]> git.xonotic.org Git - xonotic/darkplaces.git/blob - gl_rmain.c
gl_rmain: Render anything RENDER_VIEWMODEL when in the void
[xonotic/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "r_shadow.h"
24 #include "polygon.h"
25 #include "image.h"
26 #include "ft2.h"
27 #include "csprogs.h"
28 #include "cl_video.h"
29 #include "cl_collision.h"
30
31 #ifdef WIN32
32 // Enable NVIDIA High Performance Graphics while using Integrated Graphics.
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 __declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001;
37 #ifdef __cplusplus
38 }
39 #endif
40 #endif
41
42 mempool_t *r_main_mempool;
43 rtexturepool_t *r_main_texturepool;
44
45 int r_textureframe = 0; ///< used only by R_GetCurrentTexture, incremented per view and per UI render
46
47 static qbool r_loadnormalmap;
48 static qbool r_loadgloss;
49 qbool r_loadfog;
50 static qbool r_loaddds;
51 static qbool r_savedds;
52 static qbool r_gpuskeletal;
53
54 //
55 // screen size info
56 //
57 r_refdef_t r_refdef;
58
59 cvar_t r_motionblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur", "0", "screen motionblur - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
60 cvar_t r_damageblur = {CF_CLIENT | CF_ARCHIVE, "r_damageblur", "0", "screen motionblur based on damage - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
61 cvar_t r_motionblur_averaging = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_averaging", "0.1", "sliding average reaction time for velocity (higher = slower adaption to change)"};
62 cvar_t r_motionblur_randomize = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_randomize", "0.1", "randomizing coefficient to workaround ghosting"};
63 cvar_t r_motionblur_minblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_minblur", "0.5", "factor of blur to apply at all times (always have this amount of blur no matter what the other factors are)"};
64 cvar_t r_motionblur_maxblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_maxblur", "0.9", "maxmimum amount of blur"};
65 cvar_t r_motionblur_velocityfactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor", "1", "factoring in of player velocity to the blur equation - the faster the player moves around the map, the more blur they get"};
66 cvar_t r_motionblur_velocityfactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_minspeed", "400", "lower value of velocity when it starts to factor into blur equation"};
67 cvar_t r_motionblur_velocityfactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_maxspeed", "800", "upper value of velocity when it reaches the peak factor into blur equation"};
68 cvar_t r_motionblur_mousefactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor", "2", "factoring in of mouse acceleration to the blur equation - the faster the player turns their mouse, the more blur they get"};
69 cvar_t r_motionblur_mousefactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_minspeed", "0", "lower value of mouse acceleration when it starts to factor into blur equation"};
70 cvar_t r_motionblur_mousefactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_maxspeed", "50", "upper value of mouse acceleration when it reaches the peak factor into blur equation"};
71
72 cvar_t r_depthfirst = {CF_CLIENT | CF_ARCHIVE, "r_depthfirst", "0", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
73 cvar_t r_useinfinitefarclip = {CF_CLIENT | CF_ARCHIVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"};
74 cvar_t r_farclip_base = {CF_CLIENT, "r_farclip_base", "65536", "farclip (furthest visible distance) for rendering when r_useinfinitefarclip is 0"};
75 cvar_t r_farclip_world = {CF_CLIENT, "r_farclip_world", "2", "adds map size to farclip multiplied by this value"};
76 cvar_t r_nearclip = {CF_CLIENT, "r_nearclip", "1", "distance from camera of nearclip plane" };
77 cvar_t r_deformvertexes = {CF_CLIENT, "r_deformvertexes", "1", "allows use of deformvertexes in shader files (can be turned off to check performance impact)"};
78 cvar_t r_transparent = {CF_CLIENT, "r_transparent", "1", "allows use of transparent surfaces (can be turned off to check performance impact)"};
79 cvar_t r_transparent_alphatocoverage = {CF_CLIENT, "r_transparent_alphatocoverage", "1", "enables GL_ALPHA_TO_COVERAGE antialiasing technique on alphablend and alphatest surfaces when using vid_samples 2 or higher"};
80 cvar_t r_transparent_sortsurfacesbynearest = {CF_CLIENT, "r_transparent_sortsurfacesbynearest", "1", "sort entity and world surfaces by nearest point on bounding box instead of using the center of the bounding box, usually reduces sorting artifacts"};
81 cvar_t r_transparent_useplanardistance = {CF_CLIENT, "r_transparent_useplanardistance", "0", "sort transparent meshes by distance from view plane rather than spherical distance to the chosen point"};
82 cvar_t r_showoverdraw = {CF_CLIENT, "r_showoverdraw", "0", "shows overlapping geometry"};
83 cvar_t r_showbboxes = {CF_CLIENT, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
84 cvar_t r_showbboxes_client = {CF_CLIENT, "r_showbboxes_client", "0", "shows bounding boxes of clientside qc entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
85 cvar_t r_showsurfaces = {CF_CLIENT, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
86 cvar_t r_showtris = {CF_CLIENT, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
87 cvar_t r_shownormals = {CF_CLIENT, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
88 cvar_t r_showlighting = {CF_CLIENT, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
89 cvar_t r_showcollisionbrushes = {CF_CLIENT, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
90 cvar_t r_showcollisionbrushes_polygonfactor = {CF_CLIENT, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
91 cvar_t r_showcollisionbrushes_polygonoffset = {CF_CLIENT, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
92 cvar_t r_showdisabledepthtest = {CF_CLIENT, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
93 cvar_t r_showspriteedges = {CF_CLIENT, "r_showspriteedges", "0", "renders a debug outline to show the polygon shape of each sprite frame rendered (may be 2 or more in case of interpolated animations), for debugging rendering bugs with specific view types"};
94 cvar_t r_showparticleedges = {CF_CLIENT, "r_showparticleedges", "0", "renders a debug outline to show the polygon shape of each particle, for debugging rendering bugs with specific view types"};
95 cvar_t r_drawportals = {CF_CLIENT, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
96 cvar_t r_drawentities = {CF_CLIENT, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
97 cvar_t r_draw2d = {CF_CLIENT, "r_draw2d","1", "draw 2D stuff (dangerous to turn off)"};
98 cvar_t r_drawworld = {CF_CLIENT, "r_drawworld","1", "draw world (most static stuff)"};
99 cvar_t r_drawviewmodel = {CF_CLIENT, "r_drawviewmodel","1", "draw your weapon model"};
100 cvar_t r_drawexteriormodel = {CF_CLIENT, "r_drawexteriormodel","1", "draw your player model (e.g. in chase cam, reflections)"};
101 cvar_t r_cullentities_trace = {CF_CLIENT, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
102 cvar_t r_cullentities_trace_entityocclusion = {CF_CLIENT, "r_cullentities_trace_entityocclusion", "1", "check for occluding entities such as doors, not just world hull"};
103 cvar_t r_cullentities_trace_samples = {CF_CLIENT, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling (in addition to center sample)"};
104 cvar_t r_cullentities_trace_tempentitysamples = {CF_CLIENT, "r_cullentities_trace_tempentitysamples", "-1", "number of samples to test for entity culling of temp entities (including all CSQC entities), -1 disables trace culling on these entities to prevent flicker (pvs still applies)"};
105 cvar_t r_cullentities_trace_enlarge = {CF_CLIENT, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
106 cvar_t r_cullentities_trace_expand = {CF_CLIENT, "r_cullentities_trace_expand", "0", "box expanded by this many units for entity culling"};
107 cvar_t r_cullentities_trace_pad = {CF_CLIENT, "r_cullentities_trace_pad", "8", "accept traces that hit within this many units of the box"};
108 cvar_t r_cullentities_trace_delay = {CF_CLIENT, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
109 cvar_t r_cullentities_trace_eyejitter = {CF_CLIENT, "r_cullentities_trace_eyejitter", "16", "randomly offset rays from the eye by this much to reduce the odds of flickering"};
110 cvar_t r_sortentities = {CF_CLIENT, "r_sortentities", "0", "sort entities before drawing (might be faster)"};
111 cvar_t r_speeds = {CF_CLIENT, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
112 cvar_t r_fullbright = {CF_CLIENT, "r_fullbright","0", "makes map very bright and renders faster"};
113
114 cvar_t r_fullbright_directed = {CF_CLIENT, "r_fullbright_directed", "0", "render fullbright things (unlit worldmodel and EF_FULLBRIGHT entities, but not fullbright shaders) using a constant light direction instead to add more depth while keeping uniform brightness"};
115 cvar_t r_fullbright_directed_ambient = {CF_CLIENT, "r_fullbright_directed_ambient", "0.5", "ambient light multiplier for directed fullbright"};
116 cvar_t r_fullbright_directed_diffuse = {CF_CLIENT, "r_fullbright_directed_diffuse", "0.75", "diffuse light multiplier for directed fullbright"};
117 cvar_t r_fullbright_directed_pitch = {CF_CLIENT, "r_fullbright_directed_pitch", "20", "constant pitch direction ('height') of the fake light source to use for fullbright"};
118 cvar_t r_fullbright_directed_pitch_relative = {CF_CLIENT, "r_fullbright_directed_pitch_relative", "0", "whether r_fullbright_directed_pitch is interpreted as absolute (0) or relative (1) pitch"};
119
120 cvar_t r_wateralpha = {CF_CLIENT | CF_ARCHIVE, "r_wateralpha","1", "opacity of water polygons"};
121 cvar_t r_dynamic = {CF_CLIENT | CF_ARCHIVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
122 cvar_t r_fullbrights = {CF_CLIENT | CF_ARCHIVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
123 cvar_t r_shadows = {CF_CLIENT | CF_ARCHIVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this); when set to 2, always cast the shadows in the direction set by r_shadows_throwdirection, otherwise use the model lighting."};
124 cvar_t r_shadows_darken = {CF_CLIENT | CF_ARCHIVE, "r_shadows_darken", "0.5", "how much shadowed areas will be darkened"};
125 cvar_t r_shadows_throwdistance = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
126 cvar_t r_shadows_throwdirection = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdirection", "0 0 -1", "override throwing direction for r_shadows 2"};
127 cvar_t r_shadows_drawafterrtlighting = {CF_CLIENT | CF_ARCHIVE, "r_shadows_drawafterrtlighting", "0", "draw fake shadows AFTER realtime lightning is drawn. May be useful for simulating fast sunlight on large outdoor maps with only one noshadow rtlight. The price is less realistic appearance of dynamic light shadows."};
128 cvar_t r_shadows_castfrombmodels = {CF_CLIENT | CF_ARCHIVE, "r_shadows_castfrombmodels", "0", "do cast shadows from bmodels"};
129 cvar_t r_shadows_focus = {CF_CLIENT | CF_ARCHIVE, "r_shadows_focus", "0 0 0", "offset the shadowed area focus"};
130 cvar_t r_shadows_shadowmapscale = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapscale", "0.25", "higher values increase shadowmap quality at a cost of area covered (multiply global shadowmap precision) for fake shadows. Needs shadowmapping ON."};
131 cvar_t r_shadows_shadowmapbias = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapbias", "-1", "sets shadowmap bias for fake shadows. -1 sets the value of r_shadow_shadowmapping_bias. Needs shadowmapping ON."};
132 cvar_t r_q1bsp_skymasking = {CF_CLIENT, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
133 cvar_t r_polygonoffset_submodel_factor = {CF_CLIENT, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
134 cvar_t r_polygonoffset_submodel_offset = {CF_CLIENT, "r_polygonoffset_submodel_offset", "14", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
135 cvar_t r_polygonoffset_decals_factor = {CF_CLIENT, "r_polygonoffset_decals_factor", "0", "biases depth values of decals to prevent z-fighting artifacts"};
136 cvar_t r_polygonoffset_decals_offset = {CF_CLIENT, "r_polygonoffset_decals_offset", "-14", "biases depth values of decals to prevent z-fighting artifacts"};
137 cvar_t r_fog_exp2 = {CF_CLIENT, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
138 cvar_t r_fog_clear = {CF_CLIENT, "r_fog_clear", "1", "clears renderbuffer with fog color before render starts"};
139 cvar_t r_drawfog = {CF_CLIENT | CF_ARCHIVE, "r_drawfog", "1", "allows one to disable fog rendering"};
140 cvar_t r_transparentdepthmasking = {CF_CLIENT | CF_ARCHIVE, "r_transparentdepthmasking", "0", "enables depth writes on transparent meshes whose materially is normally opaque, this prevents seeing the inside of a transparent mesh"};
141 cvar_t r_transparent_sortmindist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmindist", "0", "lower distance limit for transparent sorting"};
142 cvar_t r_transparent_sortmaxdist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmaxdist", "32768", "upper distance limit for transparent sorting"};
143 cvar_t r_transparent_sortarraysize = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortarraysize", "4096", "number of distance-sorting layers"};
144 cvar_t r_celshading = {CF_CLIENT | CF_ARCHIVE, "r_celshading", "0", "cartoon-style light shading (OpenGL 2.x only)"}; // FIXME remove OpenGL 2.x only once implemented for DX9
145 cvar_t r_celoutlines = {CF_CLIENT | CF_ARCHIVE, "r_celoutlines", "0", "cartoon-style outlines (requires r_shadow_deferred)"};
146
147 cvar_t gl_fogenable = {CF_CLIENT, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
148 cvar_t gl_fogdensity = {CF_CLIENT, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
149 cvar_t gl_fogred = {CF_CLIENT, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
150 cvar_t gl_foggreen = {CF_CLIENT, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
151 cvar_t gl_fogblue = {CF_CLIENT, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
152 cvar_t gl_fogstart = {CF_CLIENT, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
153 cvar_t gl_fogend = {CF_CLIENT, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
154 cvar_t gl_skyclip = {CF_CLIENT, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
155
156 cvar_t r_texture_dds_load = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_load", "0", "load compressed dds/filename.dds texture instead of filename.tga, if the file exists (requires driver support)"};
157 cvar_t r_texture_dds_save = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_save", "0", "save compressed dds/filename.dds texture when filename.tga is loaded, so that it can be loaded instead next time"};
158
159 cvar_t r_textureunits = {CF_CLIENT, "r_textureunits", "32", "number of texture units to use in GL 1.1 and GL 1.3 rendering paths"};
160 static cvar_t gl_combine = {CF_CLIENT | CF_READONLY, "gl_combine", "1", "indicates whether the OpenGL 1.3 rendering path is active"};
161 static cvar_t r_glsl = {CF_CLIENT | CF_READONLY, "r_glsl", "1", "indicates whether the OpenGL 2.0 rendering path is active"};
162
163 cvar_t r_usedepthtextures = {CF_CLIENT | CF_ARCHIVE, "r_usedepthtextures", "1", "use depth texture instead of depth renderbuffer where possible, uses less video memory but may render slower (or faster) depending on hardware"};
164 cvar_t r_viewfbo = {CF_CLIENT | CF_ARCHIVE, "r_viewfbo", "0", "enables use of an 8bit (1) or 16bit (2) or 32bit (3) per component float framebuffer render, which may be at a different resolution than the video mode"};
165 cvar_t r_rendertarget_debug = {CF_CLIENT, "r_rendertarget_debug", "-1", "replaces the view with the contents of the specified render target (by number - note that these can fluctuate depending on scene)"};
166 cvar_t r_viewscale = {CF_CLIENT | CF_ARCHIVE, "r_viewscale", "1", "scaling factor for resolution of the fbo rendering method, must be > 0, can be above 1 for a costly antialiasing behavior, typical values are 0.5 for 1/4th as many pixels rendered, or 1 for normal rendering"};
167 cvar_t r_viewscale_fpsscaling = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling", "0", "change resolution based on framerate"};
168 cvar_t r_viewscale_fpsscaling_min = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_min", "0.0625", "worst acceptable quality"};
169 cvar_t r_viewscale_fpsscaling_multiply = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_multiply", "5", "adjust quality up or down by the frametime difference from 1.0/target, multiplied by this factor"};
170 cvar_t r_viewscale_fpsscaling_stepsize = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepsize", "0.01", "smallest adjustment to hit the target framerate (this value prevents minute oscillations)"};
171 cvar_t r_viewscale_fpsscaling_stepmax = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepmax", "1.00", "largest adjustment to hit the target framerate (this value prevents wild overshooting of the estimate)"};
172 cvar_t r_viewscale_fpsscaling_target = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_target", "70", "desired framerate"};
173
174 cvar_t r_glsl_skeletal = {CF_CLIENT | CF_ARCHIVE, "r_glsl_skeletal", "1", "render skeletal models faster using a gpu-skinning technique"};
175 cvar_t r_glsl_deluxemapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
176 cvar_t r_glsl_offsetmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
177 cvar_t r_glsl_offsetmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_steps", "2", "offset mapping steps (note: too high values may be not supported by your GPU)"};
178 cvar_t r_glsl_offsetmapping_reliefmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
179 cvar_t r_glsl_offsetmapping_reliefmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_steps", "10", "relief mapping steps (note: too high values may be not supported by your GPU)"};
180 cvar_t r_glsl_offsetmapping_reliefmapping_refinesteps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_refinesteps", "5", "relief mapping refine steps (these are a binary search executed as the last step as given by r_glsl_offsetmapping_reliefmapping_steps)"};
181 cvar_t r_glsl_offsetmapping_scale = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
182 cvar_t r_glsl_offsetmapping_lod = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod", "0", "apply distance-based level-of-detail correction to number of offsetmappig steps, effectively making it render faster on large open-area maps"};
183 cvar_t r_glsl_offsetmapping_lod_distance = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod_distance", "32", "first LOD level distance, second level (-50% steps) is 2x of this, third (33%) - 3x etc."};
184 cvar_t r_glsl_postprocess = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
185 cvar_t r_glsl_postprocess_uservec1 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
186 cvar_t r_glsl_postprocess_uservec2 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
187 cvar_t r_glsl_postprocess_uservec3 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
188 cvar_t r_glsl_postprocess_uservec4 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
189 cvar_t r_glsl_postprocess_uservec1_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1_enable", "1", "enables postprocessing uservec1 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
190 cvar_t r_glsl_postprocess_uservec2_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2_enable", "1", "enables postprocessing uservec2 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
191 cvar_t r_glsl_postprocess_uservec3_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3_enable", "1", "enables postprocessing uservec3 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
192 cvar_t r_glsl_postprocess_uservec4_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4_enable", "1", "enables postprocessing uservec4 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
193 cvar_t r_colorfringe = {CF_CLIENT | CF_ARCHIVE, "r_colorfringe", "0", "Chromatic aberration. Values higher than 0.025 will noticeably distort the image"};
194
195 cvar_t r_water = {CF_CLIENT | CF_ARCHIVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
196 cvar_t r_water_cameraentitiesonly = {CF_CLIENT | CF_ARCHIVE, "r_water_cameraentitiesonly", "0", "whether to only show QC-defined reflections/refractions (typically used for camera- or portal-like effects)"};
197 cvar_t r_water_clippingplanebias = {CF_CLIENT | CF_ARCHIVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
198 cvar_t r_water_resolutionmultiplier = {CF_CLIENT | CF_ARCHIVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
199 cvar_t r_water_refractdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
200 cvar_t r_water_reflectdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
201 cvar_t r_water_scissormode = {CF_CLIENT, "r_water_scissormode", "3", "scissor (1) or cull (2) or both (3) water renders"};
202 cvar_t r_water_lowquality = {CF_CLIENT, "r_water_lowquality", "0", "special option to accelerate water rendering: 1 disables all dynamic lights, 2 disables particles too"};
203 cvar_t r_water_hideplayer = {CF_CLIENT | CF_ARCHIVE, "r_water_hideplayer", "0", "if set to 1 then player will be hidden in refraction views, if set to 2 then player will also be hidden in reflection views, player is always visible in camera views"};
204
205 cvar_t r_lerpsprites = {CF_CLIENT | CF_ARCHIVE, "r_lerpsprites", "0", "enables animation smoothing on sprites"};
206 cvar_t r_lerpmodels = {CF_CLIENT | CF_ARCHIVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
207 cvar_t r_nolerp_list = {CF_CLIENT | CF_ARCHIVE, "r_nolerp_list", "progs/v_nail.mdl,progs/v_nail2.mdl,progs/flame.mdl,progs/flame2.mdl,progs/braztall.mdl,progs/brazshrt.mdl,progs/longtrch.mdl,progs/flame_pyre.mdl,progs/v_saw.mdl,progs/v_xfist.mdl,progs/h2stuff/newfire.mdl", "comma separated list of models that will not have their animations smoothed"};
208 cvar_t r_lerplightstyles = {CF_CLIENT | CF_ARCHIVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
209 cvar_t r_waterscroll = {CF_CLIENT | CF_ARCHIVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
210
211 cvar_t r_bloom = {CF_CLIENT | CF_ARCHIVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
212 cvar_t r_bloom_colorscale = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorscale", "1", "how bright the glow is"};
213
214 cvar_t r_bloom_brighten = {CF_CLIENT | CF_ARCHIVE, "r_bloom_brighten", "1", "how bright the glow is, after subtract/power"};
215 cvar_t r_bloom_blur = {CF_CLIENT | CF_ARCHIVE, "r_bloom_blur", "4", "how large the glow is"};
216 cvar_t r_bloom_resolution = {CF_CLIENT | CF_ARCHIVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
217 cvar_t r_bloom_colorexponent = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorexponent", "1", "how exaggerated the glow is"};
218 cvar_t r_bloom_colorsubtract = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorsubtract", "0.1", "reduces bloom colors by a certain amount"};
219 cvar_t r_bloom_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_bloom_scenebrightness", "1", "global rendering brightness when bloom is enabled"};
220
221 cvar_t r_hdr_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
222 cvar_t r_hdr_glowintensity = {CF_CLIENT | CF_ARCHIVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
223 cvar_t r_hdr_irisadaptation = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation", "0", "adjust scene brightness according to light intensity at player location"};
224 cvar_t r_hdr_irisadaptation_multiplier = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_multiplier", "2", "brightness at which value will be 1.0"};
225 cvar_t r_hdr_irisadaptation_minvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_minvalue", "0.5", "minimum value that can result from multiplier / brightness"};
226 cvar_t r_hdr_irisadaptation_maxvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_maxvalue", "4", "maximum value that can result from multiplier / brightness"};
227 cvar_t r_hdr_irisadaptation_value = {CF_CLIENT, "r_hdr_irisadaptation_value", "1", "current value as scenebrightness multiplier, changes continuously when irisadaptation is active"};
228 cvar_t r_hdr_irisadaptation_fade_up = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_up", "0.1", "fade rate at which value adjusts to darkness"};
229 cvar_t r_hdr_irisadaptation_fade_down = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_down", "0.5", "fade rate at which value adjusts to brightness"};
230 cvar_t r_hdr_irisadaptation_radius = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_radius", "15", "lighting within this many units of the eye is averaged"};
231
232 cvar_t r_smoothnormals_areaweighting = {CF_CLIENT, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
233
234 cvar_t developer_texturelogging = {CF_CLIENT, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
235
236 cvar_t gl_lightmaps = {CF_CLIENT, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers), a value of 2 keeps normalmap shading"};
237
238 cvar_t r_test = {CF_CLIENT, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
239
240 cvar_t r_batch_multidraw = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw", "1", "issue multiple glDrawElements calls when rendering a batch of surfaces with the same texture (otherwise the index data is copied to make it one draw)"};
241 cvar_t r_batch_multidraw_mintriangles = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw_mintriangles", "0", "minimum number of triangles to activate multidraw path (copying small groups of triangles may be faster)"};
242 cvar_t r_batch_debugdynamicvertexpath = {CF_CLIENT | CF_ARCHIVE, "r_batch_debugdynamicvertexpath", "0", "force the dynamic batching code path for debugging purposes"};
243 cvar_t r_batch_dynamicbuffer = {CF_CLIENT | CF_ARCHIVE, "r_batch_dynamicbuffer", "0", "use vertex/index buffers for drawing dynamic and copytriangles batches"};
244
245 cvar_t r_glsl_saturation = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation", "1", "saturation multiplier (only working in glsl!)"};
246 cvar_t r_glsl_saturation_redcompensate = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation_redcompensate", "0", "a 'vampire sight' addition to desaturation effect, does compensation for red color, r_glsl_restart is required"};
247
248 cvar_t r_glsl_vertextextureblend_usebothalphas = {CF_CLIENT | CF_ARCHIVE, "r_glsl_vertextextureblend_usebothalphas", "0", "use both alpha layers on vertex blended surfaces, each alpha layer sets amount of 'blend leak' on another layer, requires mod_q3shader_force_terrain_alphaflag on."};
249
250 cvar_t r_framedatasize = {CF_CLIENT | CF_ARCHIVE, "r_framedatasize", "0.5", "size of renderer data cache used during one frame (for skeletal animation caching, light processing, etc)"};
251 cvar_t r_buffermegs[R_BUFFERDATA_COUNT] =
252 {
253         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_vertex", "4", "vertex buffer size for one frame"},
254         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index16", "1", "index buffer size for one frame (16bit indices)"},
255         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index32", "1", "index buffer size for one frame (32bit indices)"},
256         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_uniform", "0.25", "uniform buffer size for one frame"},
257 };
258
259 extern cvar_t v_glslgamma_2d;
260
261 extern qbool v_flipped_state;
262
263 r_framebufferstate_t r_fb;
264
265 /// shadow volume bsp struct with automatically growing nodes buffer
266 svbsp_t r_svbsp;
267
268 int r_uniformbufferalignment = 32; // dynamically updated to match GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
269
270 rtexture_t *r_texture_blanknormalmap;
271 rtexture_t *r_texture_white;
272 rtexture_t *r_texture_grey128;
273 rtexture_t *r_texture_black;
274 rtexture_t *r_texture_notexture;
275 rtexture_t *r_texture_whitecube;
276 rtexture_t *r_texture_normalizationcube;
277 rtexture_t *r_texture_fogattenuation;
278 rtexture_t *r_texture_fogheighttexture;
279 rtexture_t *r_texture_gammaramps;
280 unsigned int r_texture_gammaramps_serial;
281 //rtexture_t *r_texture_fogintensity;
282 rtexture_t *r_texture_reflectcube;
283
284 // TODO: hash lookups?
