decal->triangleindex < 0 && DotProduct(r_refdef.view.origin, decal->plane) < decal->plane[3])
9601                         continue;
9602
9603                 // update color values for fading decals
9604                 if (decal->lived >= cl_decals_time.value)
9605                         alpha = 1 - faderate * (decal->lived - cl_decals_time.value);
9606                 else
9607                         alpha = 1.0f;
9608
9609                 c4f[ 0] = decal->color4f[0][0] * alpha;
9610                 c4f[ 1] = decal->color4f[0][1] * alpha;
9611                 c4f[ 2] = decal->color4f[0][2] * alpha;
9612                 c4f[ 3] = 1;
9613                 c4f[ 4] = decal->color4f[1][0] * alpha;
9614                 c4f[ 5] = decal->color4f[1][1] * alpha;
9615                 c4f[ 6] = decal->color4f[1][2] * alpha;
9616                 c4f[ 7] = 1;
9617                 c4f[ 8] = decal->color4f[2][0] * alpha;
9618                 c4f[ 9] = decal->color4f[2][1] * alpha;
9619                 c4f[10] = decal->color4f[2][2] * alpha;
9620                 c4f[11] = 1;
9621
9622                 t2f[0] = decal->texcoord2f[0][0];
9623                 t2f[1] = decal->texcoord2f[0][1];
9624                 t2f[2] = decal->texcoord2f[1][0];
9625                 t2f[3] = decal->texcoord2f[1][1];
9626                 t2f[4] = decal->texcoord2f[2][0];
9627                 t2f[5] = decal->texcoord2f[2][1];
9628
9629                 // update vertex positions for animated models
9630                 if (decal->triangleindex >= 0 && decal->triangleindex < rsurface.modelnumtriangles)
9631                 {
9632                         e = rsurface.modelelement3i + 3*decal->triangleindex;
9633                         VectorCopy(rsurface.modelvertex3f + 3*e[0], v3f);
9634                         VectorCopy(rsurface.modelvertex3f + 3*e[1], v3f + 3);
9635                         VectorCopy(rsurface.modelvertex3f + 3*e[2], v3f + 6);
9636                 }
9637                 else
9638                 {
9639                         VectorCopy(decal->vertex3f[0], v3f);
9640                         VectorCopy(decal->vertex3f[1], v3f + 3);
9641                         VectorCopy(decal->vertex3f[2], v3f + 6);
9642                 }
9643
9644                 if (r_refdef.fogenabled)
9645                 {
9646                         alpha = RSurf_FogVertex(v3f);
9647                         VectorScale(c4f, alpha, c4f);
9648                         alpha = RSurf_FogVertex(v3f + 3);
9649                         VectorScale(c4f + 4, alpha, c4f + 4);
9650                         alpha = RSurf_FogVertex(v3f + 6);
9651                         VectorScale(c4f + 8, alpha, c4f + 8);
9652                 }
9653
9654                 v3f += 9;
9655                 c4f += 12;
9656                 t2f += 6;
9657                 numtris++;
9658         }
9659
9660         if (numtris > 0)
9661         {
9662                 r_refdef.stats[r_stat_drawndecals] += numtris;
9663
9664                 // now render the decals all at once
9665                 // (this assumes they all use one particle font texture!)