285 typedef struct cubemapinfo_s
286 {
287         char basename[64];
288         rtexture_t *texture;
289 }
290 cubemapinfo_t;
291
292 int r_texture_numcubemaps;
293 cubemapinfo_t *r_texture_cubemaps[MAX_CUBEMAPS];
294
295 unsigned int r_queries[MAX_OCCLUSION_QUERIES];
296 unsigned int r_numqueries;
297 unsigned int r_maxqueries;
298
299 typedef struct r_qwskincache_s
300 {
301         char name[MAX_QPATH];
302         skinframe_t *skinframe;
303 }
304 r_qwskincache_t;
305
306 static r_qwskincache_t *r_qwskincache;
307 static int r_qwskincache_size;
308
309 /// vertex coordinates for a quad that covers the screen exactly
310 extern const float r_screenvertex3f[12];
311 const float r_screenvertex3f[12] =
312 {
313         0, 0, 0,
314         1, 0, 0,
315         1, 1, 0,
316         0, 1, 0
317 };
318
319 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
320 {
321         int i;
322         for (i = 0;i < verts;i++)
323         {
324                 out[0] = in[0] * r;
325                 out[1] = in[1] * g;
326                 out[2] = in[2] * b;
327                 out[3] = in[3];
328                 in += 4;
329                 out += 4;
330         }
331 }
332
333 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
334 {
335         int i;
336         for (i = 0;i < verts;i++)
337         {
338                 out[0] = r;
339                 out[1] = g;
340                 out[2] = b;
341                 out[3] = a;
342                 out += 4;
343         }
344 }
345
346 // FIXME: move this to client?
347 void FOG_clear(void)
348 {
349         if (gamemode == GAME_NEHAHRA)
350         {
351                 Cvar_Set(&cvars_all, "gl_fogenable", "0");
352                 Cvar_Set(&cvars_all, "gl_fogdensity", "0.2");
353                 Cvar_Set(&cvars_all, "gl_fogred", "0.3");
354                 Cvar_Set(&cvars_all, "gl_foggreen", "0.3");
355                 Cvar_Set(&cvars_all, "gl_fogblue", "0.3");
356         }
357         r_refdef.fog_density = 0;
358         r_refdef.fog_red = 0;
359         r_refdef.fog_green = 0;
360         r_refdef.fog_blue = 0;
361         r_refdef.fog_alpha = 1;
362         r_refdef.fog_start = 0;
363         r_refdef.fog_end = 16384;
364         r_refdef.fog_height = 1<<30;
365         r_refdef.fog_fadedepth = 128;
366         memset(r_refdef.fog_height_texturename, 0, sizeof(r_refdef.fog_height_texturename));
367 }
368
369 static void R_BuildBlankTextures(void)
370 {
371         unsigned char data[4];
372         data[2] = 128; // normal X
373         data[1] = 128; // normal Y
374         data[0] = 255; // normal Z
375         data[3] = 255; // height
376         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
377         data[0] = 255;
378         data[1] = 255;
379         data[2] = 255;
380         data[3] = 255;
381         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
382         data[0] = 128;
383         data[1] = 128;
384         data[2] = 128;
385         data[3] = 255;
386         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
387         data[0] = 0;
388         data[1] = 0;
389         data[2] = 0;
390         data[3] = 255;
391         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
392 }
393
394 static void R_BuildNoTexture(void)
395 {
396         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, Image_GenerateNoTexture(), TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, -1, NULL);
397 }
398
399 static void R_BuildWhiteCube(void)
400 {
401         unsigned char data[6*1*1*4];
402         memset(data, 255, sizeof(data));
403         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
404 }
405
406 static void R_BuildNormalizationCube(void)
407 {
408         int x, y, side;
409         vec3_t v;
410         vec_t s, t, intensity;
411 #define NORMSIZE 64
412         unsigned char *data;
413         data = (unsigned char *)Mem_Alloc(tempmempool, 6*NORMSIZE*NORMSIZE*4);
414         for (side = 0;side < 6;side++)
415         {
416                 for (y = 0;y < NORMSIZE;y++)
417                 {
418                         for (x = 0;x < NORMSIZE;x++)
419                         {
420                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
421                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
422                                 switch(side)
423                                 {
424                                 default:
425                                 case 0:
426                                         v[0] = 1;
427                                         v[1] = -t;
428                                         v[2] = -s;
429                                         break;
430                                 case 1:
431                                         v[0] = -1;
432                                         v[1] = -t;
433                                         v[2] = s;
434                                         break;
435                                 case 2:
436                                         v[0] = s;
437                                         v[1] = 1;
438                                         v[2] = t;
439                                         break;
440                                 case 3:
441                                         v[0] = s;
442                                         v[1] = -1;
443                                         v[2] = -t;
444                                         break;
445                                 case 4:
446                                         v[0] = s;
447                                         v[1] = -t;
448                                         v[2] = 1;
449                                         break;
450                                 case 5:
451                                         v[0] = -s;
452                                         v[1] = -t;
453                                         v[2] = -1;
454                                         break;
455                                 }
456                                 intensity = 127.0f / sqrt(DotProduct(v, v));
457                                 data[((side*64+y)*64+x)*4+2] = (unsigned char)(128.0f + intensity * v[0]);
458                                 data[((side*64+y)*64+x)*4+1] = (unsigned char)(128.0f + intensity * v[1]);
459                                 data[((side*64+y)*64+x)*4+0] = (unsigned char)(128.0f + intensity * v[2]);
460                                 data[((side*64+y)*64+x)*4+3] = 255;
461                         }
462                 }
463         }
464         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
465         Mem_Free(data);
466 }
467
468 static void R_BuildFogTexture(void)
469 {
470         int x, b;
471 #define FOGWIDTH 256
472         unsigned char data1[FOGWIDTH][4];
473         //unsigned char data2[FOGWIDTH][4];
474         double d, r, alpha;
475
476         r_refdef.fogmasktable_start = r_refdef.fog_start;
477         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
478         r_refdef.fogmasktable_range = r_refdef.fogrange;
479         r_refdef.fogmasktable_density = r_refdef.fog_density;
480
481         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
482         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
483         {
484                 d = (x * r - r_refdef.fogmasktable_start);
485                 if(developer_extra.integer)
486                         Con_DPrintf("%f ", d);
487                 d = max(0, d);
488                 if (r_fog_exp2.integer)
489                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
490                 else
491                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
492                 if(developer_extra.integer)
493                         Con_DPrintf(" : %f ", alpha);
494                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
495                 if(developer_extra.integer)
496                         Con_DPrintf(" = %f\n", alpha);
497                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
498         }
499
500         for (x = 0;x < FOGWIDTH;x++)
501         {
502                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
503                 data1[x][0] = b;
504                 data1[x][1] = b;
505                 data1[x][2] = b;
506                 data1[x][3] = 255;
507                 //data2[x][0] = 255 - b;
508                 //data2[x][1] = 255 - b;
509                 //data2[x][2] = 255 - b;
510                 //data2[x][3] = 255;
511         }
512         if (r_texture_fogattenuation)
513         {
514                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, 0, FOGWIDTH, 1, 1);
515                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, 0, FOGWIDTH, 1, 1);
516         }
517         else
518         {
519                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
520                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
521         }
522 }
523
524 static void R_BuildFogHeightTexture(void)
525 {
526         unsigned char *inpixels;
527         int size;
528         int x;
529         int y;
530         int j;
531         float c[4];
532         float f;
533         inpixels = NULL;
534         strlcpy(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename, sizeof(r_refdef.fogheighttexturename));
535         if (r_refdef.fogheighttexturename[0])
536                 inpixels = loadimagepixelsbgra(r_refdef.fogheighttexturename, true, false, false, NULL);
537         if (!inpixels)
538         {
539                 r_refdef.fog_height_tablesize = 0;
540                 if (r_texture_fogheighttexture)
541                         R_FreeTexture(r_texture_fogheighttexture);
542                 r_texture_fogheighttexture = NULL;
543                 if (r_refdef.fog_height_table2d)
544                         Mem_Free(r_refdef.fog_height_table2d);
545                 r_refdef.fog_height_table2d = NULL;
546                 if (r_refdef.fog_height_table1d)
547                         Mem_Free(r_refdef.fog_height_table1d);
548                 r_refdef.fog_height_table1d = NULL;
549                 return;
550         }
551         size = image_width;
552         r_refdef.fog_height_tablesize = size;
553         r_refdef.fog_height_table1d = (unsigned char *)Mem_Alloc(r_main_mempool, size * 4);
554         r_refdef.fog_height_table2d = (unsigned char *)Mem_Alloc(r_main_mempool, size * size * 4);
555         memcpy(r_refdef.fog_height_table1d, inpixels, size * 4);
556         Mem_Free(inpixels);
557         // LadyHavoc: now the magic - what is that table2d for?  it is a cooked
558         // average fog color table accounting for every fog layer between a point
559         // and the camera.  (Note: attenuation is handled separately!)
560         for (y = 0;y < size;y++)
561         {
562                 for (x = 0;x < size;x++)
563                 {
564                         Vector4Clear(c);
565                         f = 0;
566                         if (x < y)
567                         {
568                                 for (j = x;j <= y;j++)
569                                 {
570                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
571                                         f++;
572                                 }
573                         }
574                         else
575                         {
576                                 for (j = x;j >= y;j--)
577                                 {
578                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
579                                         f++;
580                                 }
581                         }
582                         f = 1.0f / f;
583                         r_refdef.fog_height_table2d[(y*size+x)*4+0] = (unsigned char)(c[0] * f);
584                         r_refdef.fog_height_table2d[(y*size+x)*4+1] = (unsigned char)(c[1] * f);
585                         r_refdef.fog_height_table2d[(y*size+x)*4+2] = (unsigned char)(c[2] * f);
586                         r_refdef.fog_height_table2d[(y*size+x)*4+3] = (unsigned char)(c[3] * f);
587                 }
588         }
589         r_texture_fogheighttexture = R_LoadTexture2D(r_main_texturepool, "fogheighttable", size, size, r_refdef.fog_height_table2d, TEXTYPE_BGRA, TEXF_ALPHA | TEXF_CLAMP, -1, NULL);
590 }
591
592 //=======================================================================================================================================================
593
594 static const char *builtinshaderstrings[] =
595 {
596 #include "shader_glsl.h"
597 0
598 };
599
600 //=======================================================================================================================================================
601
602 typedef struct shaderpermutationinfo_s
603 {
604         const char *pretext;
605         const char *name;
606 }
607 shaderpermutationinfo_t;
608
609 typedef struct shadermodeinfo_s
610 {
611         const char *sourcebasename;
612         const char *extension;
613         const char **builtinshaderstrings;
614         const char *pretext;
615         const char *name;
616         char *filename;
617         char *builtinstring;
618         int builtincrc;
619 }
620 shadermodeinfo_t;
621
622 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
623 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
624 {
625         {"#define USEDIFFUSE\n", " diffuse"},
626         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
627         {"#define USEVIEWTINT\n", " viewtint"},
628         {"#define USECOLORMAPPING\n", " colormapping"},
629         {"#define USESATURATION\n", " saturation"},
630         {"#define USEFOGINSIDE\n", " foginside"},
631         {"#define USEFOGOUTSIDE\n", " fogoutside"},
632         {"#define USEFOGHEIGHTTEXTURE\n", " fogheighttexture"},
633         {"#define USEFOGALPHAHACK\n", " fogalphahack"},
634         {"#define USEGAMMARAMPS\n", " gammaramps"},
635         {"#define USECUBEFILTER\n", " cubefilter"},
636         {"#define USEGLOW\n", " glow"},
637         {"#define USEBLOOM\n", " bloom"},
638         {"#define USESPECULAR\n", " specular"},
639         {"#define USEPOSTPROCESSING\n", " postprocessing"},
640         {"#define USEREFLECTION\n", " reflection"},
641         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
642         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
643         {"#define USESHADOWMAP2D\n", " shadowmap2d"},
644         {"#define USESHADOWMAPVSDCT\n", " shadowmapvsdct"}, // TODO make this a static parm
645         {"#define USESHADOWMAPORTHO\n", " shadowmaportho"},
646         {"#define USEDEFERREDLIGHTMAP\n", " deferredlightmap"},
647         {"#define USEALPHAKILL\n", " alphakill"},
648         {"#define USEREFLECTCUBE\n", " reflectcube"},
649         {"#define USENORMALMAPSCROLLBLEND\n", " normalmapscrollblend"},
650         {"#define USEBOUNCEGRID\n", " bouncegrid"},
651         {"#define USEBOUNCEGRIDDIRECTIONAL\n", " bouncegriddirectional"}, // TODO make this a static parm
652         {"#define USETRIPPY\n", " trippy"},
653         {"#define USEDEPTHRGB\n", " depthrgb"},
654         {"#define USEALPHAGENVERTEX\n", " alphagenvertex"},
655         {"#define USESKELETAL\n", " skeletal"},
656         {"#define USEOCCLUDE\n", " occlude"}
657 };
658
659 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
660 shadermodeinfo_t shadermodeinfo[SHADERLANGUAGE_COUNT][SHADERMODE_COUNT] =
661 {
662         // SHADERLANGUAGE_GLSL
663         {
664                 {"combined", "glsl", builtinshaderstrings, "#define MODE_GENERIC\n", " generic"},
665                 {"combined", "glsl", builtinshaderstrings, "#define MODE_POSTPROCESS\n", " postprocess"},
666                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
667                 {"combined", "glsl", builtinshaderstrings, "#define MODE_FLATCOLOR\n", " flatcolor"},
668                 {"combined", "glsl", builtinshaderstrings, "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
669                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTMAP\n", " lightmap"},
670                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
671                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
672                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP\n", " lightdirectionmap_forced_lightmap"},
673                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR\n", " lightdirectionmap_forced_vertexcolor"},
674                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTGRID\n", " lightgrid"},
675                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
676                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTSOURCE\n", " lightsource"},
677                 {"combined", "glsl", builtinshaderstrings, "#define MODE_REFRACTION\n", " refraction"},
678                 {"combined", "glsl", builtinshaderstrings, "#define MODE_WATER\n", " water"},
679                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"},
680                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"},
681         },
682 };
683
684 struct r_glsl_permutation_s;
685 typedef struct r_glsl_permutation_s
686 {
687         /// hash lookup data
688         struct r_glsl_permutation_s *hashnext;
689         unsigned int mode;
690         uint64_t permutation;
691
692         /// indicates if we have tried compiling this permutation already
693         qbool compiled;
694         /// 0 if compilation failed
695         int program;
696         // texture units assigned to each detected uniform
697         int tex_Texture_First;
698         int tex_Texture_Second;
699         int tex_Texture_GammaRamps;
700         int tex_Texture_Normal;
701         int tex_Texture_Color;
702         int tex_Texture_Gloss;
703         int tex_Texture_Glow;
704         int tex_Texture_SecondaryNormal;
705         int tex_Texture_SecondaryColor;
706         int tex_Texture_SecondaryGloss;
707         int tex_Texture_SecondaryGlow;
708         int tex_Texture_Pants;
709         int tex_Texture_Shirt;
710         int tex_Texture_FogHeightTexture;
711         int tex_Texture_FogMask;
712         int tex_Texture_LightGrid;
713         int tex_Texture_Lightmap;
714         int tex_Texture_Deluxemap;
715         int tex_Texture_Attenuation;
716         int tex_Texture_Cube;
717         int tex_Texture_Refraction;
718         int tex_Texture_Reflection;
719         int tex_Texture_ShadowMap2D;
720         int tex_Texture_CubeProjection;
721         int tex_Texture_ScreenNormalMap;
722         int tex_Texture_ScreenDiffuse;
723         int tex_Texture_ScreenSpecular;
724         int tex_Texture_ReflectMask;
725         int tex_Texture_ReflectCube;
726         int tex_Texture_BounceGrid;
727         /// locations of detected uniforms in program object, or -1 if not found
728         int loc_Texture_First;
729         int loc_Texture_Second;
730         int loc_Texture_GammaRamps;
731         int loc_Texture_Normal;
732         int loc_Texture_Color;
733         int loc_Texture_Gloss;
734         int loc_Texture_Glow;
735         int loc_Texture_SecondaryNormal;
736         int loc_Texture_SecondaryColor;
737         int loc_Texture_SecondaryGloss;
738         int loc_Texture_SecondaryGlow;
739         int loc_Texture_Pants;
740         int loc_Texture_Shirt;
741         int loc_Texture_FogHeightTexture;
742         int loc_Texture_FogMask;
743         int loc_Texture_LightGrid;
744         int loc_Texture_Lightmap;
745         int loc_Texture_Deluxemap;
746         int loc_Texture_Attenuation;
747         int loc_Texture_Cube;
748         int loc_Texture_Refraction;
749         int loc_Texture_Reflection;
750         int loc_Texture_ShadowMap2D;
751         int loc_Texture_CubeProjection;
752         int loc_Texture_ScreenNormalMap;
753         int loc_Texture_ScreenDiffuse;
754         int loc_Texture_ScreenSpecular;
755         int loc_Texture_ReflectMask;
756         int loc_Texture_ReflectCube;
757         int loc_Texture_BounceGrid;
758         int loc_Alpha;
759         int loc_BloomBlur_Parameters;
760         int loc_ClientTime;
761         int loc_Color_Ambient;
762         int loc_Color_Diffuse;
763         int loc_Color_Specular;
764         int loc_Color_Glow;
765         int loc_Color_Pants;
766         int loc_Color_Shirt;
767         int loc_DeferredColor_Ambient;
768         int loc_DeferredColor_Diffuse;
769         int loc_DeferredColor_Specular;
770         int loc_DeferredMod_Diffuse;
771         int loc_DeferredMod_Specular;
772         int loc_DistortScaleRefractReflect;
773         int loc_EyePosition;
774         int loc_FogColor;
775         int loc_FogHeightFade;
776         int loc_FogPlane;
777         int loc_FogPlaneViewDist;
778         int loc_FogRangeRecip;
779         int loc_LightColor;
780         int loc_LightDir;
781         int loc_LightGridMatrix;
782         int loc_LightGridNormalMatrix;
783         int loc_LightPosition;
784         int loc_OffsetMapping_ScaleSteps;
785         int loc_OffsetMapping_LodDistance;
786         int loc_OffsetMapping_Bias;
787         int loc_PixelSize;
788         int loc_ReflectColor;
789         int loc_ReflectFactor;
790         int loc_ReflectOffset;
791         int loc_RefractColor;
792         int loc_Saturation;
793         int loc_ScreenCenterRefractReflect;
794         int loc_ScreenScaleRefractReflect;
795         int loc_ScreenToDepth;
796         int loc_ShadowMap_Parameters;
797         int loc_ShadowMap_TextureScale;
798         int loc_SpecularPower;
799         int loc_Skeletal_Transform12;
800         int loc_UserVec1;
801         int loc_UserVec2;
802         int loc_UserVec3;
803         int loc_UserVec4;
804         int loc_ColorFringe;
805         int loc_ViewTintColor;
806         int loc_ViewToLight;
807         int loc_ModelToLight;
808         int loc_TexMatrix;
809         int loc_BackgroundTexMatrix;
810         int loc_ModelViewProjectionMatrix;
811         int loc_ModelViewMatrix;
812         int loc_PixelToScreenTexCoord;
813         int loc_ModelToReflectCube;
814         int loc_ShadowMapMatrix;
815         int loc_BloomColorSubtract;
816         int loc_NormalmapScrollBlend;
817         int loc_BounceGridMatrix;
818         int loc_BounceGridIntensity;
819         /// uniform block bindings
820         int ubibind_Skeletal_Transform12_UniformBlock;
821         /// uniform block indices
822         int ubiloc_Skeletal_Transform12_UniformBlock;
823 }
824 r_glsl_permutation_t;
825
826 #define SHADERPERMUTATION_HASHSIZE 256
827
828
829 // non-degradable "lightweight" shader parameters to keep the permutations simpler
830 // these can NOT degrade! only use for simple stuff
831 enum
832 {
833         SHADERSTATICPARM_SATURATION_REDCOMPENSATE = 0, ///< red compensation filter for saturation
834         SHADERSTATICPARM_EXACTSPECULARMATH = 1, ///< (lightsource or deluxemapping) use exact reflection map for specular effects, as opposed to the usual OpenGL approximation
835         SHADERSTATICPARM_POSTPROCESS_USERVEC1 = 2, ///< postprocess uservec1 is enabled
836         SHADERSTATICPARM_POSTPROCESS_USERVEC2 = 3, ///< postprocess uservec2 is enabled
837         SHADERSTATICPARM_POSTPROCESS_USERVEC3 = 4, ///< postprocess uservec3 is enabled
838         SHADERSTATICPARM_POSTPROCESS_USERVEC4 = 5,  ///< postprocess uservec4 is enabled
839         SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS = 6, // use both alpha layers while blending materials, allows more advanced microblending
840         SHADERSTATICPARM_OFFSETMAPPING_USELOD = 7,  ///< LOD for offsetmapping
841         SHADERSTATICPARM_SHADOWMAPPCF_1 = 8, ///< PCF 1
842         SHADERSTATICPARM_SHADOWMAPPCF_2 = 9, ///< PCF 2
843         SHADERSTATICPARM_SHADOWSAMPLER = 10, ///< sampler
844         SHADERSTATICPARM_CELSHADING = 11, ///< celshading (alternative diffuse and specular math)
845         SHADERSTATICPARM_CELOUTLINES = 12, ///< celoutline (depth buffer analysis to produce outlines)
846         SHADERSTATICPARM_FXAA = 13 ///< fast approximate anti aliasing
847 };
848 #define SHADERSTATICPARMS_COUNT 14
849
850 static const char *shaderstaticparmstrings_list[SHADERSTATICPARMS_COUNT];
851 static int shaderstaticparms_count = 0;
852
853 static unsigned int r_compileshader_staticparms[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5] = {0};
854 #define R_COMPILESHADER_STATICPARM_ENABLE(p) r_compileshader_staticparms[(p) >> 5] |= (1 << ((p) & 0x1F))
855
856 extern qbool r_shadow_shadowmapsampler;
857 extern int r_shadow_shadowmappcf;
858 qbool R_CompileShader_CheckStaticParms(void)
859 {
860         static int r_compileshader_staticparms_save[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5];
861         memcpy(r_compileshader_staticparms_save, r_compileshader_staticparms, sizeof(r_compileshader_staticparms));
862         memset(r_compileshader_staticparms, 0, sizeof(r_compileshader_staticparms));
863
864         // detect all
865         if (r_glsl_saturation_redcompensate.integer)
866                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SATURATION_REDCOMPENSATE);
867         if (r_glsl_vertextextureblend_usebothalphas.integer)
868                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS);
869         if (r_shadow_glossexact.integer)
870                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_EXACTSPECULARMATH);
871         if (r_glsl_postprocess.integer)
872         {
873                 if (r_glsl_postprocess_uservec1_enable.integer)
874                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC1);
875                 if (r_glsl_postprocess_uservec2_enable.integer)
876                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC2);
877                 if (r_glsl_postprocess_uservec3_enable.integer)
878                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC3);
879                 if (r_glsl_postprocess_uservec4_enable.integer)
880                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC4);
881         }
882         if (r_fxaa.integer)
883                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_FXAA);
884         if (r_glsl_offsetmapping_lod.integer && r_glsl_offsetmapping_lod_distance.integer > 0)
885                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_OFFSETMAPPING_USELOD);
886
887         if (r_shadow_shadowmapsampler)
888                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWSAMPLER);
889         if (r_shadow_shadowmappcf > 1)
890                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_2);
891         else if (r_shadow_shadowmappcf)
892                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_1);
893         if (r_celshading.integer)
894                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELSHADING);
895         if (r_celoutlines.integer)
896                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELOUTLINES);
897
898         return memcmp(r_compileshader_staticparms, r_compileshader_staticparms_save, sizeof(r_compileshader_staticparms)) != 0;
899 }
900
901 #define R_COMPILESHADER_STATICPARM_EMIT(p, n) \
902         if(r_compileshader_staticparms[(p) >> 5] & (1 << ((p) & 0x1F))) \
903                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "#define " n "\n"; \
904         else \
905                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "\n"
906 static void R_CompileShader_AddStaticParms(unsigned int mode, uint64_t permutation)
907 {
908         shaderstaticparms_count = 0;
909
910         // emit all
911         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SATURATION_REDCOMPENSATE, "SATURATION_REDCOMPENSATE");
912         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_EXACTSPECULARMATH, "USEEXACTSPECULARMATH");
913         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC1, "USERVEC1");
914         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC2, "USERVEC2");
915         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC3, "USERVEC3");
916         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC4, "USERVEC4");
917         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS, "USEBOTHALPHAS");
918         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_OFFSETMAPPING_USELOD, "USEOFFSETMAPPING_LOD");
919         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_1, "USESHADOWMAPPCF 1");
920         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_2, "USESHADOWMAPPCF 2");
921         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWSAMPLER, "USESHADOWSAMPLER");
922         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELSHADING, "USECELSHADING");
923         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELOUTLINES, "USECELOUTLINES");
924         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_FXAA, "USEFXAA");
925 }
926
927 /// information about each possible shader permutation
928 r_glsl_permutation_t *r_glsl_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE];
929 /// currently selected permutation
930 r_glsl_permutation_t *r_glsl_permutation;
931 /// storage for permutations linked in the hash table
932 memexpandablearray_t r_glsl_permutationarray;
933
934 static r_glsl_permutation_t *R_GLSL_FindPermutation(unsigned int mode, uint64_t permutation)
935 {
936         //unsigned int hashdepth = 0;
937         unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1);
938         r_glsl_permutation_t *p;
939         for (p = r_glsl_permutationhash[mode][hashindex];p;p = p->hashnext)
940         {
941                 if (p->mode == mode && p->permutation == permutation)
942                 {
943                         //if (hashdepth > 10)
944                         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
945                         return p;
946                 }
947                 //hashdepth++;
948         }
949         p = (r_glsl_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_glsl_permutationarray);
950         p->mode = mode;
951         p->permutation = permutation;
952         p->hashnext = r_glsl_permutationhash[mode][hashindex];
953         r_glsl_permutationhash[mode][hashindex] = p;
954         //if (hashdepth > 10)
955         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
956         return p;
957 }
958
959 static char *R_ShaderStrCat(const char **strings)
960 {
961         char *string, *s;
962         const char **p = strings;
963         const char *t;
964         size_t len = 0;
965         for (p = strings;(t = *p);p++)
966                 len += strlen(t);
967         len++;
968         s = string = (char *)Mem_Alloc(r_main_mempool, len);
969         len = 0;
970         for (p = strings;(t = *p);p++)
971         {
972                 len = strlen(t);
973                 memcpy(s, t, len);
974                 s += len;
975         }
976         *s = 0;
977         return string;
978 }
979
980 static char *R_ShaderStrCat(const char **strings);
981 static void R_InitShaderModeInfo(void)
982 {
983         int i, language;
984         shadermodeinfo_t *modeinfo;
985         // we have a bunch of things to compute that weren't calculated at engine compile time - all filenames should have a crc of the builtin strings to prevent accidental overrides (any customization must be updated to match engine)
986         for (language = 0; language < SHADERLANGUAGE_COUNT; language++)
987         {
988                 for (i = 0; i < SHADERMODE_COUNT; i++)
989                 {
990                         char filename[MAX_QPATH];
991                         modeinfo = &shadermodeinfo[language][i];
992                         modeinfo->builtinstring = R_ShaderStrCat(modeinfo->builtinshaderstrings);
993                         modeinfo->builtincrc = CRC_Block((const unsigned char *)modeinfo->builtinstring, strlen(modeinfo->builtinstring));