9666                 RSurf_ActiveCustomEntity(&rsurface.matrix, &rsurface.inversematrix, rsurface.ent_flags, ent->shadertime, 1, 1, 1, 1, numdecals*3, decalsystem->vertex3f, decalsystem->texcoord2f, NULL, NULL, NULL, decalsystem->color4f, numtris, decalsystem->element3i, decalsystem->element3s, false, false);
9667 //              R_Mesh_ResetTextureState();
9668                 R_Mesh_PrepareVertices_Generic_Arrays(numtris * 3, decalsystem->vertex3f, decalsystem->color4f, decalsystem->texcoord2f);
9669                 GL_DepthMask(false);
9670                 GL_DepthRange(0, 1);
9671                 GL_PolygonOffset(rsurface.basepolygonfactor + r_polygonoffset_decals_factor.value, rsurface.basepolygonoffset + r_polygonoffset_decals_offset.value);
9672                 GL_DepthTest(true);
9673                 GL_CullFace(GL_NONE);
9674                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
9675                 R_SetupShader_Generic(decalskinframe->base, false, false, false);
9676                 R_Mesh_Draw(0, numtris * 3, 0, numtris, decalsystem->element3i, NULL, 0, decalsystem->element3s, NULL, 0);
9677         }
9678 }
9679
9680 static void R_DrawModelDecals(void)
9681 {
9682         int i, numdecals;
9683
9684         // fade faster when there are too many decals
9685         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9686         for (i = 0;i < r_refdef.scene.numentities;i++)
9687                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9688
9689         R_DrawModelDecals_FadeEntity(r_refdef.scene.worldentity);
9690         for (i = 0;i < r_refdef.scene.numentities;i++)
9691                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9692                         R_DrawModelDecals_FadeEntity(r_refdef.scene.entities[i]);
9693
9694         R_DecalSystem_ApplySplatEntitiesQueue();
9695
9696         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9697         for (i = 0;i < r_refdef.scene.numentities;i++)
9698                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9699
9700         r_refdef.stats[r_stat_totaldecals] += numdecals;
9701
9702         if (r_showsurfaces.integer || !r_drawdecals.integer)
9703                 return;
9704
9705         R_DrawModelDecals_Entity(r_refdef.scene.worldentity);
9706
9707         for (i = 0;i < r_refdef.scene.numentities;i++)
9708         {
9709                 if (!r_refdef.viewcache.entityvisible[i])
9710                         continue;
9711                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9712                         R_DrawModelDecals_Entity(r_refdef.scene.entities[i]);
9713         }
9714 }
9715
9716 static void R_DrawDebugModel(void)
9717 {
9718         entity_render_t *ent = rsurface.entity;
9719         int j, flagsmask;
9720         const msurface_t *surface;
9721         model_t *model = ent->model;
9722
9723         if (!sv.active  && !cls.demoplayback && ent != r_refdef.scene.worldentity)
9724                 return;
9725
9726         if (r_showoverdraw.value > 0)
9727         {
9728                 float c = r_refdef.view.colorscale * r_showoverdraw.value * 0.125f;
9729                 flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9730                 R_SetupShader_Generic_NoTexture(false, false);
9731                 GL_DepthTest(false);
9732                 GL_DepthMask(false);
9733                 GL_DepthRange(0, 1);
9734                 GL_BlendFunc(GL_ONE, GL_ONE);
9735                 for (j = model->submodelsurfaces_start;j < model->submodelsurfaces_end;j++)
9736                 {
9737                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9738                                 continue;
9739                         surface = model->data_surfaces + j;
9740                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9741                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9742                         {
9743                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, 1, &surface);
9744                                 GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
9745                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9746                                         GL_Color(c, 0, 0, 1.0f);
9747                                 else if (ent == r_refdef.scene.worldentity)
9748                                         GL_Color(c, c, c, 1.0f);
9749                                 else
9750                                         GL_Color(0, c, 0, 1.0f);
9751                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9752                                 RSurf_DrawBatch();
9753                         }
9754                 }
9755                 rsurface.texture = NULL;
9756         }
9757
9758         flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9759
9760 //      R_Mesh_ResetTextureState();
9761         R_SetupShader_Generic_NoTexture(false, false);
9762         GL_DepthRange(0, 1);
9763         GL_DepthTest(!r_showdisabledepthtest.integer);
9764         GL_DepthMask(false);
9765         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9766
9767         if (r_showcollisionbrushes.value > 0 && model->collision_bih.numleafs)
9768         {
9769                 int triangleindex;
9770                 int bihleafindex;
9771                 qbool cullbox = false;
9772                 const q3mbrush_t *brush;
9773                 const bih_t *bih = &model->collision_bih;
9774                 const bih_leaf_t *bihleaf;
9775                 float vertex3f[3][3];
9776                 GL_PolygonOffset(r_refdef.polygonfactor + r_showcollisionbrushes_polygonfactor.value, r_refdef.polygonoffset + r_showcollisionbrushes_polygonoffset.value);
9777                 for (bihleafindex = 0, bihleaf = bih->leafs;bihleafindex < bih->numleafs;bihleafindex++, bihleaf++)
9778                 {
9779                         if (cullbox && R_CullFrustum(bihleaf->mins, bihleaf->maxs))
9780                                 continue;
9781                         switch (bihleaf->type)
9782                         {
9783                         case BIH_BRUSH:
9784                                 brush = model->brush.data_brushes + bihleaf->itemindex;
9785                                 if (brush->colbrushf && brush->colbrushf->numtriangles)
9786                                 {
9787                                         GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9788                                         R_Mesh_PrepareVertices_Generic_Arrays(brush->colbrushf->numpoints, brush->colbrushf->points->v, NULL, NULL);
9789                                         R_Mesh_Draw(0, brush->colbrushf->numpoints, 0, brush->colbrushf->numtriangles, brush->colbrushf->elements, NULL, 0, NULL, NULL, 0);
9790                                 }
9791                                 break;
9792                         case BIH_COLLISIONTRIANGLE:
9793                                 triangleindex = bihleaf->itemindex;
9794                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+0], vertex3f[0]);
9795                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+1], vertex3f[1]);
9796                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+2], vertex3f[2]);
9797                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9798                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9799                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9800                                 break;
9801                         case BIH_RENDERTRIANGLE:
9802                                 triangleindex = bihleaf->itemindex;
9803                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+0], vertex3f[0]);
9804                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+1], vertex3f[1]);
9805                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+2], vertex3f[2]);
9806                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9807                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9808                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9809                                 break;
9810                         }
9811                 }
9812         }
9813
9814         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9815
9816 #ifndef USE_GLES2
9817         if (r_showtris.value > 0 && qglPolygonMode)
9818         {
9819                 if (r_showdisabledepthtest.integer)
9820                 {
9821                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9822                         GL_DepthMask(false);
9823                 }
9824                 else
9825                 {
9826                         GL_BlendFunc(GL_ONE, GL_ZERO);
9827                         GL_DepthMask(true);
9828                 }
9829                 qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);CHECKGLERROR
9830                 for (j = model->submodelsurfaces_start; j < model->submodelsurfaces_end; j++)
9831                 {
9832                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9833                                 continue;
9834                         surface = model->data_surfaces + j;
9835                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9836                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9837                         {
9838                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9839                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9840                                         GL_Color(r_refdef.view.colorscale, 0, 0, r_showtris.value);
9841                                 else if (ent == r_refdef.scene.worldentity)
9842                                         GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, r_showtris.value);
9843                                 else
9844                                         GL_Color(0, r_refdef.view.colorscale, 0, r_showtris.value);
9845                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9846                                 RSurf_DrawBatch();
9847                         }
9848                 }
9849                 qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);CHECKGLERROR
9850                 rsurface.texture = NULL;
9851         }
9852
9853 # if 0
9854         // FIXME!  implement r_shownormals with just triangles
9855         if (r_shownormals.value != 0 && qglBegin)
9856         {
9857                 int l, k;
9858                 vec3_t v;
9859                 if (r_showdisabledepthtest.integer)
9860                 {
9861                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9862                         GL_DepthMask(false);
9863                 }
9864                 else
9865                 {
9866                         GL_BlendFunc(GL_ONE, GL_ZERO);
9867                         GL_DepthMask(true);
9868                 }
9869                 for (j = model->submodelsurfaces_start; j < model->submodelsurfaces_end; j++)
9870                 {
9871                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9872                                 continue;
9873                         surface = model->data_surfaces + j;
9874                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9875                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9876                         {
9877                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9878                                 qglBegin(GL_LINES);
9879                                 if (r_shownormals.value < 0 && rsurface.batchnormal3f)
9880                                 {
9881                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9882                                         {
9883                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9884                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9885                                                 qglVertex3f(v[0], v[1], v[2]);
9886                                                 VectorMA(v, -r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9887                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9888                                                 qglVertex3f(v[0], v[1], v[2]);
9889                                         }
9890                                 }
9891                                 if (r_shownormals.value > 0 && rsurface.batchsvector3f)
9892                                 {
9893                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9894                                         {
9895                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9896                                                 GL_Color(r_refdef.view.colorscale, 0, 0, 1);