994                         dpsnprintf(filename, sizeof(filename), "%s/%s_crc%i.%s", modeinfo->extension, modeinfo->sourcebasename, modeinfo->builtincrc, modeinfo->extension);
995                         modeinfo->filename = Mem_strdup(r_main_mempool, filename);
996                 }
997         }
998 }
999
1000 static char *ShaderModeInfo_GetShaderText(shadermodeinfo_t *modeinfo, qbool printfromdisknotice, qbool builtinonly)
1001 {
1002         char *shaderstring;
1003         // if the mode has no filename we have to return the builtin string
1004         if (builtinonly || !modeinfo->filename)
1005                 return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1006         // note that FS_LoadFile appends a 0 byte to make it a valid string
1007         shaderstring = (char *)FS_LoadFile(modeinfo->filename, r_main_mempool, false, NULL);
1008         if (shaderstring)
1009         {
1010                 if (printfromdisknotice)
1011                         Con_DPrintf("Loading shaders from file %s...\n", modeinfo->filename);
1012                 return shaderstring;
1013         }
1014         // fall back to builtinstring
1015         return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1016 }
1017
1018 static void R_GLSL_CompilePermutation(r_glsl_permutation_t *p, unsigned int mode, uint64_t permutation)
1019 {
1020         int i;
1021         int ubibind;
1022         int sampler;
1023         shadermodeinfo_t *modeinfo = &shadermodeinfo[SHADERLANGUAGE_GLSL][mode];
1024         char *sourcestring;
1025         char permutationname[256];
1026         int vertstrings_count = 0;
1027         int geomstrings_count = 0;
1028         int fragstrings_count = 0;
1029         const char *vertstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1030         const char *geomstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1031         const char *fragstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1032
1033         if (p->compiled)
1034                 return;
1035         p->compiled = true;
1036         p->program = 0;
1037
1038         permutationname[0] = 0;
1039         sourcestring = ShaderModeInfo_GetShaderText(modeinfo, true, false);
1040
1041         strlcat(permutationname, modeinfo->filename, sizeof(permutationname));
1042
1043         // we need 140 for r_glsl_skeletal (GL_ARB_uniform_buffer_object)
1044         if(vid.support.glshaderversion >= 140)
1045         {
1046                 vertstrings_list[vertstrings_count++] = "#version 140\n";
1047                 geomstrings_list[geomstrings_count++] = "#version 140\n";
1048                 fragstrings_list[fragstrings_count++] = "#version 140\n";
1049                 vertstrings_list[vertstrings_count++] = "#define GLSL140\n";
1050                 geomstrings_list[geomstrings_count++] = "#define GLSL140\n";
1051                 fragstrings_list[fragstrings_count++] = "#define GLSL140\n";
1052         }
1053         // if we can do #version 130, we should (this improves quality of offset/reliefmapping thanks to textureGrad)
1054         else if(vid.support.glshaderversion >= 130)
1055         {
1056                 vertstrings_list[vertstrings_count++] = "#version 130\n";
1057                 geomstrings_list[geomstrings_count++] = "#version 130\n";
1058                 fragstrings_list[fragstrings_count++] = "#version 130\n";
1059                 vertstrings_list[vertstrings_count++] = "#define GLSL130\n";
1060                 geomstrings_list[geomstrings_count++] = "#define GLSL130\n";
1061                 fragstrings_list[fragstrings_count++] = "#define GLSL130\n";
1062         }
1063         // if we can do #version 120, we should (this adds the invariant keyword)
1064         else if(vid.support.glshaderversion >= 120)
1065         {
1066                 vertstrings_list[vertstrings_count++] = "#version 120\n";
1067                 geomstrings_list[geomstrings_count++] = "#version 120\n";
1068                 fragstrings_list[fragstrings_count++] = "#version 120\n";
1069                 vertstrings_list[vertstrings_count++] = "#define GLSL120\n";
1070                 geomstrings_list[geomstrings_count++] = "#define GLSL120\n";
1071                 fragstrings_list[fragstrings_count++] = "#define GLSL120\n";
1072         }
1073         // GLES also adds several things from GLSL120
1074         switch(vid.renderpath)
1075         {
1076         case RENDERPATH_GLES2:
1077                 vertstrings_list[vertstrings_count++] = "#define GLES\n";
1078                 geomstrings_list[geomstrings_count++] = "#define GLES\n";
1079                 fragstrings_list[fragstrings_count++] = "#define GLES\n";
1080                 break;
1081         default:
1082                 break;
1083         }
1084
1085         // the first pretext is which type of shader to compile as
1086         // (later these will all be bound together as a program object)
1087         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1088         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1089         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1090
1091         // the second pretext is the mode (for example a light source)
1092         vertstrings_list[vertstrings_count++] = modeinfo->pretext;
1093         geomstrings_list[geomstrings_count++] = modeinfo->pretext;
1094         fragstrings_list[fragstrings_count++] = modeinfo->pretext;
1095         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1096
1097         // now add all the permutation pretexts
1098         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1099         {
1100                 if (permutation & (1ll<<i))
1101                 {
1102                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1103                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1104                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1105                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1106                 }
1107                 else
1108                 {
1109                         // keep line numbers correct
1110                         vertstrings_list[vertstrings_count++] = "\n";
1111                         geomstrings_list[geomstrings_count++] = "\n";
1112                         fragstrings_list[fragstrings_count++] = "\n";
1113                 }
1114         }
1115
1116         // add static parms
1117         R_CompileShader_AddStaticParms(mode, permutation);
1118         memcpy((char *)(vertstrings_list + vertstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1119         vertstrings_count += shaderstaticparms_count;
1120         memcpy((char *)(geomstrings_list + geomstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1121         geomstrings_count += shaderstaticparms_count;
1122         memcpy((char *)(fragstrings_list + fragstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1123         fragstrings_count += shaderstaticparms_count;
1124
1125         // now append the shader text itself
1126         vertstrings_list[vertstrings_count++] = sourcestring;
1127         geomstrings_list[geomstrings_count++] = sourcestring;
1128         fragstrings_list[fragstrings_count++] = sourcestring;
1129
1130         // we don't currently use geometry shaders for anything, so just empty the list
1131         geomstrings_count = 0;
1132
1133         // compile the shader program
1134         if (vertstrings_count + geomstrings_count + fragstrings_count)
1135                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1136         if (p->program)
1137         {
1138                 CHECKGLERROR
1139                 qglUseProgram(p->program);CHECKGLERROR
1140                 // look up all the uniform variable names we care about, so we don't
1141                 // have to look them up every time we set them
1142
1143 #if 0
1144                 // debugging aid
1145                 {
1146                         GLint activeuniformindex = 0;
1147                         GLint numactiveuniforms = 0;
1148                         char uniformname[128];
1149                         GLsizei uniformnamelength = 0;
1150                         GLint uniformsize = 0;
1151                         GLenum uniformtype = 0;
1152                         memset(uniformname, 0, sizeof(uniformname));
1153                         qglGetProgramiv(p->program, GL_ACTIVE_UNIFORMS, &numactiveuniforms);
1154                         Con_Printf("Shader has %i uniforms\n", numactiveuniforms);
1155                         for (activeuniformindex = 0;activeuniformindex < numactiveuniforms;activeuniformindex++)
1156                         {
1157                                 qglGetActiveUniform(p->program, activeuniformindex, sizeof(uniformname) - 1, &uniformnamelength, &uniformsize, &uniformtype, uniformname);
1158                                 Con_Printf("Uniform %i name \"%s\" size %i type %i\n", (int)activeuniformindex, uniformname, (int)uniformsize, (int)uniformtype);
1159                         }
1160                 }
1161 #endif
1162
1163                 p->loc_Texture_First              = qglGetUniformLocation(p->program, "Texture_First");
1164                 p->loc_Texture_Second             = qglGetUniformLocation(p->program, "Texture_Second");
1165                 p->loc_Texture_GammaRamps         = qglGetUniformLocation(p->program, "Texture_GammaRamps");
1166                 p->loc_Texture_Normal             = qglGetUniformLocation(p->program, "Texture_Normal");
1167                 p->loc_Texture_Color              = qglGetUniformLocation(p->program, "Texture_Color");
1168                 p->loc_Texture_Gloss              = qglGetUniformLocation(p->program, "Texture_Gloss");
1169                 p->loc_Texture_Glow               = qglGetUniformLocation(p->program, "Texture_Glow");
1170                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocation(p->program, "Texture_SecondaryNormal");
1171                 p->loc_Texture_SecondaryColor     = qglGetUniformLocation(p->program, "Texture_SecondaryColor");
1172                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocation(p->program, "Texture_SecondaryGloss");
1173                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocation(p->program, "Texture_SecondaryGlow");
1174                 p->loc_Texture_Pants              = qglGetUniformLocation(p->program, "Texture_Pants");
1175                 p->loc_Texture_Shirt              = qglGetUniformLocation(p->program, "Texture_Shirt");
1176                 p->loc_Texture_FogHeightTexture   = qglGetUniformLocation(p->program, "Texture_FogHeightTexture");
1177                 p->loc_Texture_FogMask            = qglGetUniformLocation(p->program, "Texture_FogMask");
1178                 p->loc_Texture_LightGrid          = qglGetUniformLocation(p->program, "Texture_LightGrid");
1179                 p->loc_Texture_Lightmap           = qglGetUniformLocation(p->program, "Texture_Lightmap");
1180                 p->loc_Texture_Deluxemap          = qglGetUniformLocation(p->program, "Texture_Deluxemap");
1181                 p->loc_Texture_Attenuation        = qglGetUniformLocation(p->program, "Texture_Attenuation");
1182                 p->loc_Texture_Cube               = qglGetUniformLocation(p->program, "Texture_Cube");
1183                 p->loc_Texture_Refraction         = qglGetUniformLocation(p->program, "Texture_Refraction");
1184                 p->loc_Texture_Reflection         = qglGetUniformLocation(p->program, "Texture_Reflection");
1185                 p->loc_Texture_ShadowMap2D        = qglGetUniformLocation(p->program, "Texture_ShadowMap2D");
1186                 p->loc_Texture_CubeProjection     = qglGetUniformLocation(p->program, "Texture_CubeProjection");
1187                 p->loc_Texture_ScreenNormalMap    = qglGetUniformLocation(p->program, "Texture_ScreenNormalMap");
1188                 p->loc_Texture_ScreenDiffuse      = qglGetUniformLocation(p->program, "Texture_ScreenDiffuse");
1189                 p->loc_Texture_ScreenSpecular     = qglGetUniformLocation(p->program, "Texture_ScreenSpecular");
1190                 p->loc_Texture_ReflectMask        = qglGetUniformLocation(p->program, "Texture_ReflectMask");
1191                 p->loc_Texture_ReflectCube        = qglGetUniformLocation(p->program, "Texture_ReflectCube");
1192                 p->loc_Texture_BounceGrid         = qglGetUniformLocation(p->program, "Texture_BounceGrid");
1193                 p->loc_Alpha                      = qglGetUniformLocation(p->program, "Alpha");
1194                 p->loc_BloomBlur_Parameters       = qglGetUniformLocation(p->program, "BloomBlur_Parameters");
1195                 p->loc_ClientTime                 = qglGetUniformLocation(p->program, "ClientTime");
1196                 p->loc_Color_Ambient              = qglGetUniformLocation(p->program, "Color_Ambient");
1197                 p->loc_Color_Diffuse              = qglGetUniformLocation(p->program, "Color_Diffuse");
1198                 p->loc_Color_Specular             = qglGetUniformLocation(p->program, "Color_Specular");
1199                 p->loc_Color_Glow                 = qglGetUniformLocation(p->program, "Color_Glow");
1200                 p->loc_Color_Pants                = qglGetUniformLocation(p->program, "Color_Pants");
1201                 p->loc_Color_Shirt                = qglGetUniformLocation(p->program, "Color_Shirt");
1202                 p->loc_DeferredColor_Ambient      = qglGetUniformLocation(p->program, "DeferredColor_Ambient");
1203                 p->loc_DeferredColor_Diffuse      = qglGetUniformLocation(p->program, "DeferredColor_Diffuse");
1204                 p->loc_DeferredColor_Specular     = qglGetUniformLocation(p->program, "DeferredColor_Specular");
1205                 p->loc_DeferredMod_Diffuse        = qglGetUniformLocation(p->program, "DeferredMod_Diffuse");
1206                 p->loc_DeferredMod_Specular       = qglGetUniformLocation(p->program, "DeferredMod_Specular");
1207                 p->loc_DistortScaleRefractReflect = qglGetUniformLocation(p->program, "DistortScaleRefractReflect");
1208                 p->loc_EyePosition                = qglGetUniformLocation(p->program, "EyePosition");
1209                 p->loc_FogColor                   = qglGetUniformLocation(p->program, "FogColor");
1210                 p->loc_FogHeightFade              = qglGetUniformLocation(p->program, "FogHeightFade");
1211                 p->loc_FogPlane                   = qglGetUniformLocation(p->program, "FogPlane");
1212                 p->loc_FogPlaneViewDist           = qglGetUniformLocation(p->program, "FogPlaneViewDist");
1213                 p->loc_FogRangeRecip              = qglGetUniformLocation(p->program, "FogRangeRecip");
1214                 p->loc_LightColor                 = qglGetUniformLocation(p->program, "LightColor");
1215                 p->loc_LightGridMatrix            = qglGetUniformLocation(p->program, "LightGridMatrix");
1216                 p->loc_LightGridNormalMatrix      = qglGetUniformLocation(p->program, "LightGridNormalMatrix");
1217                 p->loc_LightDir                   = qglGetUniformLocation(p->program, "LightDir");
1218                 p->loc_LightPosition              = qglGetUniformLocation(p->program, "LightPosition");
1219                 p->loc_OffsetMapping_ScaleSteps   = qglGetUniformLocation(p->program, "OffsetMapping_ScaleSteps");
1220                 p->loc_OffsetMapping_LodDistance  = qglGetUniformLocation(p->program, "OffsetMapping_LodDistance");
1221                 p->loc_OffsetMapping_Bias         = qglGetUniformLocation(p->program, "OffsetMapping_Bias");
1222                 p->loc_PixelSize                  = qglGetUniformLocation(p->program, "PixelSize");
1223                 p->loc_ReflectColor               = qglGetUniformLocation(p->program, "ReflectColor");
1224                 p->loc_ReflectFactor              = qglGetUniformLocation(p->program, "ReflectFactor");
1225                 p->loc_ReflectOffset              = qglGetUniformLocation(p->program, "ReflectOffset");
1226                 p->loc_RefractColor               = qglGetUniformLocation(p->program, "RefractColor");
1227                 p->loc_Saturation                 = qglGetUniformLocation(p->program, "Saturation");
1228                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocation(p->program, "ScreenCenterRefractReflect");
1229                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocation(p->program, "ScreenScaleRefractReflect");
1230                 p->loc_ScreenToDepth              = qglGetUniformLocation(p->program, "ScreenToDepth");
1231                 p->loc_ShadowMap_Parameters       = qglGetUniformLocation(p->program, "ShadowMap_Parameters");
1232                 p->loc_ShadowMap_TextureScale     = qglGetUniformLocation(p->program, "ShadowMap_TextureScale");
1233                 p->loc_SpecularPower              = qglGetUniformLocation(p->program, "SpecularPower");
1234                 p->loc_UserVec1                   = qglGetUniformLocation(p->program, "UserVec1");
1235                 p->loc_UserVec2                   = qglGetUniformLocation(p->program, "UserVec2");
1236                 p->loc_UserVec3                   = qglGetUniformLocation(p->program, "UserVec3");
1237                 p->loc_UserVec4                   = qglGetUniformLocation(p->program, "UserVec4");
1238                 p->loc_ColorFringe                = qglGetUniformLocation(p->program, "ColorFringe");
1239                 p->loc_ViewTintColor              = qglGetUniformLocation(p->program, "ViewTintColor");
1240                 p->loc_ViewToLight                = qglGetUniformLocation(p->program, "ViewToLight");
1241                 p->loc_ModelToLight               = qglGetUniformLocation(p->program, "ModelToLight");
1242                 p->loc_TexMatrix                  = qglGetUniformLocation(p->program, "TexMatrix");
1243                 p->loc_BackgroundTexMatrix        = qglGetUniformLocation(p->program, "BackgroundTexMatrix");
1244                 p->loc_ModelViewMatrix            = qglGetUniformLocation(p->program, "ModelViewMatrix");
1245                 p->loc_ModelViewProjectionMatrix  = qglGetUniformLocation(p->program, "ModelViewProjectionMatrix");
1246                 p->loc_PixelToScreenTexCoord      = qglGetUniformLocation(p->program, "PixelToScreenTexCoord");
1247                 p->loc_ModelToReflectCube         = qglGetUniformLocation(p->program, "ModelToReflectCube");
1248                 p->loc_ShadowMapMatrix            = qglGetUniformLocation(p->program, "ShadowMapMatrix");
1249                 p->loc_BloomColorSubtract         = qglGetUniformLocation(p->program, "BloomColorSubtract");
1250                 p->loc_NormalmapScrollBlend       = qglGetUniformLocation(p->program, "NormalmapScrollBlend");
1251                 p->loc_BounceGridMatrix           = qglGetUniformLocation(p->program, "BounceGridMatrix");
1252                 p->loc_BounceGridIntensity        = qglGetUniformLocation(p->program, "BounceGridIntensity");
1253                 // initialize the samplers to refer to the texture units we use
1254                 p->tex_Texture_First = -1;
1255                 p->tex_Texture_Second = -1;
1256                 p->tex_Texture_GammaRamps = -1;
1257                 p->tex_Texture_Normal = -1;
1258                 p->tex_Texture_Color = -1;
1259                 p->tex_Texture_Gloss = -1;
1260                 p->tex_Texture_Glow = -1;
1261                 p->tex_Texture_SecondaryNormal = -1;
1262                 p->tex_Texture_SecondaryColor = -1;
1263                 p->tex_Texture_SecondaryGloss = -1;
1264                 p->tex_Texture_SecondaryGlow = -1;
1265                 p->tex_Texture_Pants = -1;
1266                 p->tex_Texture_Shirt = -1;
1267                 p->tex_Texture_FogHeightTexture = -1;
1268                 p->tex_Texture_FogMask = -1;
1269                 p->tex_Texture_LightGrid = -1;
1270                 p->tex_Texture_Lightmap = -1;
1271                 p->tex_Texture_Deluxemap = -1;
1272                 p->tex_Texture_Attenuation = -1;
1273                 p->tex_Texture_Cube = -1;
1274                 p->tex_Texture_Refraction = -1;
1275                 p->tex_Texture_Reflection = -1;
1276                 p->tex_Texture_ShadowMap2D = -1;
1277                 p->tex_Texture_CubeProjection = -1;
1278                 p->tex_Texture_ScreenNormalMap = -1;
1279                 p->tex_Texture_ScreenDiffuse = -1;
1280                 p->tex_Texture_ScreenSpecular = -1;
1281                 p->tex_Texture_ReflectMask = -1;
1282                 p->tex_Texture_ReflectCube = -1;
1283                 p->tex_Texture_BounceGrid = -1;
1284                 // bind the texture samplers in use
1285                 sampler = 0;
1286                 if (p->loc_Texture_First           >= 0) {p->tex_Texture_First            = sampler;qglUniform1i(p->loc_Texture_First           , sampler);sampler++;}
1287                 if (p->loc_Texture_Second          >= 0) {p->tex_Texture_Second           = sampler;qglUniform1i(p->loc_Texture_Second          , sampler);sampler++;}
1288                 if (p->loc_Texture_GammaRamps      >= 0) {p->tex_Texture_GammaRamps       = sampler;qglUniform1i(p->loc_Texture_GammaRamps      , sampler);sampler++;}
1289                 if (p->loc_Texture_Normal          >= 0) {p->tex_Texture_Normal           = sampler;qglUniform1i(p->loc_Texture_Normal          , sampler);sampler++;}
1290                 if (p->loc_Texture_Color           >= 0) {p->tex_Texture_Color            = sampler;qglUniform1i(p->loc_Texture_Color           , sampler);sampler++;}
1291                 if (p->loc_Texture_Gloss           >= 0) {p->tex_Texture_Gloss            = sampler;qglUniform1i(p->loc_Texture_Gloss           , sampler);sampler++;}
1292                 if (p->loc_Texture_Glow            >= 0) {p->tex_Texture_Glow             = sampler;qglUniform1i(p->loc_Texture_Glow            , sampler);sampler++;}
1293                 if (p->loc_Texture_SecondaryNormal >= 0) {p->tex_Texture_SecondaryNormal  = sampler;qglUniform1i(p->loc_Texture_SecondaryNormal , sampler);sampler++;}
1294                 if (p->loc_Texture_SecondaryColor  >= 0) {p->tex_Texture_SecondaryColor   = sampler;qglUniform1i(p->loc_Texture_SecondaryColor  , sampler);sampler++;}
1295                 if (p->loc_Texture_SecondaryGloss  >= 0) {p->tex_Texture_SecondaryGloss   = sampler;qglUniform1i(p->loc_Texture_SecondaryGloss  , sampler);sampler++;}
1296                 if (p->loc_Texture_SecondaryGlow   >= 0) {p->tex_Texture_SecondaryGlow    = sampler;qglUniform1i(p->loc_Texture_SecondaryGlow   , sampler);sampler++;}
1297                 if (p->loc_Texture_Pants           >= 0) {p->tex_Texture_Pants            = sampler;qglUniform1i(p->loc_Texture_Pants           , sampler);sampler++;}
1298                 if (p->loc_Texture_Shirt           >= 0) {p->tex_Texture_Shirt            = sampler;qglUniform1i(p->loc_Texture_Shirt           , sampler);sampler++;}
1299                 if (p->loc_Texture_FogHeightTexture>= 0) {p->tex_Texture_FogHeightTexture = sampler;qglUniform1i(p->loc_Texture_FogHeightTexture, sampler);sampler++;}
1300                 if (p->loc_Texture_FogMask         >= 0) {p->tex_Texture_FogMask          = sampler;qglUniform1i(p->loc_Texture_FogMask         , sampler);sampler++;}
1301                 if (p->loc_Texture_LightGrid       >= 0) {p->tex_Texture_LightGrid        = sampler;qglUniform1i(p->loc_Texture_LightGrid       , sampler);sampler++;}
1302                 if (p->loc_Texture_Lightmap        >= 0) {p->tex_Texture_Lightmap         = sampler;qglUniform1i(p->loc_Texture_Lightmap        , sampler);sampler++;}
1303                 if (p->loc_Texture_Deluxemap       >= 0) {p->tex_Texture_Deluxemap        = sampler;qglUniform1i(p->loc_Texture_Deluxemap       , sampler);sampler++;}
1304                 if (p->loc_Texture_Attenuation     >= 0) {p->tex_Texture_Attenuation      = sampler;qglUniform1i(p->loc_Texture_Attenuation     , sampler);sampler++;}
1305                 if (p->loc_Texture_Cube            >= 0) {p->tex_Texture_Cube             = sampler;qglUniform1i(p->loc_Texture_Cube            , sampler);sampler++;}
1306                 if (p->loc_Texture_Refraction      >= 0) {p->tex_Texture_Refraction       = sampler;qglUniform1i(p->loc_Texture_Refraction      , sampler);sampler++;}
1307                 if (p->loc_Texture_Reflection      >= 0) {p->tex_Texture_Reflection       = sampler;qglUniform1i(p->loc_Texture_Reflection      , sampler);sampler++;}
1308                 if (p->loc_Texture_ShadowMap2D     >= 0) {p->tex_Texture_ShadowMap2D      = sampler;qglUniform1i(p->loc_Texture_ShadowMap2D     , sampler);sampler++;}
1309                 if (p->loc_Texture_CubeProjection  >= 0) {p->tex_Texture_CubeProjection   = sampler;qglUniform1i(p->loc_Texture_CubeProjection  , sampler);sampler++;}
1310                 if (p->loc_Texture_ScreenNormalMap >= 0) {p->tex_Texture_ScreenNormalMap  = sampler;qglUniform1i(p->loc_Texture_ScreenNormalMap , sampler);sampler++;}
1311                 if (p->loc_Texture_ScreenDiffuse   >= 0) {p->tex_Texture_ScreenDiffuse    = sampler;qglUniform1i(p->loc_Texture_ScreenDiffuse   , sampler);sampler++;}
1312                 if (p->loc_Texture_ScreenSpecular  >= 0) {p->tex_Texture_ScreenSpecular   = sampler;qglUniform1i(p->loc_Texture_ScreenSpecular  , sampler);sampler++;}
1313                 if (p->loc_Texture_ReflectMask     >= 0) {p->tex_Texture_ReflectMask      = sampler;qglUniform1i(p->loc_Texture_ReflectMask     , sampler);sampler++;}
1314                 if (p->loc_Texture_ReflectCube     >= 0) {p->tex_Texture_ReflectCube      = sampler;qglUniform1i(p->loc_Texture_ReflectCube     , sampler);sampler++;}
1315                 if (p->loc_Texture_BounceGrid      >= 0) {p->tex_Texture_BounceGrid       = sampler;qglUniform1i(p->loc_Texture_BounceGrid      , sampler);sampler++;}
1316                 // get the uniform block indices so we can bind them
1317                 p->ubiloc_Skeletal_Transform12_UniformBlock = -1;
1318 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1319                 p->ubiloc_Skeletal_Transform12_UniformBlock = qglGetUniformBlockIndex(p->program, "Skeletal_Transform12_UniformBlock");
1320 #endif
1321                 // clear the uniform block bindings
1322                 p->ubibind_Skeletal_Transform12_UniformBlock = -1;
1323                 // bind the uniform blocks in use
1324                 ubibind = 0;
1325 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1326                 if (p->ubiloc_Skeletal_Transform12_UniformBlock >= 0) {p->ubibind_Skeletal_Transform12_UniformBlock = ubibind;qglUniformBlockBinding(p->program, p->ubiloc_Skeletal_Transform12_UniformBlock, ubibind);ubibind++;}
1327 #endif
1328                 // we're done compiling and setting up the shader, at least until it is used
1329                 CHECKGLERROR
1330                 Con_DPrintf("^5GLSL shader %s compiled (%i textures).\n", permutationname, sampler);
1331         }
1332         else
1333                 Con_Printf("^1GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1334
1335         // free the strings
1336         if (sourcestring)
1337                 Mem_Free(sourcestring);
1338 }
1339
1340 static void R_SetupShader_SetPermutationGLSL(unsigned int mode, uint64_t permutation)
1341 {
1342         r_glsl_permutation_t *perm = R_GLSL_FindPermutation(mode, permutation);
1343         if (r_glsl_permutation != perm)
1344         {
1345                 r_glsl_permutation = perm;
1346                 if (!r_glsl_permutation->program)
1347                 {
1348                         if (!r_glsl_permutation->compiled)
1349                         {
1350                                 Con_DPrintf("Compiling shader mode %u permutation %" PRIx64 "\n", mode, permutation);
1351                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1352                         }
1353                         if (!r_glsl_permutation->program)
1354                         {
1355                                 // remove features until we find a valid permutation
1356                                 int i;
1357                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1358                                 {
1359                                         // reduce i more quickly whenever it would not remove any bits
1360                                         uint64_t j = 1ll<<(SHADERPERMUTATION_COUNT-1-i);
1361                                         if (!(permutation & j))
1362                                                 continue;
1363                                         permutation -= j;
1364                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1365                                         if (!r_glsl_permutation->compiled)
1366                                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1367                                         if (r_glsl_permutation->program)
1368                                                 break;
1369                                 }
1370                                 if (i >= SHADERPERMUTATION_COUNT)
1371                                 {
1372                                         //Con_Printf("Could not find a working OpenGL 2.0 shader for permutation %s %s\n", shadermodeinfo[mode].filename, shadermodeinfo[mode].pretext);
1373                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1374                                         qglUseProgram(0);CHECKGLERROR
1375                                         return; // no bit left to clear, entire mode is broken
1376                                 }
1377                         }
1378                 }
1379                 CHECKGLERROR
1380                 qglUseProgram(r_glsl_permutation->program);CHECKGLERROR
1381         }
1382         if (r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
1383         if (r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
1384         if (r_glsl_permutation->loc_ClientTime >= 0) qglUniform1f(r_glsl_permutation->loc_ClientTime, cl.time);
1385         CHECKGLERROR
1386 }
1387
1388 void R_GLSL_Restart_f(cmd_state_t *cmd)
1389 {
1390         unsigned int i, limit;
1391         switch(vid.renderpath)
1392         {
1393         case RENDERPATH_GL32:
1394         case RENDERPATH_GLES2:
1395                 {
1396                         r_glsl_permutation_t *p;
1397                         r_glsl_permutation = NULL;
1398                         limit = (unsigned int)Mem_ExpandableArray_IndexRange(&r_glsl_permutationarray);
1399                         for (i = 0;i < limit;i++)
1400                         {
1401                                 if ((p = (r_glsl_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_glsl_permutationarray, i)))
1402                                 {
1403                                         GL_Backend_FreeProgram(p->program);
1404                                         Mem_ExpandableArray_FreeRecord(&r_glsl_permutationarray, (void*)p);
1405                                 }
1406                         }
1407                         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
1408                 }
1409                 break;
1410         }
1411 }
1412
1413 static void R_GLSL_DumpShader_f(cmd_state_t *cmd)
1414 {
1415         int i, language, mode, dupe;
1416         char *text;
1417         shadermodeinfo_t *modeinfo;
1418         qfile_t *file;
1419
1420         for (language = 0;language < SHADERLANGUAGE_COUNT;language++)
1421         {
1422                 modeinfo = shadermodeinfo[language];
1423                 for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1424                 {
1425                         // don't dump the same file multiple times (most or all shaders come from the same file)
1426                         for (dupe = mode - 1;dupe >= 0;dupe--)
1427                                 if (!strcmp(modeinfo[mode].filename, modeinfo[dupe].filename))
1428                                         break;
1429                         if (dupe >= 0)
1430                                 continue;
1431                         text = modeinfo[mode].builtinstring;
1432                         if (!text)
1433                                 continue;
1434                         file = FS_OpenRealFile(modeinfo[mode].filename, "w", false);
1435                         if (file)
1436                         {
1437                                 FS_Print(file, "/* The engine may define the following macros:\n");
1438                                 FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n");
1439                                 for (i = 0;i < SHADERMODE_COUNT;i++)
1440                                         FS_Print(file, modeinfo[i].pretext);
1441                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1442                                         FS_Print(file, shaderpermutationinfo[i].pretext);
1443                                 FS_Print(file, "*/\n");
1444                                 FS_Print(file, text);
1445                                 FS_Close(file);
1446                                 Con_Printf("%s written\n", modeinfo[mode].filename);
1447                         }
1448                         else
1449                                 Con_Printf(CON_ERROR "failed to write to %s\n", modeinfo[mode].filename);
1450                 }
1451         }
1452 }
1453
1454 void R_SetupShader_Generic(rtexture_t *t, qbool usegamma, qbool notrippy, qbool suppresstexalpha)
1455 {
1456         uint64_t permutation = 0;
1457         if (r_trippy.integer && !notrippy)
1458                 permutation |= SHADERPERMUTATION_TRIPPY;
1459         permutation |= SHADERPERMUTATION_VIEWTINT;
1460         if (t)
1461                 permutation |= SHADERPERMUTATION_DIFFUSE;
1462         if (usegamma && v_glslgamma_2d.integer && !vid.sRGB2D && r_texture_gammaramps && !vid_gammatables_trivial)
1463                 permutation |= SHADERPERMUTATION_GAMMARAMPS;
1464         if (suppresstexalpha)
1465                 permutation |= SHADERPERMUTATION_REFLECTCUBE;
1466         if (vid.allowalphatocoverage)
1467                 GL_AlphaToCoverage(false);
1468         switch (vid.renderpath)
1469         {
1470         case RENDERPATH_GL32:
1471         case RENDERPATH_GLES2:
1472                 R_SetupShader_SetPermutationGLSL(SHADERMODE_GENERIC, permutation);
1473                 if (r_glsl_permutation->tex_Texture_First >= 0)
1474                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First, t);
1475                 if (r_glsl_permutation->tex_Texture_GammaRamps >= 0)
1476                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps);
1477                 break;
1478         }
1479 }
1480
1481 void R_SetupShader_Generic_NoTexture(qbool usegamma, qbool notrippy)
1482 {
1483         R_SetupShader_Generic(NULL, usegamma, notrippy, false);
1484 }
1485
1486 void R_SetupShader_DepthOrShadow(qbool notrippy, qbool depthrgb, qbool skeletal)
1487 {
1488         uint64_t permutation = 0;
1489         if (r_trippy.integer && !notrippy)
1490                 permutation |= SHADERPERMUTATION_TRIPPY;
1491         if (depthrgb)
1492                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1493         if (skeletal)
1494                 permutation |= SHADERPERMUTATION_SKELETAL;
1495
1496         if (vid.allowalphatocoverage)
1497                 GL_AlphaToCoverage(false);
1498         switch (vid.renderpath)
1499         {
1500         case RENDERPATH_GL32:
1501         case RENDERPATH_GLES2:
1502                 R_SetupShader_SetPermutationGLSL(SHADERMODE_DEPTH_OR_SHADOW, permutation);
1503 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1504                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1505 #endif
1506                 break;
1507         }
1508 }
1509
1510 #define BLENDFUNC_ALLOWS_COLORMOD      1
1511 #define BLENDFUNC_ALLOWS_FOG           2
1512 #define BLENDFUNC_ALLOWS_FOG_HACK0     4
1513 #define BLENDFUNC_ALLOWS_FOG_HACKALPHA 8
1514 #define BLENDFUNC_ALLOWS_ANYFOG        (BLENDFUNC_ALLOWS_FOG | BLENDFUNC_ALLOWS_FOG_HACK0 | BLENDFUNC_ALLOWS_FOG_HACKALPHA)
1515 static int R_BlendFuncFlags(int src, int dst)
1516 {
1517         int r = 0;
1518
1519         // a blendfunc allows colormod if:
1520         // a) it can never keep the destination pixel invariant, or
1521         // b) it can keep the destination pixel invariant, and still can do so if colormodded
1522         // this is to prevent unintended side effects from colormod
1523
1524         // a blendfunc allows fog if:
1525         // blend(fog(src), fog(dst)) == fog(blend(src, dst))
1526         // this is to prevent unintended side effects from fog
1527
1528         // these checks are the output of fogeval.pl
1529
1530         r |= BLENDFUNC_ALLOWS_COLORMOD;
1531         if(src == GL_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1532         if(src == GL_DST_ALPHA && dst == GL_ONE_MINUS_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1533         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1534         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1535         if(src == GL_DST_COLOR && dst == GL_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1536         if(src == GL_DST_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1537         if(src == GL_DST_COLOR && dst == GL_ZERO) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1538         if(src == GL_ONE && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1539         if(src == GL_ONE && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG_HACKALPHA;
1540         if(src == GL_ONE && dst == GL_ZERO) r |= BLENDFUNC_ALLOWS_FOG;
1541         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1542         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1543         if(src == GL_ONE_MINUS_DST_COLOR && dst == GL_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1544         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1545         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1546         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1547         if(src == GL_ONE_MINUS_SRC_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1548         if(src == GL_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1549         if(src == GL_SRC_ALPHA && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1550         if(src == GL_ZERO && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG;
1551         if(src == GL_ZERO && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1552
1553         return r;
1554 }
1555
1556 void R_SetupShader_Surface(const float rtlightambient[3], const float rtlightdiffuse[3], const float rtlightspecular[3], rsurfacepass_t rsurfacepass, int texturenumsurfaces, const msurface_t **texturesurfacelist, void *surfacewaterplane, qbool notrippy)
1557 {
1558         // select a permutation of the lighting shader appropriate to this
1559         // combination of texture, entity, light source, and fogging, only use the
1560         // minimum features necessary to avoid wasting rendering time in the
1561         // fragment shader on features that are not being used
1562         uint64_t permutation = 0;
1563         unsigned int mode = 0;
1564         int blendfuncflags;
1565         texture_t *t = rsurface.texture;
1566         float m16f[16];
1567         matrix4x4_t tempmatrix;
1568         r_waterstate_waterplane_t *waterplane = (r_waterstate_waterplane_t *)surfacewaterplane;
1569         if (r_trippy.integer && !notrippy)
1570                 permutation |= SHADERPERMUTATION_TRIPPY;
1571         if (t->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1572                 permutation |= SHADERPERMUTATION_ALPHAKILL;
1573         if (t->currentmaterialflags & MATERIALFLAG_OCCLUDE)
1574                 permutation |= SHADERPERMUTATION_OCCLUDE;
1575         if (t->r_water_waterscroll[0] && t->r_water_waterscroll[1])
1576                 permutation |= SHADERPERMUTATION_NORMALMAPSCROLLBLEND; // todo: make generic
1577         if (rsurfacepass == RSURFPASS_BACKGROUND)
1578         {
1579                 // distorted background
1580                 if (t->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1581                 {
1582                         mode = SHADERMODE_WATER;
1583                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1584                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1585                         if((r_wateralpha.value < 1) && (t->currentmaterialflags & MATERIALFLAG_WATERALPHA))
1586                         {
1587                                 // this is the right thing to do for wateralpha
1588                                 GL_BlendFunc(GL_ONE, GL_ZERO);
1589                                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1590                         }
1591                         else
1592                         {
1593                                 // this is the right thing to do for entity alpha
1594                                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1595                                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1596                         }
1597                 }
1598                 else if (t->currentmaterialflags & MATERIALFLAG_REFRACTION)
1599                 {
1600                         mode = SHADERMODE_REFRACTION;
1601                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1602                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1603                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1604                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1605                 }
1606                 else
1607                 {
1608                         mode = SHADERMODE_GENERIC;
1609                         permutation |= SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_ALPHAKILL;
1610                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1611                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1612                 }
1613                 if (vid.allowalphatocoverage)
1614                         GL_AlphaToCoverage(false);
1615         }
1616         else if (rsurfacepass == RSURFPASS_DEFERREDGEOMETRY)
1617         {
1618                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1619                 {
1620                         switch(t->offsetmapping)
1621                         {
1622                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1623                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1624                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1625                         case OFFSETMAPPING_OFF: break;
1626                         }
1627                 }
1628                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1629                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1630                 // normalmap (deferred prepass), may use alpha test on diffuse
1631                 mode = SHADERMODE_DEFERREDGEOMETRY;
1632                 GL_BlendFunc(GL_ONE, GL_ZERO);
1633                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1634                 if (vid.allowalphatocoverage)
1635                         GL_AlphaToCoverage(false);
1636         }
1637         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1638         {
1639                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1640                 {
1641                         switch(t->offsetmapping)
1642                         {
1643                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1644                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1645                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1646                         case OFFSETMAPPING_OFF: break;
1647                         }
1648                 }
1649                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1650                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1651                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1652                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1653                 // light source
1654                 mode = SHADERMODE_LIGHTSOURCE;
1655                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1656                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1657                 if (VectorLength2(rtlightdiffuse) > 0)
1658                         permutation |= SHADERPERMUTATION_DIFFUSE;
1659                 if (VectorLength2(rtlightspecular) > 0)
1660                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1661                 if (r_refdef.fogenabled)
1662                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1663                 if (t->colormapping)
1664                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1665                 if (r_shadow_usingshadowmap2d)
1666                 {
1667                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1668                         if(r_shadow_shadowmapvsdct)
1669                                 permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
1670
1671                         if (r_shadow_shadowmap2ddepthbuffer)
1672                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1673                 }
1674                 if (t->reflectmasktexture)
1675                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1676                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1677                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE);
1678                 if (vid.allowalphatocoverage)
1679                         GL_AlphaToCoverage(false);
1680         }
1681         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
1682         {
1683                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1684                 {
1685                         switch(t->offsetmapping)
1686                         {
1687                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1688                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1689                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1690                         case OFFSETMAPPING_OFF: break;
1691                         }
1692                 }
1693                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1694                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1695                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1696                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1697                 // directional model lighting
1698                 mode = SHADERMODE_LIGHTGRID;
1699                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1700                         permutation |= SHADERPERMUTATION_GLOW;
1701                 permutation |= SHADERPERMUTATION_DIFFUSE;
1702                 if (t->glosstexture || t->backgroundglosstexture)
1703                         permutation |= SHADERPERMUTATION_SPECULAR;
1704                 if (r_refdef.fogenabled)
1705                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1706                 if (t->colormapping)
1707                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1708                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1709                 {
1710                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1711                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1712
1713                         if (r_shadow_shadowmap2ddepthbuffer)
1714                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1715                 }
1716                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1717                         permutation |= SHADERPERMUTATION_REFLECTION;
1718                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1719                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1720                 if (t->reflectmasktexture)
1721                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1722                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1723                 {
1724                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1725                         if (r_shadow_bouncegrid_state.directional)
1726                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1727                 }
1728                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1729                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1730                 // when using alphatocoverage, we don't need alphakill
1731                 if (vid.allowalphatocoverage)
1732                 {
1733                         if (r_transparent_alphatocoverage.integer)
1734                         {
1735                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1736                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1737                         }
1738                         else
1739                                 GL_AlphaToCoverage(false);
1740                 }
1741         }
1742         else if (t->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1743         {
1744                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1745                 {
1746                         switch(t->offsetmapping)
1747                         {
1748                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1749                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1750                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1751                         case OFFSETMAPPING_OFF: break;
1752                         }
1753                 }
1754                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1755                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1756                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1757                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1758                 // directional model lighting
1759                 mode = SHADERMODE_LIGHTDIRECTION;
1760                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1761                         permutation |= SHADERPERMUTATION_GLOW;
1762                 if (VectorLength2(t->render_modellight_diffuse))
1763                         permutation |= SHADERPERMUTATION_DIFFUSE;
1764                 if (VectorLength2(t->render_modellight_specular) > 0)
1765                         permutation |= SHADERPERMUTATION_SPECULAR;
1766                 if (r_refdef.fogenabled)
1767                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1768                 if (t->colormapping)
1769                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1770                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1771                 {
1772                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1773                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1774
1775                         if (r_shadow_shadowmap2ddepthbuffer)
1776                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1777                 }
1778                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1779                         permutation |= SHADERPERMUTATION_REFLECTION;
1780                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1781                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1782                 if (t->reflectmasktexture)
1783                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1784                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1785                 {
1786                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1787                         if (r_shadow_bouncegrid_state.directional)
1788                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1789                 }
1790                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1791                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1792                 // when using alphatocoverage, we don't need alphakill
1793                 if (vid.allowalphatocoverage)
1794                 {
1795                         if (r_transparent_alphatocoverage.integer)
1796                         {
1797                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1798                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1799                         }
1800                         else
1801                                 GL_AlphaToCoverage(false);
1802                 }
1803         }
1804         else
1805         {
1806                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1807                 {
1808                         switch(t->offsetmapping)
1809                         {
1810                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1811                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1812                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1813                         case OFFSETMAPPING_OFF: break;
1814                         }
1815                 }
1816                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1817                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1818                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1819                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1820                 // lightmapped wall
1821                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1822                         permutation |= SHADERPERMUTATION_GLOW;
1823                 if (r_refdef.fogenabled && !notrippy)
1824                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1825                 if (t->colormapping)
1826                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1827                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1828                 {
1829                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1830                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1831
1832                         if (r_shadow_shadowmap2ddepthbuffer)
1833                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1834                 }
1835                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1836                         permutation |= SHADERPERMUTATION_REFLECTION;
1837                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1838                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1839                 if (t->reflectmasktexture)
1840                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1841                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1842                 {
1843                         // deluxemapping (light direction texture)
1844                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1845                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1846                         else
1847                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1848                         permutation |= SHADERPERMUTATION_DIFFUSE;
1849                         if (VectorLength2(t->render_lightmap_specular) > 0)
1850                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1851                 }
1852                 else if (r_glsl_deluxemapping.integer >= 2)
1853                 {
1854                         // fake deluxemapping (uniform light direction in tangentspace)
1855                         if (rsurface.uselightmaptexture)
1856                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP;
1857                         else
1858                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR;
1859                         permutation |= SHADERPERMUTATION_DIFFUSE;
1860                         if (VectorLength2(t->render_lightmap_specular) > 0)
1861                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1862                 }
1863                 else if (rsurface.uselightmaptexture)
1864                 {
1865                         // ordinary lightmapping (q1bsp, q3bsp)
1866                         mode = SHADERMODE_LIGHTMAP;
1867                 }
1868                 else
1869                 {
1870                         // ordinary vertex coloring (q3bsp)
1871                         mode = SHADERMODE_VERTEXCOLOR;
1872                 }
1873                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1874                 {
1875                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1876                         if (r_shadow_bouncegrid_state.directional)
1877                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1878                 }
1879                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1880                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1881                 // when using alphatocoverage, we don't need alphakill
1882                 if (vid.allowalphatocoverage)
1883                 {
1884                         if (r_transparent_alphatocoverage.integer)
1885                         {
1886                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1887                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1888                         }
1889                         else
1890                                 GL_AlphaToCoverage(false);
1891                 }
1892         }
1893         if(!(blendfuncflags & BLENDFUNC_ALLOWS_ANYFOG))
1894                 permutation &= ~(SHADERPERMUTATION_FOGHEIGHTTEXTURE | SHADERPERMUTATION_FOGOUTSIDE | SHADERPERMUTATION_FOGINSIDE);
1895         if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACKALPHA && !notrippy)
1896                 permutation |= SHADERPERMUTATION_FOGALPHAHACK;
1897         switch(vid.renderpath)
1898         {
1899         case RENDERPATH_GL32:
1900         case RENDERPATH_GLES2:
1901                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_ARRAY_LIGHTMAP : 0) | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
1902                 RSurf_UploadBuffersForBatch();
1903                 // this has to be after RSurf_PrepareVerticesForBatch
1904                 if (rsurface.batchskeletaltransform3x4buffer)
1905                         permutation |= SHADERPERMUTATION_SKELETAL;
1906                 R_SetupShader_SetPermutationGLSL(mode, permutation);
1907 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1908                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1909 #endif
1910                 if (r_glsl_permutation->loc_ModelToReflectCube >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToReflectCube, 1, false, m16f);}
1911                 if (mode == SHADERMODE_LIGHTSOURCE)
1912                 {
1913                         if (r_glsl_permutation->loc_ModelToLight >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToLight, 1, false, m16f);}
1914                         if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3f(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1915                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1916                         if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, rtlightambient[0], rtlightambient[1], rtlightambient[2]);
1917                         if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, rtlightdiffuse[0], rtlightdiffuse[1], rtlightdiffuse[2]);
1918                         if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, rtlightspecular[0], rtlightspecular[1], rtlightspecular[2]);
1919         
1920                         // additive passes are only darkened by fog, not tinted
1921                         if (r_glsl_permutation->loc_FogColor >= 0)
1922                                 qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1923                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1924                 }
1925                 else
1926                 {
1927                         if (mode == SHADERMODE_FLATCOLOR)
1928                         {
1929                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1930                         }
1931                         else if (mode == SHADERMODE_LIGHTGRID)
1932                         {
1933                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1934                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1935                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1936                                 // other LightGrid uniforms handled below
1937                         }
1938                         else if (mode == SHADERMODE_LIGHTDIRECTION)
1939                         {
1940                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1941                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_modellight_diffuse[0], t->render_modellight_diffuse[1], t->render_modellight_diffuse[2]);
1942                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_modellight_specular[0], t->render_modellight_specular[1], t->render_modellight_specular[2]);
1943                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1944                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1945                                 if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1946                                 if (r_glsl_permutation->loc_LightDir >= 0) qglUniform3f(r_glsl_permutation->loc_LightDir, t->render_modellight_lightdir_local[0], t->render_modellight_lightdir_local[1], t->render_modellight_lightdir_local[2]);
1947                         }
1948                         else
1949                         {
1950                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1951                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1952                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1953                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1954                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1955                         }
1956                         // additive passes are only darkened by fog, not tinted
1957                         if (r_glsl_permutation->loc_FogColor >= 0 && !notrippy)
1958                         {
1959                                 if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACK0)
1960                                         qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1961                                 else
1962                                         qglUniform3f(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1963                         }
1964                         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * t->refractfactor, r_water_refractdistort.value * t->refractfactor, r_water_reflectdistort.value * t->reflectfactor, r_water_reflectdistort.value * t->reflectfactor);
1965                         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_fb.water.screenscale[0], r_fb.water.screenscale[1], r_fb.water.screenscale[0], r_fb.water.screenscale[1]);
1966                         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_fb.water.screencenter[0], r_fb.water.screencenter[1], r_fb.water.screencenter[0], r_fb.water.screencenter[1]);
1967                         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4f(r_glsl_permutation->loc_RefractColor, t->refractcolor4f[0], t->refractcolor4f[1], t->refractcolor4f[2], t->refractcolor4f[3] * t->currentalpha);