9897                                                 qglVertex3f(v[0], v[1], v[2]);
9898                                                 VectorMA(v, r_shownormals.value, rsurface.batchsvector3f + l * 3, v);
9899                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9900                                                 qglVertex3f(v[0], v[1], v[2]);
9901                                         }
9902                                 }
9903                                 if (r_shownormals.value > 0 && rsurface.batchtvector3f)
9904                                 {
9905                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9906                                         {
9907                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9908                                                 GL_Color(0, r_refdef.view.colorscale, 0, 1);
9909                                                 qglVertex3f(v[0], v[1], v[2]);
9910                                                 VectorMA(v, r_shownormals.value, rsurface.batchtvector3f + l * 3, v);
9911                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9912                                                 qglVertex3f(v[0], v[1], v[2]);
9913                                         }
9914                                 }
9915                                 if (r_shownormals.value > 0 && rsurface.batchnormal3f)
9916                                 {
9917                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9918                                         {
9919                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9920                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9921                                                 qglVertex3f(v[0], v[1], v[2]);
9922                                                 VectorMA(v, r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9923                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9924                                                 qglVertex3f(v[0], v[1], v[2]);
9925                                         }
9926                                 }
9927                                 qglEnd();
9928                                 CHECKGLERROR
9929                         }
9930                 }
9931                 rsurface.texture = NULL;
9932         }
9933 # endif
9934 #endif
9935 }
9936
9937 int r_maxsurfacelist = 0;
9938 const msurface_t **r_surfacelist = NULL;
9939 void R_DrawModelSurfaces(entity_render_t *ent, qbool skysurfaces, qbool writedepth, qbool depthonly, qbool debug, qbool prepass, qbool ui)
9940 {
9941         int i, j, flagsmask;
9942         model_t *model = ent->model;
9943         msurface_t *surfaces;
9944         unsigned char *update;
9945         int numsurfacelist = 0;
9946         if (model == NULL)
9947                 return;
9948
9949         if (r_maxsurfacelist < model->num_surfaces)
9950         {
9951                 r_maxsurfacelist = model->num_surfaces;
9952                 if (r_surfacelist)
9953                         Mem_Free((msurface_t **)r_surfacelist);
9954                 r_surfacelist = (const msurface_t **) Mem_Alloc(r_main_mempool, r_maxsurfacelist * sizeof(*r_surfacelist));
9955         }
9956
9957         if (r_showsurfaces.integer && r_showsurfaces.integer != 3)
9958                 RSurf_ActiveModelEntity(ent, false, false, false);
9959         else if (prepass)
9960                 RSurf_ActiveModelEntity(ent, true, true, true);
9961         else if (depthonly)
9962                 RSurf_ActiveModelEntity(ent, model->wantnormals, model->wanttangents, false);
9963         else
9964                 RSurf_ActiveModelEntity(ent, true, true, false);
9965
9966         surfaces = model->data_surfaces;
9967         update = model->brushq1.lightmapupdateflags;
9968
9969         flagsmask = skysurfaces ? MATERIALFLAG_SKY : MATERIALFLAG_WALL;
9970
9971         if (debug)
9972         {
9973                 R_DrawDebugModel();
9974                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
9975                 return;
9976         }
9977
9978         // check if this is an empty model
9979         if (model->submodelsurfaces_start >= model->submodelsurfaces_end)
9980                 return;
9981
9982         rsurface.lightmaptexture = NULL;
9983         rsurface.deluxemaptexture = NULL;
9984         rsurface.uselightmaptexture = false;
9985         rsurface.texture = NULL;
9986         rsurface.rtlight = NULL;
9987         numsurfacelist = 0;
9988
9989         // add visible surfaces to draw list
9990         if (ent == r_refdef.scene.worldentity)
9991         {
9992                 // for the world entity, check surfacevisible
9993                 for (i = model->submodelsurfaces_start;i < model->submodelsurfaces_end;i++)
9994                 {
9995                         j = model->modelsurfaces_sorted[i];
9996                         if (r_refdef.viewcache.world_surfacevisible[j])
9997                                 r_surfacelist[numsurfacelist++] = surfaces + j;
9998                 }
9999
10000                 // don't do anything if there were no surfaces added (none of the world entity is visible)
10001                 if (!numsurfacelist)
10002                 {
10003                         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10004                         return;
10005                 }
10006         }
10007         else if (ui)
10008         {
10009                 // for ui we have to preserve the order of surfaces (not using modelsurfaces_sorted)
10010                 for (i = model->submodelsurfaces_start; i < model->submodelsurfaces_end; i++)
10011                         r_surfacelist[numsurfacelist++] = surfaces + i;
10012         }
10013         else
10014         {
10015                 // add all surfaces
10016                 for (i = model->submodelsurfaces_start; i < model->submodelsurfaces_end; i++)
10017                         r_surfacelist[numsurfacelist++] = surfaces + model->modelsurfaces_sorted[i];
10018         }
10019
10020         /*
10021          * Mark lightmaps as dirty if their lightstyle's value changed. We do this by
10022          * using style chains because most styles do not change on most frames, and most
10023          * surfaces do not have styles on them. Mods like Arcane Dimensions (e.g. ad_necrokeep)
10024          * break this rule and animate most surfaces.