1968                         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4f(r_glsl_permutation->loc_ReflectColor, t->reflectcolor4f[0], t->reflectcolor4f[1], t->reflectcolor4f[2], t->reflectcolor4f[3] * t->currentalpha);
1969                         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectFactor, t->reflectmax - t->reflectmin);
1970                         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectOffset, t->reflectmin);
1971                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1972                         if (r_glsl_permutation->loc_NormalmapScrollBlend >= 0) qglUniform2f(r_glsl_permutation->loc_NormalmapScrollBlend, t->r_water_waterscroll[0], t->r_water_waterscroll[1]);
1973                 }
1974                 if (r_glsl_permutation->loc_TexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currenttexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_TexMatrix, 1, false, m16f);}
1975                 if (r_glsl_permutation->loc_BackgroundTexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currentbackgroundtexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BackgroundTexMatrix, 1, false, m16f);}
1976                 if (r_glsl_permutation->loc_ShadowMapMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ShadowMapMatrix, 1, false, m16f);}
1977                 if (permutation & SHADERPERMUTATION_SHADOWMAPORTHO)
1978                 {
1979                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_modelshadowmap_texturescale[0], r_shadow_modelshadowmap_texturescale[1], r_shadow_modelshadowmap_texturescale[2], r_shadow_modelshadowmap_texturescale[3]);
1980                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_modelshadowmap_parameters[0], r_shadow_modelshadowmap_parameters[1], r_shadow_modelshadowmap_parameters[2], r_shadow_modelshadowmap_parameters[3]);
1981                 }
1982                 else
1983                 {
1984                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
1985                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
1986                 }
1987
1988                 if (r_glsl_permutation->loc_Color_Glow >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Glow, t->render_glowmod[0], t->render_glowmod[1], t->render_glowmod[2]);
1989                 if (r_glsl_permutation->loc_Alpha >= 0) qglUniform1f(r_glsl_permutation->loc_Alpha, t->currentalpha * ((t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay) ? t->r_water_wateralpha : 1));
1990                 if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3f(r_glsl_permutation->loc_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]);
1991                 if (r_glsl_permutation->loc_Color_Pants >= 0)
1992                 {
1993                         if (t->pantstexture)
1994                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, t->render_colormap_pants[0], t->render_colormap_pants[1], t->render_colormap_pants[2]);
1995                         else
1996                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1997                 }
1998                 if (r_glsl_permutation->loc_Color_Shirt >= 0)
1999                 {
2000                         if (t->shirttexture)
2001                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, t->render_colormap_shirt[0], t->render_colormap_shirt[1], t->render_colormap_shirt[2]);
2002                         else
2003                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
2004                 }
2005                 if (r_glsl_permutation->loc_FogPlane >= 0) qglUniform4f(r_glsl_permutation->loc_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]);
2006                 if (r_glsl_permutation->loc_FogPlaneViewDist >= 0) qglUniform1f(r_glsl_permutation->loc_FogPlaneViewDist, rsurface.fogplaneviewdist);
2007                 if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1f(r_glsl_permutation->loc_FogRangeRecip, rsurface.fograngerecip);
2008                 if (r_glsl_permutation->loc_FogHeightFade >= 0) qglUniform1f(r_glsl_permutation->loc_FogHeightFade, rsurface.fogheightfade);
2009                 if (r_glsl_permutation->loc_OffsetMapping_ScaleSteps >= 0) qglUniform4f(r_glsl_permutation->loc_OffsetMapping_ScaleSteps,
2010                                 r_glsl_offsetmapping_scale.value*t->offsetscale,
2011                                 max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2012                                 1.0 / max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2013                                 max(1, r_glsl_offsetmapping_reliefmapping_refinesteps.integer)
2014                         );
2015                 if (r_glsl_permutation->loc_OffsetMapping_LodDistance >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_LodDistance, r_glsl_offsetmapping_lod_distance.integer * r_refdef.view.quality);
2016                 if (r_glsl_permutation->loc_OffsetMapping_Bias >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_Bias, t->offsetbias);
2017                 if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2f(r_glsl_permutation->loc_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2018                 if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2019                 if (r_glsl_permutation->loc_BounceGridMatrix >= 0) {Matrix4x4_Concat(&tempmatrix, &r_shadow_bouncegrid_state.matrix, &rsurface.matrix);Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BounceGridMatrix, 1, false, m16f);}
2020                 if (r_glsl_permutation->loc_BounceGridIntensity >= 0) qglUniform1f(r_glsl_permutation->loc_BounceGridIntensity, r_shadow_bouncegrid_state.intensity*r_refdef.view.colorscale);
2021                 if (r_glsl_permutation->loc_LightGridMatrix >= 0 && r_refdef.scene.worldmodel)
2022                 {
2023                         float m9f[9];
2024                         Matrix4x4_Concat(&tempmatrix, &r_refdef.scene.worldmodel->brushq3.lightgridworldtotexturematrix, &rsurface.matrix);
2025                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2026                         qglUniformMatrix4fv(r_glsl_permutation->loc_LightGridMatrix, 1, false, m16f);
2027                         Matrix4x4_Normalize3(&tempmatrix, &rsurface.matrix);
2028                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2029                         m9f[0] = m16f[0];m9f[1] = m16f[1];m9f[2] = m16f[2];
2030                         m9f[3] = m16f[4];m9f[4] = m16f[5];m9f[5] = m16f[6];
2031                         m9f[6] = m16f[8];m9f[7] = m16f[9];m9f[8] = m16f[10];
2032                         qglUniformMatrix3fv(r_glsl_permutation->loc_LightGridNormalMatrix, 1, false, m9f);
2033                 }
2034
2035                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First            , r_texture_white                                     );
2036                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second           , r_texture_white                                     );
2037                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps       , r_texture_gammaramps                                );
2038                 if (r_glsl_permutation->tex_Texture_Normal          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Normal           , t->nmaptexture                       );
2039                 if (r_glsl_permutation->tex_Texture_Color           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Color            , t->basetexture                       );
2040                 if (r_glsl_permutation->tex_Texture_Gloss           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Gloss            , t->glosstexture                      );
2041                 if (r_glsl_permutation->tex_Texture_Glow            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Glow             , t->glowtexture                       );
2042                 if (r_glsl_permutation->tex_Texture_SecondaryNormal >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryNormal  , t->backgroundnmaptexture             );
2043                 if (r_glsl_permutation->tex_Texture_SecondaryColor  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryColor   , t->backgroundbasetexture             );
2044                 if (r_glsl_permutation->tex_Texture_SecondaryGloss  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGloss   , t->backgroundglosstexture            );
2045                 if (r_glsl_permutation->tex_Texture_SecondaryGlow   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGlow    , t->backgroundglowtexture             );
2046                 if (r_glsl_permutation->tex_Texture_Pants           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Pants            , t->pantstexture                      );
2047                 if (r_glsl_permutation->tex_Texture_Shirt           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Shirt            , t->shirttexture                      );
2048                 if (r_glsl_permutation->tex_Texture_ReflectMask     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectMask      , t->reflectmasktexture                );
2049                 if (r_glsl_permutation->tex_Texture_ReflectCube     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectCube      , t->reflectcubetexture ? t->reflectcubetexture : r_texture_whitecube);
2050                 if (r_glsl_permutation->tex_Texture_FogHeightTexture>= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogHeightTexture , r_texture_fogheighttexture                          );
2051                 if (r_glsl_permutation->tex_Texture_FogMask         >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogMask          , r_texture_fogattenuation                            );
2052                 if (r_glsl_permutation->tex_Texture_Lightmap        >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Lightmap         , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white);
2053                 if (r_glsl_permutation->tex_Texture_Deluxemap       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Deluxemap        , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap);
2054                 if (r_glsl_permutation->tex_Texture_Attenuation     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation      , r_shadow_attenuationgradienttexture                 );
2055                 if (rsurfacepass == RSURFPASS_BACKGROUND)
2056                 {
2057                         if (r_glsl_permutation->tex_Texture_Refraction  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Refraction        , waterplane->rt_refraction ? waterplane->rt_refraction->colortexture[0] : r_texture_black);
2058                         if (r_glsl_permutation->tex_Texture_First       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First             , waterplane->rt_camera ? waterplane->rt_camera->colortexture[0] : r_texture_black);
2059                         if (r_glsl_permutation->tex_Texture_Reflection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2060                 }
2061                 else
2062                 {
2063                         if (r_glsl_permutation->tex_Texture_Reflection >= 0 && waterplane) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2064                 }
2065                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap   , r_shadow_prepassgeometrynormalmaptexture            );
2066                 if (r_glsl_permutation->tex_Texture_ScreenDiffuse   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenDiffuse     , r_shadow_prepasslightingdiffusetexture              );
2067                 if (r_glsl_permutation->tex_Texture_ScreenSpecular  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenSpecular    , r_shadow_prepasslightingspeculartexture             );
2068                 if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)))
2069                 {
2070                         if (r_glsl_permutation->tex_Texture_ShadowMap2D     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D, r_shadow_shadowmap2ddepthtexture                           );
2071                         if (rsurface.rtlight)
2072                         {
2073                                 if (r_glsl_permutation->tex_Texture_Cube            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube              , rsurface.rtlight->currentcubemap                    );
2074                                 if (r_glsl_permutation->tex_Texture_CubeProjection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection    , r_shadow_shadowmapvsdcttexture                      );
2075                         }
2076                 }
2077                 if (r_glsl_permutation->tex_Texture_BounceGrid  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_BounceGrid, r_shadow_bouncegrid_state.texture);
2078                 if (r_glsl_permutation->tex_Texture_LightGrid   >= 0 && r_refdef.scene.worldmodel) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_LightGrid, r_refdef.scene.worldmodel->brushq3.lightgridtexture);
2079                 CHECKGLERROR
2080                 break;
2081         }
2082 }
2083
2084 void R_SetupShader_DeferredLight(const rtlight_t *rtlight)
2085 {
2086         // select a permutation of the lighting shader appropriate to this
2087         // combination of texture, entity, light source, and fogging, only use the
2088         // minimum features necessary to avoid wasting rendering time in the
2089         // fragment shader on features that are not being used
2090         uint64_t permutation = 0;
2091         unsigned int mode = 0;
2092         const float *lightcolorbase = rtlight->currentcolor;
2093         float ambientscale = rtlight->ambientscale;
2094         float diffusescale = rtlight->diffusescale;
2095         float specularscale = rtlight->specularscale;
2096         // this is the location of the light in view space
2097         vec3_t viewlightorigin;
2098         // this transforms from view space (camera) to light space (cubemap)
2099         matrix4x4_t viewtolight;
2100         matrix4x4_t lighttoview;
2101         float viewtolight16f[16];
2102         // light source
2103         mode = SHADERMODE_DEFERREDLIGHTSOURCE;
2104         if (rtlight->currentcubemap != r_texture_whitecube)
2105                 permutation |= SHADERPERMUTATION_CUBEFILTER;
2106         if (diffusescale > 0)
2107                 permutation |= SHADERPERMUTATION_DIFFUSE;
2108         if (specularscale > 0 && r_shadow_gloss.integer > 0)
2109                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
2110         if (r_shadow_usingshadowmap2d)
2111         {
2112                 permutation |= SHADERPERMUTATION_SHADOWMAP2D;
2113                 if (r_shadow_shadowmapvsdct)
2114                         permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
2115
2116                 if (r_shadow_shadowmap2ddepthbuffer)
2117                         permutation |= SHADERPERMUTATION_DEPTHRGB;
2118         }
2119         if (vid.allowalphatocoverage)
2120                 GL_AlphaToCoverage(false);
2121         Matrix4x4_Transform(&r_refdef.view.viewport.viewmatrix, rtlight->shadoworigin, viewlightorigin);
2122         Matrix4x4_Concat(&lighttoview, &r_refdef.view.viewport.viewmatrix, &rtlight->matrix_lighttoworld);
2123         Matrix4x4_Invert_Full(&viewtolight, &lighttoview);
2124         Matrix4x4_ToArrayFloatGL(&viewtolight, viewtolight16f);
2125         switch(vid.renderpath)
2126         {
2127         case RENDERPATH_GL32:
2128         case RENDERPATH_GLES2:
2129                 R_SetupShader_SetPermutationGLSL(mode, permutation);
2130                 if (r_glsl_permutation->loc_LightPosition             >= 0) qglUniform3f(       r_glsl_permutation->loc_LightPosition            , viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]);
2131                 if (r_glsl_permutation->loc_ViewToLight               >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ViewToLight              , 1, false, viewtolight16f);
2132                 if (r_glsl_permutation->loc_DeferredColor_Ambient     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Ambient    , lightcolorbase[0] * ambientscale , lightcolorbase[1] * ambientscale , lightcolorbase[2] * ambientscale );
2133                 if (r_glsl_permutation->loc_DeferredColor_Diffuse     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Diffuse    , lightcolorbase[0] * diffusescale , lightcolorbase[1] * diffusescale , lightcolorbase[2] * diffusescale );
2134                 if (r_glsl_permutation->loc_DeferredColor_Specular    >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Specular   , lightcolorbase[0] * specularscale, lightcolorbase[1] * specularscale, lightcolorbase[2] * specularscale);
2135                 if (r_glsl_permutation->loc_ShadowMap_TextureScale    >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_TextureScale   , r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
2136                 if (r_glsl_permutation->loc_ShadowMap_Parameters      >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_Parameters     , r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
2137                 if (r_glsl_permutation->loc_SpecularPower             >= 0) qglUniform1f(       r_glsl_permutation->loc_SpecularPower            , (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
2138                 if (r_glsl_permutation->loc_ScreenToDepth             >= 0) qglUniform2f(       r_glsl_permutation->loc_ScreenToDepth            , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2139                 if (r_glsl_permutation->loc_PixelToScreenTexCoord     >= 0) qglUniform2f(       r_glsl_permutation->loc_PixelToScreenTexCoord    , 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2140
2141                 if (r_glsl_permutation->tex_Texture_Attenuation       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation        , r_shadow_attenuationgradienttexture                 );
2142                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap    , r_shadow_prepassgeometrynormalmaptexture            );
2143                 if (r_glsl_permutation->tex_Texture_Cube              >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube               , rsurface.rtlight->currentcubemap                    );
2144                 if (r_glsl_permutation->tex_Texture_ShadowMap2D       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D        , r_shadow_shadowmap2ddepthtexture                    );
2145                 if (r_glsl_permutation->tex_Texture_CubeProjection    >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection     , r_shadow_shadowmapvsdcttexture                      );
2146                 break;
2147         }
2148 }
2149
2150 #define SKINFRAME_HASH 1024
2151
2152 typedef struct
2153 {
2154         unsigned int loadsequence; // incremented each level change
2155         memexpandablearray_t array;
2156         skinframe_t *hash[SKINFRAME_HASH];
2157 }
2158 r_skinframe_t;
2159 r_skinframe_t r_skinframe;
2160
2161 void R_SkinFrame_PrepareForPurge(void)
2162 {
2163         r_skinframe.loadsequence++;
2164         // wrap it without hitting zero
2165         if (r_skinframe.loadsequence >= 200)
2166                 r_skinframe.loadsequence = 1;
2167 }
2168
2169 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
2170 {
2171         if (!skinframe)
2172                 return;
2173         // mark the skinframe as used for the purging code
2174         skinframe->loadsequence = r_skinframe.loadsequence;
2175 }
2176
2177 void R_SkinFrame_PurgeSkinFrame(skinframe_t *s)
2178 {
2179         if (s == NULL)
2180                 return;
2181         if (s->merged == s->base)
2182                 s->merged = NULL;
2183         R_PurgeTexture(s->stain); s->stain = NULL;
2184         R_PurgeTexture(s->merged); s->merged = NULL;
2185         R_PurgeTexture(s->base); s->base = NULL;
2186         R_PurgeTexture(s->pants); s->pants = NULL;
2187         R_PurgeTexture(s->shirt); s->shirt = NULL;
2188         R_PurgeTexture(s->nmap); s->nmap = NULL;
2189         R_PurgeTexture(s->gloss); s->gloss = NULL;
2190         R_PurgeTexture(s->glow); s->glow = NULL;
2191         R_PurgeTexture(s->fog); s->fog = NULL;
2192         R_PurgeTexture(s->reflect); s->reflect = NULL;
2193         s->loadsequence = 0;
2194 }
2195
2196 void R_SkinFrame_Purge(void)
2197 {
2198         int i;
2199         skinframe_t *s;
2200         for (i = 0;i < SKINFRAME_HASH;i++)
2201         {
2202                 for (s = r_skinframe.hash[i];s;s = s->next)
2203                 {
2204                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
2205                                 R_SkinFrame_PurgeSkinFrame(s);
2206                 }
2207         }
2208 }
2209
2210 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
2211         skinframe_t *item;
2212         char basename[MAX_QPATH];
2213
2214         Image_StripImageExtension(name, basename, sizeof(basename));
2215
2216         if( last == NULL ) {
2217                 int hashindex;
2218                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2219                 item = r_skinframe.hash[hashindex];
2220         } else {
2221                 item = last->next;
2222         }
2223
2224         // linearly search through the hash bucket
2225         for( ; item ; item = item->next ) {
2226                 if( !strcmp( item->basename, basename ) ) {
2227                         return item;
2228                 }
2229         }
2230         return NULL;
2231 }
2232
2233 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qbool add)
2234 {
2235         skinframe_t *item;
2236         int compareflags = textureflags & TEXF_IMPORTANTBITS;
2237         int hashindex;
2238         char basename[MAX_QPATH];
2239
2240         Image_StripImageExtension(name, basename, sizeof(basename));
2241
2242         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2243         for (item = r_skinframe.hash[hashindex];item;item = item->next)
2244                 if (!strcmp(item->basename, basename) &&
2245                         item->textureflags == compareflags &&
2246                         item->comparewidth == comparewidth &&
2247                         item->compareheight == compareheight &&
2248                         item->comparecrc == comparecrc)
2249                         break;
2250
2251         if (!item)
2252         {
2253                 if (!add)
2254                         return NULL;
2255                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
2256                 memset(item, 0, sizeof(*item));
2257                 strlcpy(item->basename, basename, sizeof(item->basename));
2258                 item->textureflags = compareflags;
2259                 item->comparewidth = comparewidth;
2260                 item->compareheight = compareheight;
2261                 item->comparecrc = comparecrc;
2262                 item->next = r_skinframe.hash[hashindex];
2263                 r_skinframe.hash[hashindex] = item;
2264         }
2265         else if (textureflags & TEXF_FORCE_RELOAD)
2266                 R_SkinFrame_PurgeSkinFrame(item);
2267
2268         R_SkinFrame_MarkUsed(item);
2269         return item;
2270 }
2271
2272 #define R_SKINFRAME_LOAD_AVERAGE_COLORS(cnt, getpixel) \
2273         { \
2274                 unsigned long long avgcolor[5], wsum; \
2275                 int pix, comp, w; \
2276                 avgcolor[0] = 0; \
2277                 avgcolor[1] = 0; \
2278                 avgcolor[2] = 0; \
2279                 avgcolor[3] = 0; \
2280                 avgcolor[4] = 0; \
2281                 wsum = 0; \
2282                 for(pix = 0; pix < cnt; ++pix) \
2283                 { \
2284                         w = 0; \
2285                         for(comp = 0; comp < 3; ++comp) \
2286                                 w += getpixel; \
2287                         if(w) /* ignore perfectly black pixels because that is better for model skins */ \
2288                         { \
2289                                 ++wsum; \
2290                                 /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2291                                 w = getpixel; \
2292                                 for(comp = 0; comp < 3; ++comp) \
2293                                         avgcolor[comp] += getpixel * w; \
2294                                 avgcolor[3] += w; \
2295                         } \
2296                         /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2297                         avgcolor[4] += getpixel; \
2298                 } \
2299                 if(avgcolor[3] == 0) /* no pixels seen? even worse */ \
2300                         avgcolor[3] = 1; \
2301                 skinframe->avgcolor[0] = avgcolor[2] / (255.0 * avgcolor[3]); \
2302                 skinframe->avgcolor[1] = avgcolor[1] / (255.0 * avgcolor[3]); \
2303                 skinframe->avgcolor[2] = avgcolor[0] / (255.0 * avgcolor[3]); \
2304                 skinframe->avgcolor[3] = avgcolor[4] / (255.0 * cnt); \
2305         }
2306
2307 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2308 {
2309         skinframe_t *skinframe;
2310
2311         if (cls.state == ca_dedicated)
2312                 return NULL;
2313
2314         // return an existing skinframe if already loaded
2315         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
2316         if (skinframe && skinframe->base)
2317                 return skinframe;
2318
2319         // if the skinframe doesn't exist this will create it
2320         return R_SkinFrame_LoadExternal_SkinFrame(skinframe, name, textureflags, complain, fallbacknotexture);
2321 }
2322
2323 extern cvar_t gl_picmip;
2324 skinframe_t *R_SkinFrame_LoadExternal_SkinFrame(skinframe_t *skinframe, const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2325 {
2326         int j;
2327         unsigned char *pixels;
2328         unsigned char *bumppixels;
2329         unsigned char *basepixels = NULL;
2330         int basepixels_width = 0;
2331         int basepixels_height = 0;
2332         rtexture_t *ddsbase = NULL;
2333         qbool ddshasalpha = false;
2334         float ddsavgcolor[4];
2335         char basename[MAX_QPATH];
2336         int miplevel = R_PicmipForFlags(textureflags);
2337         int savemiplevel = miplevel;
2338         int mymiplevel;
2339         char vabuf[1024];
2340
2341         if (cls.state == ca_dedicated)
2342                 return NULL;
2343
2344         Image_StripImageExtension(name, basename, sizeof(basename));
2345
2346         // check for DDS texture file first
2347         if (!r_loaddds || !(ddsbase = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s.dds", basename), vid.sRGB3D, textureflags, &ddshasalpha, ddsavgcolor, miplevel, false)))
2348         {
2349                 basepixels = loadimagepixelsbgra(name, complain, true, false, &miplevel);
2350                 if (basepixels == NULL && fallbacknotexture)
2351                         basepixels = Image_GenerateNoTexture();
2352                 if (basepixels == NULL)
2353                         return NULL;
2354         }
2355
2356         // FIXME handle miplevel
2357
2358         if (developer_loading.integer)
2359                 Con_Printf("loading skin \"%s\"\n", name);
2360
2361         // we've got some pixels to store, so really allocate this new texture now
2362         if (!skinframe)
2363                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
2364         textureflags &= ~TEXF_FORCE_RELOAD;
2365         skinframe->stain = NULL;
2366         skinframe->merged = NULL;
2367         skinframe->base = NULL;
2368         skinframe->pants = NULL;
2369         skinframe->shirt = NULL;
2370         skinframe->nmap = NULL;
2371         skinframe->gloss = NULL;
2372         skinframe->glow = NULL;
2373         skinframe->fog = NULL;
2374         skinframe->reflect = NULL;
2375         skinframe->hasalpha = false;
2376         // we could store the q2animname here too
2377
2378         if (ddsbase)
2379         {
2380                 skinframe->base = ddsbase;
2381                 skinframe->hasalpha = ddshasalpha;
2382                 VectorCopy(ddsavgcolor, skinframe->avgcolor);
2383                 if (r_loadfog && skinframe->hasalpha)
2384                         skinframe->fog = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), false, textureflags | TEXF_ALPHA, NULL, NULL, miplevel, true);
2385                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2386         }
2387         else
2388         {
2389                 basepixels_width = image_width;
2390                 basepixels_height = image_height;
2391                 skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2392                 if (textureflags & TEXF_ALPHA)
2393                 {
2394                         for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
2395                         {
2396                                 if (basepixels[j] < 255)
2397                                 {
2398                                         skinframe->hasalpha = true;
2399                                         break;
2400                                 }
2401                         }
2402                         if (r_loadfog && skinframe->hasalpha)
2403                         {
2404                                 // has transparent pixels
2405                                 pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2406                                 for (j = 0;j < image_width * image_height * 4;j += 4)
2407                                 {
2408                                         pixels[j+0] = 255;
2409                                         pixels[j+1] = 255;
2410                                         pixels[j+2] = 255;
2411                                         pixels[j+3] = basepixels[j+3];
2412                                 }
2413                                 skinframe->fog = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2414                                 Mem_Free(pixels);
2415                         }
2416                 }
2417                 R_SKINFRAME_LOAD_AVERAGE_COLORS(basepixels_width * basepixels_height, basepixels[4 * pix + comp]);
2418 #ifndef USE_GLES2
2419                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2420                 if (r_savedds && skinframe->base)
2421                         R_SaveTextureDDSFile(skinframe->base, va(vabuf, sizeof(vabuf), "dds/%s.dds", skinframe->basename), r_texture_dds_save.integer < 2, skinframe->hasalpha);
2422                 if (r_savedds && skinframe->fog)
2423                         R_SaveTextureDDSFile(skinframe->fog, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2424 #endif
2425         }
2426
2427         if (r_loaddds)
2428         {
2429                 mymiplevel = savemiplevel;
2430                 if (r_loadnormalmap)
2431                         skinframe->nmap = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), false, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), NULL, NULL, mymiplevel, true);
2432                 skinframe->glow = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2433                 if (r_loadgloss)
2434                         skinframe->gloss = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2435                 skinframe->pants = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2436                 skinframe->shirt = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2437                 skinframe->reflect = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2438         }
2439
2440         // _norm is the name used by tenebrae and has been adopted as standard
2441         if (r_loadnormalmap && skinframe->nmap == NULL)
2442         {
2443                 mymiplevel = savemiplevel;
2444                 if ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_norm", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2445                 {
2446                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2447                         Mem_Free(pixels);
2448                         pixels = NULL;
2449                 }
2450                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_bump", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2451                 {
2452                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2453                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
2454                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2455                         Mem_Free(pixels);
2456                         Mem_Free(bumppixels);
2457                 }
2458                 else if (r_shadow_bumpscale_basetexture.value > 0)
2459                 {
2460                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
2461                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
2462                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2463                         Mem_Free(pixels);
2464                 }
2465 #ifndef USE_GLES2
2466                 if (r_savedds && skinframe->nmap)
2467                         R_SaveTextureDDSFile(skinframe->nmap, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2468 #endif
2469         }
2470
2471         // _luma is supported only for tenebrae compatibility
2472         // _blend and .blend are supported only for Q3 & QL compatibility, this hack can be removed if better Q3 shader support is implemented
2473         // _glow is the preferred name
2474         mymiplevel = savemiplevel;
2475         if (skinframe->glow == NULL && ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s.blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_luma", skinframe->basename), false, false, false, &mymiplevel))))
2476         {
2477                 skinframe->glow = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_glow.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2478 #ifndef USE_GLES2
2479                 if (r_savedds && skinframe->glow)
2480                         R_SaveTextureDDSFile(skinframe->glow, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2481 #endif
2482                 Mem_Free(pixels);pixels = NULL;
2483         }
2484
2485         mymiplevel = savemiplevel;
2486         if (skinframe->gloss == NULL && r_loadgloss && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), false, false, false, &mymiplevel)))
2487         {
2488                 skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (gl_texturecompression_gloss.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2489 #ifndef USE_GLES2
2490                 if (r_savedds && skinframe->gloss)
2491                         R_SaveTextureDDSFile(skinframe->gloss, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2492 #endif
2493                 Mem_Free(pixels);
2494                 pixels = NULL;
2495         }
2496
2497         mymiplevel = savemiplevel;
2498         if (skinframe->pants == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), false, false, false, &mymiplevel)))
2499         {
2500                 skinframe->pants = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2501 #ifndef USE_GLES2
2502                 if (r_savedds && skinframe->pants)
2503                         R_SaveTextureDDSFile(skinframe->pants, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2504 #endif
2505                 Mem_Free(pixels);
2506                 pixels = NULL;
2507         }
2508
2509         mymiplevel = savemiplevel;
2510         if (skinframe->shirt == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), false, false, false, &mymiplevel)))
2511         {
2512                 skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2513 #ifndef USE_GLES2
2514                 if (r_savedds && skinframe->shirt)
2515                         R_SaveTextureDDSFile(skinframe->shirt, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2516 #endif
2517                 Mem_Free(pixels);
2518                 pixels = NULL;
2519         }
2520
2521         mymiplevel = savemiplevel;
2522         if (skinframe->reflect == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), false, false, false, &mymiplevel)))
2523         {
2524                 skinframe->reflect = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_reflectmask.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2525 #ifndef USE_GLES2
2526                 if (r_savedds && skinframe->reflect)
2527                         R_SaveTextureDDSFile(skinframe->reflect, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2528 #endif
2529                 Mem_Free(pixels);
2530                 pixels = NULL;
2531         }
2532
2533         if (basepixels)
2534                 Mem_Free(basepixels);
2535
2536         return skinframe;
2537 }
2538
2539 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height, int comparewidth, int compareheight, int comparecrc, qbool sRGB)
2540 {
2541         int i;
2542         skinframe_t *skinframe;
2543         char vabuf[1024];
2544
2545         if (cls.state == ca_dedicated)
2546                 return NULL;
2547
2548         // if already loaded just return it, otherwise make a new skinframe
2549         skinframe = R_SkinFrame_Find(name, textureflags, comparewidth, compareheight, comparecrc, true);
2550         if (skinframe->base)
2551                 return skinframe;
2552         textureflags &= ~TEXF_FORCE_RELOAD;
2553
2554         skinframe->stain = NULL;
2555         skinframe->merged = NULL;
2556         skinframe->base = NULL;
2557         skinframe->pants = NULL;
2558         skinframe->shirt = NULL;
2559         skinframe->nmap = NULL;
2560         skinframe->gloss = NULL;
2561         skinframe->glow = NULL;
2562         skinframe->fog = NULL;
2563         skinframe->reflect = NULL;
2564         skinframe->hasalpha = false;
2565
2566         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2567         if (!skindata)
2568                 return NULL;
2569
2570         if (developer_loading.integer)
2571                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2572
2573         if (r_loadnormalmap && r_shadow_bumpscale_basetexture.value > 0)
2574         {
2575                 unsigned char *a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2576                 unsigned char *b = a + width * height * 4;
2577                 Image_HeightmapToNormalmap_BGRA(skindata, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2578                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2579                 Mem_Free(a);
2580         }
2581         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, sRGB ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags, -1, NULL);
2582         if (textureflags & TEXF_ALPHA)
2583         {
2584                 for (i = 3;i < width * height * 4;i += 4)
2585                 {
2586                         if (skindata[i] < 255)
2587                         {
2588                                 skinframe->hasalpha = true;
2589                                 break;
2590                         }
2591                 }
2592                 if (r_loadfog && skinframe->hasalpha)
2593                 {
2594                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2595                         memcpy(fogpixels, skindata, width * height * 4);
2596                         for (i = 0;i < width * height * 4;i += 4)
2597                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2598                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, textureflags, -1, NULL);
2599                         Mem_Free(fogpixels);
2600                 }
2601         }
2602
2603         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, skindata[4 * pix + comp]);
2604         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2605
2606         return skinframe;
2607 }
2608
2609 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2610 {
2611         int i;
2612         int featuresmask;
2613         skinframe_t *skinframe;
2614
2615         if (cls.state == ca_dedicated)
2616                 return NULL;
2617
2618         // if already loaded just return it, otherwise make a new skinframe
2619         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2620         if (skinframe->base)
2621                 return skinframe;
2622         //textureflags &= ~TEXF_FORCE_RELOAD;
2623
2624         skinframe->stain = NULL;
2625         skinframe->merged = NULL;
2626         skinframe->base = NULL;
2627         skinframe->pants = NULL;
2628         skinframe->shirt = NULL;
2629         skinframe->nmap = NULL;
2630         skinframe->gloss = NULL;
2631         skinframe->glow = NULL;
2632         skinframe->fog = NULL;
2633         skinframe->reflect = NULL;
2634         skinframe->hasalpha = false;
2635
2636         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2637         if (!skindata)
2638                 return NULL;
2639
2640         if (developer_loading.integer)
2641                 Con_Printf("loading quake skin \"%s\"\n", name);
2642
2643         // we actually don't upload anything until the first use, because mdl skins frequently go unused, and are almost never used in both modes (colormapped and non-colormapped)
2644         skinframe->qpixels = (unsigned char *)Mem_Alloc(r_main_mempool, width*height); // FIXME LEAK
2645         memcpy(skinframe->qpixels, skindata, width*height);
2646         skinframe->qwidth = width;
2647         skinframe->qheight = height;
2648
2649         featuresmask = 0;
2650         for (i = 0;i < width * height;i++)
2651                 featuresmask |= palette_featureflags[skindata[i]];
2652
2653         skinframe->hasalpha = false;
2654         // fence textures
2655         if (name[0] == '{')
2656                 skinframe->hasalpha = true;
2657         skinframe->qhascolormapping = loadpantsandshirt && (featuresmask & (PALETTEFEATURE_PANTS | PALETTEFEATURE_SHIRT));
2658         skinframe->qgeneratenmap = r_shadow_bumpscale_basetexture.value > 0;
2659         skinframe->qgeneratemerged = true;
2660         skinframe->qgeneratebase = skinframe->qhascolormapping;
2661         skinframe->qgenerateglow = loadglowtexture && (featuresmask & PALETTEFEATURE_GLOW);
2662
2663         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette_bgra_complete)[skindata[pix]*4 + comp]);
2664         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2665
2666         return skinframe;
2667 }
2668
2669 static void R_SkinFrame_GenerateTexturesFromQPixels(skinframe_t *skinframe, qbool colormapped)
2670 {
2671         int width;
2672         int height;
2673         unsigned char *skindata;
2674         char vabuf[1024];
2675
2676         if (!skinframe->qpixels)
2677                 return;
2678
2679         if (!skinframe->qhascolormapping)
2680                 colormapped = false;
2681
2682         if (colormapped)
2683         {
2684                 if (!skinframe->qgeneratebase)
2685                         return;
2686         }
2687         else
2688         {
2689                 if (!skinframe->qgeneratemerged)
2690                         return;
2691         }
2692
2693         width = skinframe->qwidth;
2694         height = skinframe->qheight;
2695         skindata = skinframe->qpixels;
2696
2697         if (skinframe->qgeneratenmap)
2698         {
2699                 unsigned char *a, *b;
2700                 skinframe->qgeneratenmap = false;
2701                 a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2702                 b = a + width * height * 4;
2703                 // use either a custom palette or the quake palette
2704                 Image_Copy8bitBGRA(skindata, a, width * height, palette_bgra_complete);
2705                 Image_HeightmapToNormalmap_BGRA(a, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2706                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (skinframe->textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2707                 Mem_Free(a);
2708         }
2709
2710         if (skinframe->qgenerateglow)
2711         {
2712                 skinframe->qgenerateglow = false;
2713                 if (skinframe->hasalpha) // fence textures
2714                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, palette_bgra_onlyfullbrights_transparent); // glow
2715                 else
2716                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_onlyfullbrights); // glow
2717         }
2718
2719         if (colormapped)
2720         {
2721                 skinframe->qgeneratebase = false;
2722                 skinframe->base  = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nospecial", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap);
2723                 skinframe->pants = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_pantsaswhite);
2724                 skinframe->shirt = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_shirtaswhite);
2725         }
2726         else
2727         {
2728                 skinframe->qgeneratemerged = false;
2729                 if (skinframe->hasalpha) // fence textures
2730                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, skinframe->glow ? palette_bgra_nofullbrights_transparent : palette_bgra_transparent);
2731                 else
2732                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nofullbrights : palette_bgra_complete);
2733         }
2734
2735         if (!skinframe->qgeneratemerged && !skinframe->qgeneratebase)
2736         {
2737                 Mem_Free(skinframe->qpixels);
2738                 skinframe->qpixels = NULL;
2739         }
2740 }
2741
2742 skinframe_t *R_SkinFrame_LoadInternal8bit(const char *name, int textureflags, const unsigned char *skindata, int width, int height, const unsigned int *palette, const unsigned int *alphapalette)
2743 {
2744         int i;
2745         skinframe_t *skinframe;
2746         char vabuf[1024];
2747
2748         if (cls.state == ca_dedicated)
2749                 return NULL;
2750
2751         // if already loaded just return it, otherwise make a new skinframe
2752         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2753         if (skinframe->base)
2754                 return skinframe;
2755         textureflags &= ~TEXF_FORCE_RELOAD;
2756
2757         skinframe->stain = NULL;
2758         skinframe->merged = NULL;
2759         skinframe->base = NULL;
2760         skinframe->pants = NULL;
2761         skinframe->shirt = NULL;
2762         skinframe->nmap = NULL;
2763         skinframe->gloss = NULL;
2764         skinframe->glow = NULL;
2765         skinframe->fog = NULL;
2766         skinframe->reflect = NULL;
2767         skinframe->hasalpha = false;
2768
2769         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2770         if (!skindata)
2771                 return NULL;
2772
2773         if (developer_loading.integer)
2774                 Con_Printf("loading embedded 8bit image \"%s\"\n", name);
2775
2776         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, palette);
2777         if ((textureflags & TEXF_ALPHA) && alphapalette)
2778         {
2779                 for (i = 0;i < width * height;i++)
2780                 {
2781                         if (((unsigned char *)palette)[skindata[i]*4+3] < 255)
2782                         {
2783                                 skinframe->hasalpha = true;
2784                                 break;
2785                         }
2786                 }
2787                 if (r_loadfog && skinframe->hasalpha)
2788                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, alphapalette);
2789         }
2790
2791         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette)[skindata[pix]*4 + comp]);
2792         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2793
2794         return skinframe;
2795 }
2796
2797 skinframe_t *R_SkinFrame_LoadMissing(void)
2798 {
2799         skinframe_t *skinframe;
2800
2801         if (cls.state == ca_dedicated)
2802                 return NULL;
2803
2804         skinframe = R_SkinFrame_Find("missing", TEXF_FORCENEAREST, 0, 0, 0, true);
2805         skinframe->stain = NULL;
2806         skinframe->merged = NULL;
2807         skinframe->base = NULL;
2808         skinframe->pants = NULL;
2809         skinframe->shirt = NULL;
2810         skinframe->nmap = NULL;
2811         skinframe->gloss = NULL;
2812         skinframe->glow = NULL;
2813         skinframe->fog = NULL;
2814         skinframe->reflect = NULL;
2815         skinframe->hasalpha = false;
2816
2817         skinframe->avgcolor[0] = rand() / RAND_MAX;
2818         skinframe->avgcolor[1] = rand() / RAND_MAX;
2819         skinframe->avgcolor[2] = rand() / RAND_MAX;
2820         skinframe->avgcolor[3] = 1;
2821
2822         return skinframe;
2823 }
2824
2825 skinframe_t *R_SkinFrame_LoadNoTexture(void)
2826 {
2827         if (cls.state == ca_dedicated)
2828                 return NULL;
2829
2830         return R_SkinFrame_LoadInternalBGRA("notexture", TEXF_FORCENEAREST, Image_GenerateNoTexture(), 16, 16, 0, 0, 0, false);
2831 }
2832
2833 skinframe_t *R_SkinFrame_LoadInternalUsingTexture(const char *name, int textureflags, rtexture_t *tex, int width, int height, qbool sRGB)
2834 {
2835         skinframe_t *skinframe;
2836         if (cls.state == ca_dedicated)
2837                 return NULL;
2838         // if already loaded just return it, otherwise make a new skinframe
2839         skinframe = R_SkinFrame_Find(name, textureflags, width, height, 0, true);
2840         if (skinframe->base)
2841                 return skinframe;
2842         textureflags &= ~TEXF_FORCE_RELOAD;
2843         skinframe->stain = NULL;
2844         skinframe->merged = NULL;
2845         skinframe->base = NULL;
2846         skinframe->pants = NULL;
2847         skinframe->shirt = NULL;
2848         skinframe->nmap = NULL;
2849         skinframe->gloss = NULL;
2850         skinframe->glow = NULL;
2851         skinframe->fog = NULL;
2852         skinframe->reflect = NULL;
2853         skinframe->hasalpha = (textureflags & TEXF_ALPHA) != 0;
2854         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2855         if (!tex)
2856                 return NULL;
2857         if (developer_loading.integer)
2858                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2859         skinframe->base = skinframe->merged = tex;
2860         Vector4Set(skinframe->avgcolor, 1, 1, 1, 1); // bogus placeholder
2861         return skinframe;
2862 }
2863
2864 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
2865 typedef struct suffixinfo_s
2866 {
2867         const char *suffix;
2868         qbool flipx, flipy, flipdiagonal;
2869 }
2870 suffixinfo_t;
2871 static suffixinfo_t suffix[3][6] =
2872 {
2873         {
2874                 {"px",   false, false, false},
2875                 {"nx",   false, false, false},
2876                 {"py",   false, false, false},
2877                 {"ny",   false, false, false},
2878                 {"pz",   false, false, false},
2879                 {"nz",   false, false, false}
2880         },
2881         {
2882                 {"posx", false, false, false},
2883                 {"negx", false, false, false},
2884                 {"posy", false, false, false},
2885                 {"negy", false, false, false},
2886                 {"posz", false, false, false},
2887                 {"negz", false, false, false}
2888         },
2889         {
2890                 {"rt",    true, false,  true},
2891                 {"lf",   false,  true,  true},
2892                 {"ft",    true,  true, false},
2893                 {"bk",   false, false, false},
2894                 {"up",    true, false,  true},
2895                 {"dn",    true, false,  true}
2896         }
2897 };
2898
2899 static int componentorder[4] = {0, 1, 2, 3};
2900
2901 static rtexture_t *R_LoadCubemap(const char *basename)
2902 {
2903         int i, j, cubemapsize, forcefilter;
2904         unsigned char *cubemappixels, *image_buffer;
2905         rtexture_t *cubemaptexture;
2906         char name[256];
2907
2908         // HACK: if the cubemap name starts with a !, the cubemap is nearest-filtered
2909         forcefilter = TEXF_FORCELINEAR;
2910         if (basename && basename[0] == '!')
2911         {
2912                 basename++;
2913                 forcefilter = TEXF_FORCENEAREST;
2914         }
2915         // must start 0 so the first loadimagepixels has no requested width/height
2916         cubemapsize = 0;
2917         cubemappixels = NULL;
2918         cubemaptexture = NULL;
2919         // keep trying different suffix groups (posx, px, rt) until one loads
2920         for (j = 0;j < 3 && !cubemappixels;j++)
2921         {
2922                 // load the 6 images in the suffix group
2923                 for (i = 0;i < 6;i++)
2924                 {
2925                         // generate an image name based on the base and and suffix
2926                         dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix);
2927                         // load it
2928                         if ((image_buffer = loadimagepixelsbgra(name, false, false, false, NULL)))
2929                         {
2930                                 // an image loaded, make sure width and height are equal
2931                                 if (image_width == image_height && (!cubemappixels || image_width == cubemapsize))
2932                                 {
2933                                         // if this is the first image to load successfully, allocate the cubemap memory
2934                                         if (!cubemappixels && image_width >= 1)
2935                                         {
2936                                                 cubemapsize = image_width;
2937                                                 // note this clears to black, so unavailable sides are black
2938                                                 cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4);
2939                                         }
2940                                         // copy the image with any flipping needed by the suffix (px and posx types don't need flipping)
2941                                         if (cubemappixels)
2942                                                 Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_buffer, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder);
2943                                 }
2944                                 else
2945                                         Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height);
2946                                 // free the image
2947                                 Mem_Free(image_buffer);
2948                         }
2949                 }
2950         }
2951         // if a cubemap loaded, upload it
2952         if (cubemappixels)
2953         {
2954                 if (developer_loading.integer)
2955                         Con_Printf("loading cubemap \"%s\"\n", basename);
2956
2957                 cubemaptexture = R_LoadTextureCubeMap(r_main_texturepool, basename, cubemapsize, cubemappixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (gl_texturecompression_lightcubemaps.integer && gl_texturecompression.integer ? TEXF_COMPRESS : 0) | forcefilter | TEXF_CLAMP, -1, NULL);
2958                 Mem_Free(cubemappixels);
2959         }
2960         else
2961         {
2962                 Con_DPrintf("failed to load cubemap \"%s\"\n", basename);
2963                 if (developer_loading.integer)
2964                 {
2965                         Con_Printf("(tried tried images ");
2966                         for (j = 0;j < 3;j++)
2967                                 for (i = 0;i < 6;i++)
2968                                         Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix);
2969                         Con_Print(" and was unable to find any of them).\n");
2970                 }
2971         }
2972         return cubemaptexture;
2973 }
2974
2975 rtexture_t *R_GetCubemap(const char *basename)
2976 {
2977         int i;
2978         for (i = 0;i < r_texture_numcubemaps;i++)
2979                 if (r_texture_cubemaps[i] != NULL)
2980                         if (!strcasecmp(r_texture_cubemaps[i]->basename, basename))
2981                                 return r_texture_cubemaps[i]->texture ? r_texture_cubemaps[i]->texture : r_texture_whitecube;
2982         if (i >= MAX_CUBEMAPS || !r_main_mempool)
2983                 return r_texture_whitecube;
2984         r_texture_numcubemaps++;
2985         r_texture_cubemaps[i] = (cubemapinfo_t *)Mem_Alloc(r_main_mempool, sizeof(cubemapinfo_t));
2986         strlcpy(r_texture_cubemaps[i]->basename, basename, sizeof(r_texture_cubemaps[i]->basename));
2987         r_texture_cubemaps[i]->texture = R_LoadCubemap(r_texture_cubemaps[i]->basename);
2988         return r_texture_cubemaps[i]->texture;
2989 }
2990
2991 static void R_Main_FreeViewCache(void)
2992 {
2993         if (r_refdef.viewcache.entityvisible)
2994                 Mem_Free(r_refdef.viewcache.entityvisible);
2995         if (r_refdef.viewcache.world_pvsbits)
2996                 Mem_Free(r_refdef.viewcache.world_pvsbits);
2997         if (r_refdef.viewcache.world_leafvisible)
2998                 Mem_Free(r_refdef.viewcache.world_leafvisible);
2999         if (r_refdef.viewcache.world_surfacevisible)
3000                 Mem_Free(r_refdef.viewcache.world_surfacevisible);
3001         memset(&r_refdef.viewcache, 0, sizeof(r_refdef.viewcache));
3002 }
3003
3004 static void R_Main_ResizeViewCache(void)
3005 {
3006         int numentities = r_refdef.scene.numentities;
3007         int numclusters = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusters : 1;
3008         int numclusterbytes = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusterbytes : 1;
3009         int numleafs = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_leafs : 1;
3010         int numsurfaces = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->num_surfaces : 1;
3011         if (r_refdef.viewcache.maxentities < numentities)
3012         {
3013                 r_refdef.viewcache.maxentities = numentities;
3014                 if (r_refdef.viewcache.entityvisible)
3015                         Mem_Free(r_refdef.viewcache.entityvisible);
3016                 r_refdef.viewcache.entityvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.maxentities);
3017         }
3018         if (r_refdef.viewcache.world_numclusters != numclusters)
3019         {
3020                 r_refdef.viewcache.world_numclusters = numclusters;
3021                 r_refdef.viewcache.world_numclusterbytes = numclusterbytes;
3022                 if (r_refdef.viewcache.world_pvsbits)
3023                         Mem_Free(r_refdef.viewcache.world_pvsbits);
3024                 r_refdef.viewcache.world_pvsbits = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numclusterbytes);
3025         }
3026         if (r_refdef.viewcache.world_numleafs != numleafs)
3027         {
3028                 r_refdef.viewcache.world_numleafs = numleafs;
3029                 if (r_refdef.viewcache.world_leafvisible)
3030                         Mem_Free(r_refdef.viewcache.world_leafvisible);
3031                 r_refdef.viewcache.world_leafvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numleafs);
3032         }
3033         if (r_refdef.viewcache.world_numsurfaces != numsurfaces)
3034         {
3035                 r_refdef.viewcache.world_numsurfaces = numsurfaces;
3036                 if (r_refdef.viewcache.world_surfacevisible)
3037                         Mem_Free(r_refdef.viewcache.world_surfacevisible);
3038                 r_refdef.viewcache.world_surfacevisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numsurfaces);
3039         }
3040 }
3041
3042 extern rtexture_t *loadingscreentexture;
3043 static void gl_main_start(void)
3044 {
3045         loadingscreentexture = NULL;
3046         r_texture_blanknormalmap = NULL;
3047         r_texture_white = NULL;
3048         r_texture_grey128 = NULL;
3049         r_texture_black = NULL;
3050         r_texture_whitecube = NULL;
3051         r_texture_normalizationcube = NULL;
3052         r_texture_fogattenuation = NULL;
3053         r_texture_fogheighttexture = NULL;
3054         r_texture_gammaramps = NULL;
3055         r_texture_numcubemaps = 0;
3056         r_uniformbufferalignment = 32;
3057
3058         r_loaddds = r_texture_dds_load.integer != 0;
3059         r_savedds = vid.support.ext_texture_compression_s3tc && r_texture_dds_save.integer;
3060
3061         switch(vid.renderpath)
3062         {
3063         case RENDERPATH_GL32:
3064         case RENDERPATH_GLES2:
3065                 Cvar_SetValueQuick(&r_textureunits, MAX_TEXTUREUNITS);
3066                 Cvar_SetValueQuick(&gl_combine, 1);
3067                 Cvar_SetValueQuick(&r_glsl, 1);
3068                 r_loadnormalmap = true;
3069                 r_loadgloss = true;
3070                 r_loadfog = false;
3071 #ifdef GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
3072                 qglGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &r_uniformbufferalignment);
3073 #endif
3074                 break;
3075         }
3076
3077         R_AnimCache_Free();
3078         R_FrameData_Reset();
3079         R_BufferData_Reset();
3080
3081         r_numqueries = 0;
3082         r_maxqueries = 0;
3083         memset(r_queries, 0, sizeof(r_queries));
3084
3085         r_qwskincache = NULL;
3086         r_qwskincache_size = 0;
3087
3088         // due to caching of texture_t references, the collision cache must be reset
3089         Collision_Cache_Reset(true);
3090
3091         // set up r_skinframe loading system for textures
3092         memset(&r_skinframe, 0, sizeof(r_skinframe));
3093         r_skinframe.loadsequence = 1;
3094         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
3095
3096         r_main_texturepool = R_AllocTexturePool();
3097         R_BuildBlankTextures();
3098         R_BuildNoTexture();
3099         R_BuildWhiteCube();
3100 #ifndef USE_GLES2
3101         R_BuildNormalizationCube();
3102 #endif //USE_GLES2
3103         r_texture_fogattenuation = NULL;
3104         r_texture_fogheighttexture = NULL;
3105         r_texture_gammaramps = NULL;
3106         //r_texture_fogintensity = NULL;
3107         memset(&r_fb, 0, sizeof(r_fb));
3108         Mem_ExpandableArray_NewArray(&r_fb.rendertargets, r_main_mempool, sizeof(r_rendertarget_t), 128);
3109         r_glsl_permutation = NULL;
3110         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3111         Mem_ExpandableArray_NewArray(&r_glsl_permutationarray, r_main_mempool, sizeof(r_glsl_permutation_t), 256);
3112         memset(&r_svbsp, 0, sizeof (r_svbsp));
3113
3114         memset(r_texture_cubemaps, 0, sizeof(r_texture_cubemaps));
3115         r_texture_numcubemaps = 0;
3116
3117         r_refdef.fogmasktable_density = 0;
3118
3119 #ifdef __ANDROID__
3120         // For Steelstorm Android
3121         // FIXME CACHE the program and reload
3122         // FIXME see possible combinations for SS:BR android
3123         Con_DPrintf("Compiling most used shaders for SS:BR android... START\n");
3124         R_SetupShader_SetPermutationGLSL(0, 12);
3125         R_SetupShader_SetPermutationGLSL(0, 13);
3126         R_SetupShader_SetPermutationGLSL(0, 8388621);
3127         R_SetupShader_SetPermutationGLSL(3, 0);
3128         R_SetupShader_SetPermutationGLSL(3, 2048);
3129         R_SetupShader_SetPermutationGLSL(5, 0);
3130         R_SetupShader_SetPermutationGLSL(5, 2);
3131         R_SetupShader_SetPermutationGLSL(5, 2048);
3132         R_SetupShader_SetPermutationGLSL(5, 8388608);