10025          */
10026         if (update && !skysurfaces && !depthonly && !prepass && model->brushq1.num_lightstyles && r_refdef.scene.lightmapintensity > 0 && r_q1bsp_lightmap_updates_enabled.integer)
10027         {
10028                 model_brush_lightstyleinfo_t *style;
10029
10030                 // For each lightstyle, check if its value changed and mark the lightmaps as dirty if so
10031                 for (i = 0, style = model->brushq1.data_lightstyleinfo; i < model->brushq1.num_lightstyles; i++, style++)
10032                 {
10033                         if (style->value != r_refdef.scene.lightstylevalue[style->style])
10034                         {
10035                                 int* list = style->surfacelist;
10036                                 style->value = r_refdef.scene.lightstylevalue[style->style];
10037                                 // Value changed - mark the surfaces belonging to this style chain as dirty
10038                                 for (j = 0; j < style->numsurfaces; j++)
10039                                         update[list[j]] = true;
10040                         }
10041                 }
10042                 // Now check if update flags are set on any surfaces that are visible
10043                 if (r_q1bsp_lightmap_updates_hidden_surfaces.integer)
10044                 {
10045                         /* 
10046                          * We can do less frequent texture uploads (approximately 10hz for animated
10047                          * lightstyles) by rebuilding lightmaps on surfaces that are not currently visible.
10048                          * For optimal efficiency, this includes the submodels of the worldmodel, so we
10049                          * use model->num_surfaces, not nummodelsurfaces.
10050                          */
10051                         for (i = 0; i < model->num_surfaces;i++)
10052                                 if (update[i])
10053                                         R_BuildLightMap(ent, surfaces + i, r_q1bsp_lightmap_updates_combine.integer);
10054                 }
10055                 else
10056                 {
10057                         for (i = 0; i < numsurfacelist; i++)
10058                                 if (update[r_surfacelist[i] - surfaces])
10059                                         R_BuildLightMap(ent, (msurface_t *)r_surfacelist[i], r_q1bsp_lightmap_updates_combine.integer);
10060                 }
10061         }
10062
10063         R_QueueModelSurfaceList(ent, numsurfacelist, r_surfacelist, flagsmask, writedepth, depthonly, prepass, ui);
10064
10065         // add to stats if desired
10066         if (r_speeds.integer && !skysurfaces && !depthonly)
10067         {
10068                 r_refdef.stats[r_stat_entities_surfaces] += numsurfacelist;
10069                 for (j = 0;j < numsurfacelist;j++)
10070                         r_refdef.stats[r_stat_entities_triangles] += r_surfacelist[j]->num_triangles;
10071         }
10072
10073         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10074 }
10075
10076 void R_DebugLine(vec3_t start, vec3_t end)
10077 {
10078         model_t *mod = CL_Mesh_UI();
10079         msurface_t *surf;
10080         int e0, e1, e2, e3;
10081         float offsetx, offsety, x1, y1, x2, y2, width = 1.0f;
10082         float r1 = 1.0f, g1 = 0.0f, b1 = 0.0f, alpha1 = 0.25f;
10083         float r2 = 1.0f, g2 = 1.0f, b2 = 0.0f, alpha2 = 0.25f;
10084         vec4_t w[2], s[2];
10085
10086         // transform to screen coords first
10087         Vector4Set(w[0], start[0], start[1], start[2], 1);
10088         Vector4Set(w[1], end[0], end[1], end[2], 1);
10089         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[0], s[0]);