3133         R_SetupShader_SetPermutationGLSL(11, 1);
3134         R_SetupShader_SetPermutationGLSL(11, 2049);
3135         R_SetupShader_SetPermutationGLSL(11, 8193);
3136         R_SetupShader_SetPermutationGLSL(11, 10241);
3137         Con_DPrintf("Compiling most used shaders for SS:BR android... END\n");
3138 #endif
3139 }
3140
3141 extern unsigned int r_shadow_occlusion_buf;
3142
3143 static void gl_main_shutdown(void)
3144 {
3145         R_RenderTarget_FreeUnused(true);
3146         Mem_ExpandableArray_FreeArray(&r_fb.rendertargets);
3147         R_AnimCache_Free();
3148         R_FrameData_Reset();
3149         R_BufferData_Reset();
3150
3151         R_Main_FreeViewCache();
3152
3153         switch(vid.renderpath)
3154         {
3155         case RENDERPATH_GL32:
3156         case RENDERPATH_GLES2:
3157 #if defined(GL_SAMPLES_PASSED) && !defined(USE_GLES2)
3158                 if (r_maxqueries)
3159                         qglDeleteQueries(r_maxqueries, r_queries);
3160 #endif
3161                 break;
3162         }
3163         r_shadow_occlusion_buf = 0;
3164         r_numqueries = 0;
3165         r_maxqueries = 0;
3166         memset(r_queries, 0, sizeof(r_queries));
3167
3168         r_qwskincache = NULL;
3169         r_qwskincache_size = 0;
3170
3171         // clear out the r_skinframe state
3172         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
3173         memset(&r_skinframe, 0, sizeof(r_skinframe));
3174
3175         if (r_svbsp.nodes)
3176                 Mem_Free(r_svbsp.nodes);
3177         memset(&r_svbsp, 0, sizeof (r_svbsp));
3178         R_FreeTexturePool(&r_main_texturepool);
3179         loadingscreentexture = NULL;
3180         r_texture_blanknormalmap = NULL;
3181         r_texture_white = NULL;
3182         r_texture_grey128 = NULL;
3183         r_texture_black = NULL;
3184         r_texture_whitecube = NULL;
3185         r_texture_normalizationcube = NULL;
3186         r_texture_fogattenuation = NULL;
3187         r_texture_fogheighttexture = NULL;
3188         r_texture_gammaramps = NULL;
3189         r_texture_numcubemaps = 0;
3190         //r_texture_fogintensity = NULL;
3191         memset(&r_fb, 0, sizeof(r_fb));
3192         R_GLSL_Restart_f(&cmd_local);
3193
3194         r_glsl_permutation = NULL;
3195         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3196         Mem_ExpandableArray_FreeArray(&r_glsl_permutationarray);
3197 }
3198
3199 static void gl_main_newmap(void)
3200 {
3201         // FIXME: move this code to client
3202         char *entities, entname[MAX_QPATH];
3203         if (r_qwskincache)
3204                 Mem_Free(r_qwskincache);
3205         r_qwskincache = NULL;
3206         r_qwskincache_size = 0;
3207         if (cl.worldmodel)
3208         {
3209                 dpsnprintf(entname, sizeof(entname), "%s.ent", cl.worldnamenoextension);
3210                 if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
3211                 {
3212                         CL_ParseEntityLump(entities);
3213                         Mem_Free(entities);
3214                         return;
3215                 }
3216                 if (cl.worldmodel->brush.entities)
3217                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
3218         }
3219         R_Main_FreeViewCache();
3220
3221         R_FrameData_Reset();
3222         R_BufferData_Reset();
3223 }
3224
3225 void GL_Main_Init(void)
3226 {
3227         int i;
3228         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
3229         R_InitShaderModeInfo();
3230
3231         Cmd_AddCommand(CF_CLIENT, "r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
3232         Cmd_AddCommand(CF_CLIENT, "r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
3233         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
3234         if (gamemode == GAME_NEHAHRA)
3235         {
3236                 Cvar_RegisterVariable (&gl_fogenable);
3237                 Cvar_RegisterVariable (&gl_fogdensity);
3238                 Cvar_RegisterVariable (&gl_fogred);
3239                 Cvar_RegisterVariable (&gl_foggreen);
3240                 Cvar_RegisterVariable (&gl_fogblue);
3241                 Cvar_RegisterVariable (&gl_fogstart);
3242                 Cvar_RegisterVariable (&gl_fogend);
3243                 Cvar_RegisterVariable (&gl_skyclip);
3244         }
3245         Cvar_RegisterVariable(&r_motionblur);
3246         Cvar_RegisterVariable(&r_damageblur);
3247         Cvar_RegisterVariable(&r_motionblur_averaging);
3248         Cvar_RegisterVariable(&r_motionblur_randomize);
3249         Cvar_RegisterVariable(&r_motionblur_minblur);
3250         Cvar_RegisterVariable(&r_motionblur_maxblur);
3251         Cvar_RegisterVariable(&r_motionblur_velocityfactor);
3252         Cvar_RegisterVariable(&r_motionblur_velocityfactor_minspeed);
3253         Cvar_RegisterVariable(&r_motionblur_velocityfactor_maxspeed);
3254         Cvar_RegisterVariable(&r_motionblur_mousefactor);
3255         Cvar_RegisterVariable(&r_motionblur_mousefactor_minspeed);
3256         Cvar_RegisterVariable(&r_motionblur_mousefactor_maxspeed);
3257         Cvar_RegisterVariable(&r_depthfirst);
3258         Cvar_RegisterVariable(&r_useinfinitefarclip);
3259         Cvar_RegisterVariable(&r_farclip_base);
3260         Cvar_RegisterVariable(&r_farclip_world);
3261         Cvar_RegisterVariable(&r_nearclip);
3262         Cvar_RegisterVariable(&r_deformvertexes);
3263         Cvar_RegisterVariable(&r_transparent);
3264         Cvar_RegisterVariable(&r_transparent_alphatocoverage);
3265         Cvar_RegisterVariable(&r_transparent_sortsurfacesbynearest);
3266         Cvar_RegisterVariable(&r_transparent_useplanardistance);
3267         Cvar_RegisterVariable(&r_showoverdraw);
3268         Cvar_RegisterVariable(&r_showbboxes);
3269         Cvar_RegisterVariable(&r_showbboxes_client);
3270         Cvar_RegisterVariable(&r_showsurfaces);
3271         Cvar_RegisterVariable(&r_showtris);
3272         Cvar_RegisterVariable(&r_shownormals);
3273         Cvar_RegisterVariable(&r_showlighting);
3274         Cvar_RegisterVariable(&r_showcollisionbrushes);
3275         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
3276         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
3277         Cvar_RegisterVariable(&r_showdisabledepthtest);
3278         Cvar_RegisterVariable(&r_showspriteedges);
3279         Cvar_RegisterVariable(&r_showparticleedges);
3280         Cvar_RegisterVariable(&r_drawportals);
3281         Cvar_RegisterVariable(&r_drawentities);
3282         Cvar_RegisterVariable(&r_draw2d);
3283         Cvar_RegisterVariable(&r_drawworld);
3284         Cvar_RegisterVariable(&r_cullentities_trace);
3285         Cvar_RegisterVariable(&r_cullentities_trace_entityocclusion);
3286         Cvar_RegisterVariable(&r_cullentities_trace_samples);
3287         Cvar_RegisterVariable(&r_cullentities_trace_tempentitysamples);
3288         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
3289         Cvar_RegisterVariable(&r_cullentities_trace_expand);
3290         Cvar_RegisterVariable(&r_cullentities_trace_pad);
3291         Cvar_RegisterVariable(&r_cullentities_trace_delay);
3292         Cvar_RegisterVariable(&r_cullentities_trace_eyejitter);
3293         Cvar_RegisterVariable(&r_sortentities);
3294         Cvar_RegisterVariable(&r_drawviewmodel);
3295         Cvar_RegisterVariable(&r_drawexteriormodel);
3296         Cvar_RegisterVariable(&r_speeds);
3297         Cvar_RegisterVariable(&r_fullbrights);
3298         Cvar_RegisterVariable(&r_wateralpha);
3299         Cvar_RegisterVariable(&r_dynamic);
3300         Cvar_RegisterVariable(&r_fullbright_directed);
3301         Cvar_RegisterVariable(&r_fullbright_directed_ambient);
3302         Cvar_RegisterVariable(&r_fullbright_directed_diffuse);
3303         Cvar_RegisterVariable(&r_fullbright_directed_pitch);
3304         Cvar_RegisterVariable(&r_fullbright_directed_pitch_relative);
3305         Cvar_RegisterVariable(&r_fullbright);
3306         Cvar_RegisterVariable(&r_shadows);
3307         Cvar_RegisterVariable(&r_shadows_darken);
3308         Cvar_RegisterVariable(&r_shadows_drawafterrtlighting);
3309         Cvar_RegisterVariable(&r_shadows_castfrombmodels);
3310         Cvar_RegisterVariable(&r_shadows_throwdistance);
3311         Cvar_RegisterVariable(&r_shadows_throwdirection);
3312         Cvar_RegisterVariable(&r_shadows_focus);
3313         Cvar_RegisterVariable(&r_shadows_shadowmapscale);
3314         Cvar_RegisterVariable(&r_shadows_shadowmapbias);
3315         Cvar_RegisterVariable(&r_q1bsp_skymasking);
3316         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
3317         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
3318         Cvar_RegisterVariable(&r_polygonoffset_decals_factor);
3319         Cvar_RegisterVariable(&r_polygonoffset_decals_offset);
3320         Cvar_RegisterVariable(&r_fog_exp2);
3321         Cvar_RegisterVariable(&r_fog_clear);
3322         Cvar_RegisterVariable(&r_drawfog);
3323         Cvar_RegisterVariable(&r_transparentdepthmasking);
3324         Cvar_RegisterVariable(&r_transparent_sortmindist);
3325         Cvar_RegisterVariable(&r_transparent_sortmaxdist);
3326         Cvar_RegisterVariable(&r_transparent_sortarraysize);
3327         Cvar_RegisterVariable(&r_texture_dds_load);
3328         Cvar_RegisterVariable(&r_texture_dds_save);
3329         Cvar_RegisterVariable(&r_textureunits);
3330         Cvar_RegisterVariable(&gl_combine);
3331         Cvar_RegisterVariable(&r_usedepthtextures);
3332         Cvar_RegisterVariable(&r_viewfbo);
3333         Cvar_RegisterVariable(&r_rendertarget_debug);
3334         Cvar_RegisterVariable(&r_viewscale);
3335         Cvar_RegisterVariable(&r_viewscale_fpsscaling);
3336         Cvar_RegisterVariable(&r_viewscale_fpsscaling_min);
3337         Cvar_RegisterVariable(&r_viewscale_fpsscaling_multiply);
3338         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepsize);
3339         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepmax);
3340         Cvar_RegisterVariable(&r_viewscale_fpsscaling_target);
3341         Cvar_RegisterVariable(&r_glsl);
3342         Cvar_RegisterVariable(&r_glsl_deluxemapping);
3343         Cvar_RegisterVariable(&r_glsl_offsetmapping);
3344         Cvar_RegisterVariable(&r_glsl_offsetmapping_steps);
3345         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
3346         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_steps);
3347         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_refinesteps);
3348         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
3349         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod);
3350         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod_distance);
3351         Cvar_RegisterVariable(&r_glsl_postprocess);
3352         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
3353         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
3354         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
3355         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
3356         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1_enable);
3357         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2_enable);
3358         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3_enable);
3359         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4_enable);
3360         Cvar_RegisterVariable(&r_celshading);
3361         Cvar_RegisterVariable(&r_celoutlines);
3362
3363         Cvar_RegisterVariable(&r_water);
3364         Cvar_RegisterVariable(&r_water_cameraentitiesonly);
3365         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
3366         Cvar_RegisterVariable(&r_water_clippingplanebias);
3367         Cvar_RegisterVariable(&r_water_refractdistort);
3368         Cvar_RegisterVariable(&r_water_reflectdistort);
3369         Cvar_RegisterVariable(&r_water_scissormode);
3370         Cvar_RegisterVariable(&r_water_lowquality);
3371         Cvar_RegisterVariable(&r_water_hideplayer);
3372
3373         Cvar_RegisterVariable(&r_lerpsprites);
3374         Cvar_RegisterVariable(&r_lerpmodels);
3375         Cvar_RegisterVariable(&r_nolerp_list);
3376         Cvar_RegisterVariable(&r_lerplightstyles);
3377         Cvar_RegisterVariable(&r_waterscroll);
3378         Cvar_RegisterVariable(&r_bloom);
3379         Cvar_RegisterVariable(&r_colorfringe);
3380         Cvar_RegisterVariable(&r_bloom_colorscale);
3381         Cvar_RegisterVariable(&r_bloom_brighten);
3382         Cvar_RegisterVariable(&r_bloom_blur);
3383         Cvar_RegisterVariable(&r_bloom_resolution);
3384         Cvar_RegisterVariable(&r_bloom_colorexponent);
3385         Cvar_RegisterVariable(&r_bloom_colorsubtract);
3386         Cvar_RegisterVariable(&r_bloom_scenebrightness);
3387         Cvar_RegisterVariable(&r_hdr_scenebrightness);
3388         Cvar_RegisterVariable(&r_hdr_glowintensity);
3389         Cvar_RegisterVariable(&r_hdr_irisadaptation);
3390         Cvar_RegisterVariable(&r_hdr_irisadaptation_multiplier);
3391         Cvar_RegisterVariable(&r_hdr_irisadaptation_minvalue);
3392         Cvar_RegisterVariable(&r_hdr_irisadaptation_maxvalue);
3393         Cvar_RegisterVariable(&r_hdr_irisadaptation_value);
3394         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_up);
3395         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_down);
3396         Cvar_RegisterVariable(&r_hdr_irisadaptation_radius);
3397         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
3398         Cvar_RegisterVariable(&developer_texturelogging);
3399         Cvar_RegisterVariable(&gl_lightmaps);
3400         Cvar_RegisterVariable(&r_test);
3401         Cvar_RegisterVariable(&r_batch_multidraw);
3402         Cvar_RegisterVariable(&r_batch_multidraw_mintriangles);
3403         Cvar_RegisterVariable(&r_batch_debugdynamicvertexpath);
3404         Cvar_RegisterVariable(&r_glsl_skeletal);
3405         Cvar_RegisterVariable(&r_glsl_saturation);
3406         Cvar_RegisterVariable(&r_glsl_saturation_redcompensate);
3407         Cvar_RegisterVariable(&r_glsl_vertextextureblend_usebothalphas);
3408         Cvar_RegisterVariable(&r_framedatasize);
3409         for (i = 0;i < R_BUFFERDATA_COUNT;i++)
3410                 Cvar_RegisterVariable(&r_buffermegs[i]);
3411         Cvar_RegisterVariable(&r_batch_dynamicbuffer);
3412         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
3413                 Cvar_SetValue(&cvars_all, "r_fullbrights", 0);
3414 #ifdef DP_MOBILETOUCH
3415         // GLES devices have terrible depth precision in general, so...
3416         Cvar_SetValueQuick(&r_nearclip, 4);
3417         Cvar_SetValueQuick(&r_farclip_base, 4096);
3418         Cvar_SetValueQuick(&r_farclip_world, 0);
3419         Cvar_SetValueQuick(&r_useinfinitefarclip, 0);
3420 #endif
3421         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap, NULL, NULL);
3422 }
3423
3424 void Render_Init(void)
3425 {
3426         gl_backend_init();
3427         R_Textures_Init();
3428         GL_Main_Init();
3429         Font_Init();
3430         GL_Draw_Init();
3431         R_Shadow_Init();
3432         R_Sky_Init();
3433         GL_Surf_Init();
3434         Sbar_Init();
3435         R_Particles_Init();
3436         R_Explosion_Init();
3437         R_LightningBeams_Init();
3438         Mod_RenderInit();
3439 }
3440
3441 int R_CullBox(const vec3_t mins, const vec3_t maxs)
3442 {
3443         int i;
3444         mplane_t *p;
3445         if (r_trippy.integer)
3446                 return false;
3447         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
3448         {
3449                 p = r_refdef.view.frustum + i;
3450                 switch(p->signbits)
3451                 {
3452                 default:
3453                 case 0:
3454                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3455                                 return true;
3456                         break;
3457                 case 1:
3458                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3459                                 return true;
3460                         break;
3461                 case 2:
3462                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3463                                 return true;
3464                         break;
3465                 case 3:
3466                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3467                                 return true;
3468                         break;
3469                 case 4:
3470                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3471                                 return true;
3472                         break;
3473                 case 5:
3474                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3475                                 return true;
3476                         break;
3477                 case 6:
3478                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3479                                 return true;
3480                         break;
3481                 case 7:
3482                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3483                                 return true;
3484                         break;
3485                 }
3486         }
3487         return false;
3488 }
3489
3490 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
3491 {
3492         int i;
3493         const mplane_t *p;
3494         if (r_trippy.integer)
3495                 return false;
3496         for (i = 0;i < numplanes;i++)
3497         {
3498                 p = planes + i;
3499                 switch(p->signbits)
3500                 {
3501                 default:
3502                 case 0:
3503                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3504                                 return true;
3505                         break;
3506                 case 1:
3507                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
3508                                 return true;
3509                         break;
3510                 case 2:
3511                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3512                                 return true;
3513                         break;
3514                 case 3:
3515                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
3516                                 return true;
3517                         break;
3518                 case 4:
3519                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3520                                 return true;
3521                         break;
3522                 case 5:
3523                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
3524                                 return true;
3525                         break;
3526                 case 6:
3527                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3528                                 return true;
3529                         break;
3530                 case 7:
3531                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
3532                                 return true;
3533                         break;
3534                 }
3535         }
3536         return false;
3537 }
3538
3539 //==================================================================================
3540
3541 // LadyHavoc: this stores temporary data used within the same frame
3542
3543 typedef struct r_framedata_mem_s
3544 {
3545         struct r_framedata_mem_s *purge; // older mem block to free on next frame
3546         size_t size; // how much usable space
3547         size_t current; // how much space in use
3548         size_t mark; // last "mark" location, temporary memory can be freed by returning to this
3549         size_t wantedsize; // how much space was allocated
3550         unsigned char *data; // start of real data (16byte aligned)
3551 }
3552 r_framedata_mem_t;
3553
3554 static r_framedata_mem_t *r_framedata_mem;
3555
3556 void R_FrameData_Reset(void)
3557 {
3558         while (r_framedata_mem)
3559         {
3560                 r_framedata_mem_t *next = r_framedata_mem->purge;
3561                 Mem_Free(r_framedata_mem);
3562                 r_framedata_mem = next;
3563         }
3564 }
3565
3566 static void R_FrameData_Resize(qbool mustgrow)
3567 {
3568         size_t wantedsize;
3569         wantedsize = (size_t)(r_framedatasize.value * 1024*1024);
3570         wantedsize = bound(65536, wantedsize, 1000*1024*1024);
3571         if (!r_framedata_mem || r_framedata_mem->wantedsize != wantedsize || mustgrow)
3572         {
3573                 r_framedata_mem_t *newmem = (r_framedata_mem_t *)Mem_Alloc(r_main_mempool, wantedsize);
3574                 newmem->wantedsize = wantedsize;
3575                 newmem->data = (unsigned char *)(((size_t)(newmem+1) + 15) & ~15);
3576                 newmem->size = (unsigned char *)newmem + wantedsize - newmem->data;
3577                 newmem->current = 0;
3578                 newmem->mark = 0;
3579                 newmem->purge = r_framedata_mem;
3580                 r_framedata_mem = newmem;
3581         }
3582 }
3583
3584 void R_FrameData_NewFrame(void)
3585 {
3586         R_FrameData_Resize(false);
3587         if (!r_framedata_mem)
3588                 return;
3589         // if we ran out of space on the last frame, free the old memory now
3590         while (r_framedata_mem->purge)
3591         {
3592                 // repeatedly remove the second item in the list, leaving only head
3593                 r_framedata_mem_t *next = r_framedata_mem->purge->purge;
3594                 Mem_Free(r_framedata_mem->purge);
3595                 r_framedata_mem->purge = next;
3596         }
3597         // reset the current mem pointer
3598         r_framedata_mem->current = 0;
3599         r_framedata_mem->mark = 0;
3600 }
3601
3602 void *R_FrameData_Alloc(size_t size)
3603 {
3604         void *data;
3605         float newvalue;
3606
3607         // align to 16 byte boundary - the data pointer is already aligned, so we
3608         // only need to ensure the size of every allocation is also aligned
3609         size = (size + 15) & ~15;
3610
3611         while (!r_framedata_mem || r_framedata_mem->current + size > r_framedata_mem->size)
3612         {
3613                 // emergency - we ran out of space, allocate more memory
3614                 // note: this has no upper-bound, we'll fail to allocate memory eventually and just die
3615                 newvalue = r_framedatasize.value * 2.0f;
3616                 // upper bound based on architecture - if we try to allocate more than this we could overflow, better to loop until we error out on allocation failure
3617                 if (sizeof(size_t) >= 8)
3618                         newvalue = bound(0.25f, newvalue, (float)(1ll << 42));
3619                 else
3620                         newvalue = bound(0.25f, newvalue, (float)(1 << 10));
3621                 // this might not be a growing it, but we'll allocate another buffer every time
3622                 Cvar_SetValueQuick(&r_framedatasize, newvalue);
3623                 R_FrameData_Resize(true);
3624         }
3625
3626         data = r_framedata_mem->data + r_framedata_mem->current;
3627         r_framedata_mem->current += size;
3628
3629         // count the usage for stats
3630         r_refdef.stats[r_stat_framedatacurrent] = max(r_refdef.stats[r_stat_framedatacurrent], (int)r_framedata_mem->current);
3631         r_refdef.stats[r_stat_framedatasize] = max(r_refdef.stats[r_stat_framedatasize], (int)r_framedata_mem->size);
3632
3633         return (void *)data;
3634 }
3635
3636 void *R_FrameData_Store(size_t size, void *data)
3637 {
3638         void *d = R_FrameData_Alloc(size);
3639         if (d && data)
3640                 memcpy(d, data, size);
3641         return d;
3642 }
3643
3644 void R_FrameData_SetMark(void)
3645 {
3646         if (!r_framedata_mem)
3647                 return;
3648         r_framedata_mem->mark = r_framedata_mem->current;
3649 }
3650
3651 void R_FrameData_ReturnToMark(void)
3652 {
3653         if (!r_framedata_mem)
3654                 return;
3655         r_framedata_mem->current = r_framedata_mem->mark;
3656 }
3657
3658 //==================================================================================
3659
3660 // avoid reusing the same buffer objects on consecutive frames
3661 #define R_BUFFERDATA_CYCLE 3
3662
3663 typedef struct r_bufferdata_buffer_s
3664 {
3665         struct r_bufferdata_buffer_s *purge; // older buffer to free on next frame
3666         size_t size; // how much usable space
3667         size_t current; // how much space in use
3668         r_meshbuffer_t *buffer; // the buffer itself
3669 }
3670 r_bufferdata_buffer_t;
3671
3672 static int r_bufferdata_cycle = 0; // incremented and wrapped each frame
3673 static r_bufferdata_buffer_t *r_bufferdata_buffer[R_BUFFERDATA_CYCLE][R_BUFFERDATA_COUNT];
3674
3675 /// frees all dynamic buffers
3676 void R_BufferData_Reset(void)
3677 {
3678         int cycle, type;
3679         r_bufferdata_buffer_t **p, *mem;
3680         for (cycle = 0;cycle < R_BUFFERDATA_CYCLE;cycle++)
3681         {
3682                 for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3683                 {
3684                         // free all buffers
3685                         p = &r_bufferdata_buffer[cycle][type];
3686                         while (*p)
3687                         {
3688                                 mem = *p;
3689                                 *p = (*p)->purge;
3690                                 if (mem->buffer)
3691                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3692                                 Mem_Free(mem);
3693                         }
3694                 }
3695         }
3696 }
3697
3698 // resize buffer as needed (this actually makes a new one, the old one will be recycled next frame)
3699 static void R_BufferData_Resize(r_bufferdata_type_t type, qbool mustgrow, size_t minsize)
3700 {
3701         r_bufferdata_buffer_t *mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3702         size_t size;
3703         float newvalue = r_buffermegs[type].value;
3704
3705         // increase the cvar if we have to (but only if we already have a mem)
3706         if (mustgrow && mem)
3707                 newvalue *= 2.0f;
3708         newvalue = bound(0.25f, newvalue, 256.0f);
3709         while (newvalue * 1024*1024 < minsize)
3710                 newvalue *= 2.0f;
3711
3712         // clamp the cvar to valid range
3713         newvalue = bound(0.25f, newvalue, 256.0f);
3714         if (r_buffermegs[type].value != newvalue)
3715                 Cvar_SetValueQuick(&r_buffermegs[type], newvalue);
3716
3717         // calculate size in bytes
3718         size = (size_t)(newvalue * 1024*1024);
3719         size = bound(131072, size, 256*1024*1024);
3720
3721         // allocate a new buffer if the size is different (purge old one later)
3722         // or if we were told we must grow the buffer
3723         if (!mem || mem->size != size || mustgrow)
3724         {
3725                 mem = (r_bufferdata_buffer_t *)Mem_Alloc(r_main_mempool, sizeof(*mem));
3726                 mem->size = size;
3727                 mem->current = 0;
3728                 if (type == R_BUFFERDATA_VERTEX)
3729                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbuffervertex", false, false, true, false);
3730                 else if (type == R_BUFFERDATA_INDEX16)
3731                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex16", true, false, true, true);
3732                 else if (type == R_BUFFERDATA_INDEX32)
3733                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex32", true, false, true, false);
3734                 else if (type == R_BUFFERDATA_UNIFORM)
3735                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferuniform", false, true, true, false);
3736                 mem->purge = r_bufferdata_buffer[r_bufferdata_cycle][type];
3737                 r_bufferdata_buffer[r_bufferdata_cycle][type] = mem;
3738         }
3739 }
3740
3741 void R_BufferData_NewFrame(void)
3742 {
3743         int type;
3744         r_bufferdata_buffer_t **p, *mem;
3745         // cycle to the next frame's buffers
3746         r_bufferdata_cycle = (r_bufferdata_cycle + 1) % R_BUFFERDATA_CYCLE;
3747         // if we ran out of space on the last time we used these buffers, free the old memory now
3748         for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3749         {
3750                 if (r_bufferdata_buffer[r_bufferdata_cycle][type])
3751                 {
3752                         R_BufferData_Resize((r_bufferdata_type_t)type, false, 131072);
3753                         // free all but the head buffer, this is how we recycle obsolete
3754                         // buffers after they are no longer in use
3755                         p = &r_bufferdata_buffer[r_bufferdata_cycle][type]->purge;
3756                         while (*p)
3757                         {
3758                                 mem = *p;
3759                                 *p = (*p)->purge;
3760                                 if (mem->buffer)
3761                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3762                                 Mem_Free(mem);
3763                         }
3764                         // reset the current offset
3765                         r_bufferdata_buffer[r_bufferdata_cycle][type]->current = 0;
3766                 }
3767         }
3768 }
3769
3770 r_meshbuffer_t *R_BufferData_Store(size_t datasize, const void *data, r_bufferdata_type_t type, int *returnbufferoffset)
3771 {
3772         r_bufferdata_buffer_t *mem;
3773         int offset = 0;
3774         int padsize;
3775
3776         *returnbufferoffset = 0;
3777
3778         // align size to a byte boundary appropriate for the buffer type, this
3779         // makes all allocations have aligned start offsets
3780         if (type == R_BUFFERDATA_UNIFORM)
3781                 padsize = (datasize + r_uniformbufferalignment - 1) & ~(r_uniformbufferalignment - 1);
3782         else
3783                 padsize = (datasize + 15) & ~15;
3784
3785         // if we ran out of space in this buffer we must allocate a new one
3786         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3787                 R_BufferData_Resize(type, true, padsize);
3788
3789         // if the resize did not give us enough memory, fail
3790         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3791                 Sys_Error("R_BufferData_Store: failed to create a new buffer of sufficient size\n");
3792
3793         mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3794         offset = (int)mem->current;
3795         mem->current += padsize;
3796
3797         // upload the data to the buffer at the chosen offset
3798         if (offset == 0)
3799                 R_Mesh_UpdateMeshBuffer(mem->buffer, NULL, mem->size, false, 0);
3800         R_Mesh_UpdateMeshBuffer(mem->buffer, data, datasize, true, offset);
3801
3802         // count the usage for stats
3803         r_refdef.stats[r_stat_bufferdatacurrent_vertex + type] = max(r_refdef.stats[r_stat_bufferdatacurrent_vertex + type], (int)mem->current);
3804         r_refdef.stats[r_stat_bufferdatasize_vertex + type] = max(r_refdef.stats[r_stat_bufferdatasize_vertex + type], (int)mem->size);
3805
3806         // return the buffer offset
3807         *returnbufferoffset = offset;
3808
3809         return mem->buffer;
3810 }
3811
3812 //==================================================================================
3813
3814 // LadyHavoc: animcache originally written by Echon, rewritten since then
3815
3816 /**
3817  * Animation cache prevents re-generating mesh data for an animated model
3818  * multiple times in one frame for lighting, shadowing, reflections, etc.