10090         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[1], s[1]);
10091         x1 = s[0][0] * vid_conwidth.value / vid.width;
10092         y1 = (vid.height - s[0][1]) * vid_conheight.value / vid.height;
10093         x2 = s[1][0] * vid_conwidth.value / vid.width;
10094         y2 = (vid.height - s[1][1]) * vid_conheight.value / vid.height;
10095         //Con_DPrintf("R_DebugLine: %.0f,%.0f to %.0f,%.0f\n", x1, y1, x2, y2);
10096
10097         // add the line to the UI mesh for drawing later
10098
10099         // width is measured in real pixels
10100         if (fabs(x2 - x1) > fabs(y2 - y1))
10101         {
10102                 offsetx = 0;
10103                 offsety = 0.5f * width * vid_conheight.value / vid.height;
10104         }
10105         else
10106         {
10107                 offsetx = 0.5f * width * vid_conwidth.value / vid.width;
10108                 offsety = 0;
10109         }
10110         surf = Mod_Mesh_AddSurface(mod, Mod_Mesh_GetTexture(mod, "white", 0, 0, MATERIALFLAG_WALL | MATERIALFLAG_VERTEXCOLOR | MATERIALFLAG_ALPHAGEN_VERTEX | MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW), true);
10111         e0 = Mod_Mesh_IndexForVertex(mod, surf, x1 - offsetx, y1 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10112         e1 = Mod_Mesh_IndexForVertex(mod, surf, x2 - offsetx, y2 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10113         e2 = Mod_Mesh_IndexForVertex(mod, surf, x2 + offsetx, y2 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10114         e3 = Mod_Mesh_IndexForVertex(mod, surf, x1 + offsetx, y1 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10115         Mod_Mesh_AddTriangle(mod, surf, e0, e1, e2);
10116         Mod_Mesh_AddTriangle(mod, surf, e0, e2, e3);
10117
10118 }
10119
10120
10121 void R_DrawCustomSurface(skinframe_t *skinframe, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10122 {
10123         static texture_t texture;
10124
10125         // fake enough texture and surface state to render this geometry
10126
10127         texture.update_lastrenderframe = -1; // regenerate this texture
10128         texture.basematerialflags = materialflags | MATERIALFLAG_CUSTOMSURFACE | MATERIALFLAG_WALL;
10129         texture.basealpha = 1.0f;
10130         texture.currentskinframe = skinframe;
10131         texture.currenttexmatrix = *texmatrix; // requires MATERIALFLAG_CUSTOMSURFACE
10132         texture.offsetmapping = OFFSETMAPPING_OFF;
10133         texture.offsetscale = 1;
10134         texture.specularscalemod = 1;
10135         texture.specularpowermod = 1;
10136         texture.transparentsort = TRANSPARENTSORT_DISTANCE;
10137
10138         R_DrawCustomSurface_Texture(&texture, texmatrix, materialflags, firstvertex, numvertices, firsttriangle, numtriangles, writedepth, prepass, ui);
10139 }
10140
10141 void R_DrawCustomSurface_Texture(texture_t *texture, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10142 {
10143         static msurface_t surface;
10144         const msurface_t *surfacelist = &surface;
10145
10146         // fake enough texture and surface state to render this geometry
10147         surface.texture = texture;
10148         surface.num_triangles = numtriangles;
10149         surface.num_firsttriangle = firsttriangle;
10150         surface.num_vertices = numvertices;
10151         surface.num_firstvertex = firstvertex;
10152
10153         // now render it
10154         rsurface.texture = R_GetCurrentTexture(surface.texture);
10155         rsurface.lightmaptexture = NULL;
10156         rsurface.deluxemaptexture = NULL;
10157         rsurface.uselightmaptexture = false;
10158         R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass, ui);
10159 }