3819  */
3820
3821 void R_AnimCache_Free(void)
3822 {
3823 }
3824
3825 void R_AnimCache_ClearCache(void)
3826 {
3827         int i;
3828         entity_render_t *ent;
3829
3830         for (i = 0;i < r_refdef.scene.numentities;i++)
3831         {
3832                 ent = r_refdef.scene.entities[i];
3833                 ent->animcache_vertex3f = NULL;
3834                 ent->animcache_vertex3f_vertexbuffer = NULL;
3835                 ent->animcache_vertex3f_bufferoffset = 0;
3836                 ent->animcache_normal3f = NULL;
3837                 ent->animcache_normal3f_vertexbuffer = NULL;
3838                 ent->animcache_normal3f_bufferoffset = 0;
3839                 ent->animcache_svector3f = NULL;
3840                 ent->animcache_svector3f_vertexbuffer = NULL;
3841                 ent->animcache_svector3f_bufferoffset = 0;
3842                 ent->animcache_tvector3f = NULL;
3843                 ent->animcache_tvector3f_vertexbuffer = NULL;
3844                 ent->animcache_tvector3f_bufferoffset = 0;
3845                 ent->animcache_skeletaltransform3x4 = NULL;
3846                 ent->animcache_skeletaltransform3x4buffer = NULL;
3847                 ent->animcache_skeletaltransform3x4offset = 0;
3848                 ent->animcache_skeletaltransform3x4size = 0;
3849         }
3850 }
3851
3852 qbool R_AnimCache_GetEntity(entity_render_t *ent, qbool wantnormals, qbool wanttangents)
3853 {
3854         model_t *model = ent->model;
3855         int numvertices;
3856
3857         // see if this ent is worth caching
3858         if (!model || !model->Draw || !model->AnimateVertices)
3859                 return false;
3860         // nothing to cache if it contains no animations and has no skeleton
3861         if (!model->surfmesh.isanimated && !(model->num_bones && ent->skeleton && ent->skeleton->relativetransforms))
3862                 return false;
3863         // see if it is already cached for gpuskeletal
3864         if (ent->animcache_skeletaltransform3x4)
3865                 return false;
3866         // see if it is already cached as a mesh
3867         if (ent->animcache_vertex3f)
3868         {
3869                 // check if we need to add normals or tangents
3870                 if (ent->animcache_normal3f)
3871                         wantnormals = false;
3872                 if (ent->animcache_svector3f)
3873                         wanttangents = false;
3874                 if (!wantnormals && !wanttangents)
3875                         return false;
3876         }
3877
3878         // check which kind of cache we need to generate
3879         if (r_gpuskeletal && model->num_bones > 0 && model->surfmesh.data_skeletalindex4ub)
3880         {
3881                 // cache the skeleton so the vertex shader can use it
3882                 r_refdef.stats[r_stat_animcache_skeletal_count] += 1;
3883                 r_refdef.stats[r_stat_animcache_skeletal_bones] += model->num_bones;
3884                 r_refdef.stats[r_stat_animcache_skeletal_maxbones] = max(r_refdef.stats[r_stat_animcache_skeletal_maxbones], model->num_bones);
3885                 ent->animcache_skeletaltransform3x4 = (float *)R_FrameData_Alloc(sizeof(float[3][4]) * model->num_bones);
3886                 Mod_Skeletal_BuildTransforms(model, ent->frameblend, ent->skeleton, NULL, ent->animcache_skeletaltransform3x4); 
3887                 // note: this can fail if the buffer is at the grow limit
3888                 ent->animcache_skeletaltransform3x4size = sizeof(float[3][4]) * model->num_bones;
3889                 ent->animcache_skeletaltransform3x4buffer = R_BufferData_Store(ent->animcache_skeletaltransform3x4size, ent->animcache_skeletaltransform3x4, R_BUFFERDATA_UNIFORM, &ent->animcache_skeletaltransform3x4offset);
3890         }
3891         else if (ent->animcache_vertex3f)
3892         {
3893                 // mesh was already cached but we may need to add normals/tangents
3894                 // (this only happens with multiple views, reflections, cameras, etc)
3895                 if (wantnormals || wanttangents)
3896                 {
3897                         numvertices = model->surfmesh.num_vertices;
3898                         if (wantnormals)
3899                                 ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3900                         if (wanttangents)
3901                         {
3902                                 ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3903                                 ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3904                         }
3905                         model->AnimateVertices(model, ent->frameblend, ent->skeleton, NULL, wantnormals ? ent->animcache_normal3f : NULL, wanttangents ? ent->animcache_svector3f : NULL, wanttangents ? ent->animcache_tvector3f : NULL);
3906                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3907                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3908                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3909                 }
3910         }
3911         else
3912         {
3913                 // generate mesh cache
3914                 numvertices = model->surfmesh.num_vertices;
3915                 ent->animcache_vertex3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3916                 if (wantnormals)
3917                         ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3918                 if (wanttangents)
3919                 {
3920                         ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3921                         ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3922                 }
3923                 model->AnimateVertices(model, ent->frameblend, ent->skeleton, ent->animcache_vertex3f, ent->animcache_normal3f, ent->animcache_svector3f, ent->animcache_tvector3f);
3924                 if (wantnormals || wanttangents)
3925                 {
3926                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3927                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3928                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3929                 }
3930                 r_refdef.stats[r_stat_animcache_shape_count] += 1;
3931                 r_refdef.stats[r_stat_animcache_shape_vertices] += numvertices;
3932                 r_refdef.stats[r_stat_animcache_shape_maxvertices] = max(r_refdef.stats[r_stat_animcache_shape_maxvertices], numvertices);
3933         }
3934         return true;
3935 }
3936
3937 void R_AnimCache_CacheVisibleEntities(void)
3938 {
3939         int i;
3940
3941         // TODO: thread this
3942         // NOTE: R_PrepareRTLights() also caches entities
3943
3944         for (i = 0;i < r_refdef.scene.numentities;i++)
3945                 if (r_refdef.viewcache.entityvisible[i])
3946                         R_AnimCache_GetEntity(r_refdef.scene.entities[i], true, true);
3947 }
3948
3949 //==================================================================================
3950
3951 qbool R_CanSeeBox(int numsamples, vec_t eyejitter, vec_t entboxenlarge, vec_t entboxexpand, vec_t pad, vec3_t eye, vec3_t entboxmins, vec3_t entboxmaxs)
3952 {
3953         long unsigned int i;
3954         int j;
3955         vec3_t eyemins, eyemaxs;
3956         vec3_t boxmins, boxmaxs;
3957         vec3_t padmins, padmaxs;
3958         vec3_t start;
3959         vec3_t end;
3960         model_t *model = r_refdef.scene.worldmodel;
3961         static vec3_t positions[] = {
3962                 { 0.5f, 0.5f, 0.5f },
3963                 { 0.0f, 0.0f, 0.0f },
3964                 { 0.0f, 0.0f, 1.0f },
3965                 { 0.0f, 1.0f, 0.0f },
3966                 { 0.0f, 1.0f, 1.0f },
3967                 { 1.0f, 0.0f, 0.0f },
3968                 { 1.0f, 0.0f, 1.0f },
3969                 { 1.0f, 1.0f, 0.0f },
3970                 { 1.0f, 1.0f, 1.0f },
3971         };
3972
3973         // sample count can be set to -1 to skip this logic, for flicker-prone objects
3974         if (numsamples < 0)
3975                 return true;
3976
3977         // view origin is not used for culling in portal/reflection/refraction renders or isometric views
3978         if (!r_refdef.view.usevieworiginculling)
3979                 return true;
3980
3981         if (!r_cullentities_trace_entityocclusion.integer && (!model || !model->brush.TraceLineOfSight))
3982                 return true;
3983
3984         // expand the eye box a little
3985         eyemins[0] = eye[0] - eyejitter;
3986         eyemaxs[0] = eye[0] + eyejitter;
3987         eyemins[1] = eye[1] - eyejitter;
3988         eyemaxs[1] = eye[1] + eyejitter;
3989         eyemins[2] = eye[2] - eyejitter;
3990         eyemaxs[2] = eye[2] + eyejitter;
3991         // expand the box a little
3992         boxmins[0] = (entboxenlarge + 1) * entboxmins[0] - entboxenlarge * entboxmaxs[0] - entboxexpand;
3993         boxmaxs[0] = (entboxenlarge + 1) * entboxmaxs[0] - entboxenlarge * entboxmins[0] + entboxexpand;
3994         boxmins[1] = (entboxenlarge + 1) * entboxmins[1] - entboxenlarge * entboxmaxs[1] - entboxexpand;
3995         boxmaxs[1] = (entboxenlarge + 1) * entboxmaxs[1] - entboxenlarge * entboxmins[1] + entboxexpand;
3996         boxmins[2] = (entboxenlarge + 1) * entboxmins[2] - entboxenlarge * entboxmaxs[2] - entboxexpand;
3997         boxmaxs[2] = (entboxenlarge + 1) * entboxmaxs[2] - entboxenlarge * entboxmins[2] + entboxexpand;
3998         // make an even larger box for the acceptable area
3999         padmins[0] = boxmins[0] - pad;
4000         padmaxs[0] = boxmaxs[0] + pad;
4001         padmins[1] = boxmins[1] - pad;
4002         padmaxs[1] = boxmaxs[1] + pad;
4003         padmins[2] = boxmins[2] - pad;
4004         padmaxs[2] = boxmaxs[2] + pad;
4005
4006         // return true if eye overlaps enlarged box
4007         if (BoxesOverlap(boxmins, boxmaxs, eyemins, eyemaxs))
4008                 return true;
4009
4010         // try specific positions in the box first - note that these can be cached
4011         if (r_cullentities_trace_entityocclusion.integer)
4012         {
4013                 for (i = 0; i < sizeof(positions) / sizeof(positions[0]); i++)
4014                 {
4015                         trace_t trace;
4016                         VectorCopy(eye, start);
4017                         end[0] = boxmins[0] + (boxmaxs[0] - boxmins[0]) * positions[i][0];
4018                         end[1] = boxmins[1] + (boxmaxs[1] - boxmins[1]) * positions[i][1];
4019                         end[2] = boxmins[2] + (boxmaxs[2] - boxmins[2]) * positions[i][2];
4020                         //trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
4021                         trace = CL_Cache_TraceLineSurfaces(start, end, MOVE_NORMAL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT);
4022                         // not picky - if the trace ended anywhere in the box we're good
4023                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
4024                                 return true;
4025                 }
4026         }
4027         else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
4028                 return true;
4029
4030         // try various random positions
4031         for (j = 0; j < numsamples; j++)
4032         {
4033                 VectorSet(start, lhrandom(eyemins[0], eyemaxs[0]), lhrandom(eyemins[1], eyemaxs[1]), lhrandom(eyemins[2], eyemaxs[2]));
4034                 VectorSet(end, lhrandom(boxmins[0], boxmaxs[0]), lhrandom(boxmins[1], boxmaxs[1]), lhrandom(boxmins[2], boxmaxs[2]));
4035                 if (r_cullentities_trace_entityocclusion.integer)
4036                 {
4037                         trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
4038                         // not picky - if the trace ended anywhere in the box we're good
4039                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
4040                                 return true;
4041                 }
4042                 else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
4043                         return true;
4044         }
4045
4046         return false;
4047 }
4048
4049
4050 static void R_View_UpdateEntityVisible (void)
4051 {
4052         int i;
4053         int renderimask;
4054         int samples;
4055         entity_render_t *ent;
4056
4057         if (r_refdef.envmap || r_fb.water.hideplayer)
4058                 renderimask = RENDER_EXTERIORMODEL | RENDER_VIEWMODEL;
4059         else if (chase_active.integer || r_fb.water.renderingscene)
4060                 renderimask = RENDER_VIEWMODEL;
4061         else
4062                 renderimask = RENDER_EXTERIORMODEL;
4063         if (!r_drawviewmodel.integer)
4064                 renderimask |= RENDER_VIEWMODEL;
4065         if (!r_drawexteriormodel.integer)
4066                 renderimask |= RENDER_EXTERIORMODEL;
4067         memset(r_refdef.viewcache.entityvisible, 0, r_refdef.scene.numentities);
4068         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
4069         {
4070                 // worldmodel can check visibility
4071                 for (i = 0;i < r_refdef.scene.numentities;i++)
4072                 {
4073                         ent = r_refdef.scene.entities[i];
4074                         if (r_refdef.viewcache.world_novis && !(ent->flags & RENDER_VIEWMODEL))
4075                         {
4076                                 r_refdef.viewcache.entityvisible[i] = false;
4077                                 continue;
4078                         }
4079                         if (!(ent->flags & renderimask))
4080                         if (!R_CullBox(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4081                         if ((ent->flags & (RENDER_NODEPTHTEST | RENDER_WORLDOBJECT | RENDER_VIEWMODEL)) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs))
4082                                 r_refdef.viewcache.entityvisible[i] = true;
4083                 }
4084         }
4085         else
4086         {
4087                 // no worldmodel or it can't check visibility
4088                 for (i = 0;i < r_refdef.scene.numentities;i++)
4089                 {
4090                         ent = r_refdef.scene.entities[i];
4091                         if (!(ent->flags & renderimask))
4092                         if (!R_CullBox(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4093                                 r_refdef.viewcache.entityvisible[i] = true;
4094                 }
4095         }
4096         if (r_cullentities_trace.integer)
4097         {
4098                 for (i = 0;i < r_refdef.scene.numentities;i++)
4099                 {
4100                         if (!r_refdef.viewcache.entityvisible[i])
4101                                 continue;
4102                         ent = r_refdef.scene.entities[i];
4103                         if (!(ent->flags & (RENDER_VIEWMODEL | RENDER_WORLDOBJECT | RENDER_NODEPTHTEST)) && !(ent->model && (ent->model->name[0] == '*')))
4104                         {
4105                                 samples = ent->last_trace_visibility == 0 ? r_cullentities_trace_tempentitysamples.integer : r_cullentities_trace_samples.integer;
4106                                 if (R_CanSeeBox(samples, r_cullentities_trace_eyejitter.value, r_cullentities_trace_enlarge.value, r_cullentities_trace_expand.value, r_cullentities_trace_pad.value, r_refdef.view.origin, ent->mins, ent->maxs))
4107                                         ent->last_trace_visibility = host.realtime;
4108                                 if (ent->last_trace_visibility < host.realtime - r_cullentities_trace_delay.value)
4109                                         r_refdef.viewcache.entityvisible[i] = 0;
4110                         }
4111                 }
4112         }
4113 }
4114
4115 /// only used if skyrendermasked, and normally returns false
4116 static int R_DrawBrushModelsSky (void)
4117 {
4118         int i, sky;
4119         entity_render_t *ent;
4120
4121         sky = false;
4122         for (i = 0;i < r_refdef.scene.numentities;i++)
4123         {
4124                 if (!r_refdef.viewcache.entityvisible[i])
4125                         continue;
4126                 ent = r_refdef.scene.entities[i];
4127                 if (!ent->model || !ent->model->DrawSky)
4128                         continue;
4129                 ent->model->DrawSky(ent);
4130                 sky = true;
4131         }
4132         return sky;
4133 }
4134
4135 static void R_DrawNoModel(entity_render_t *ent);
4136 static void R_DrawModels(void)
4137 {
4138         int i;
4139         entity_render_t *ent;
4140
4141         for (i = 0;i < r_refdef.scene.numentities;i++)
4142         {
4143                 if (!r_refdef.viewcache.entityvisible[i])
4144                         continue;
4145                 ent = r_refdef.scene.entities[i];
4146                 r_refdef.stats[r_stat_entities]++;
4147
4148                 if (ent->model && ent->model->Draw != NULL)
4149                         ent->model->Draw(ent);
4150                 else
4151                         R_DrawNoModel(ent);
4152         }
4153 }
4154
4155 static void R_DrawModelsDepth(void)
4156 {
4157         int i;
4158         entity_render_t *ent;
4159
4160         for (i = 0;i < r_refdef.scene.numentities;i++)
4161         {
4162                 if (!r_refdef.viewcache.entityvisible[i])
4163                         continue;
4164                 ent = r_refdef.scene.entities[i];
4165                 if (ent->model && ent->model->DrawDepth != NULL)
4166                         ent->model->DrawDepth(ent);
4167         }
4168 }
4169
4170 static void R_DrawModelsDebug(void)
4171 {
4172         int i;
4173         entity_render_t *ent;
4174
4175         for (i = 0;i < r_refdef.scene.numentities;i++)
4176         {
4177                 if (!r_refdef.viewcache.entityvisible[i])
4178                         continue;
4179                 ent = r_refdef.scene.entities[i];
4180                 if (ent->model && ent->model->DrawDebug != NULL)
4181                         ent->model->DrawDebug(ent);
4182         }
4183 }
4184
4185 static void R_DrawModelsAddWaterPlanes(void)
4186 {
4187         int i;
4188         entity_render_t *ent;
4189
4190         for (i = 0;i < r_refdef.scene.numentities;i++)
4191         {
4192                 if (!r_refdef.viewcache.entityvisible[i])
4193                         continue;
4194                 ent = r_refdef.scene.entities[i];
4195                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
4196                         ent->model->DrawAddWaterPlanes(ent);
4197         }
4198 }
4199
4200 static float irisvecs[7][3] = {{0, 0, 0}, {-1, 0, 0}, {1, 0, 0}, {0, -1, 0}, {0, 1, 0}, {0, 0, -1}, {0, 0, 1}};
4201
4202 void R_HDR_UpdateIrisAdaptation(const vec3_t point)
4203 {
4204         if (r_hdr_irisadaptation.integer)
4205         {
4206                 vec3_t p;
4207                 vec3_t ambient;
4208                 vec3_t diffuse;
4209                 vec3_t diffusenormal;
4210                 vec3_t forward;
4211                 vec_t brightness = 0.0f;
4212                 vec_t goal;
4213                 vec_t current;
4214                 vec_t d;
4215                 int c;
4216                 VectorCopy(r_refdef.view.forward, forward);
4217                 for (c = 0;c < (int)(sizeof(irisvecs)/sizeof(irisvecs[0]));c++)
4218                 {
4219                         p[0] = point[0] + irisvecs[c][0] * r_hdr_irisadaptation_radius.value;
4220                         p[1] = point[1] + irisvecs[c][1] * r_hdr_irisadaptation_radius.value;
4221                         p[2] = point[2] + irisvecs[c][2] * r_hdr_irisadaptation_radius.value;
4222                         R_CompleteLightPoint(ambient, diffuse, diffusenormal, p, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT, r_refdef.scene.lightmapintensity, r_refdef.scene.ambientintensity);
4223                         d = DotProduct(forward, diffusenormal);
4224                         brightness += VectorLength(ambient);
4225                         if (d > 0)
4226                                 brightness += d * VectorLength(diffuse);
4227                 }
4228                 brightness *= 1.0f / c;
4229                 brightness += 0.00001f; // make sure it's never zero
4230                 goal = r_hdr_irisadaptation_multiplier.value / brightness;
4231                 goal = bound(r_hdr_irisadaptation_minvalue.value, goal, r_hdr_irisadaptation_maxvalue.value);
4232                 current = r_hdr_irisadaptation_value.value;
4233                 if (current < goal)
4234                         current = min(current + r_hdr_irisadaptation_fade_up.value * cl.realframetime, goal);
4235                 else if (current > goal)
4236                         current = max(current - r_hdr_irisadaptation_fade_down.value * cl.realframetime, goal);
4237                 if (fabs(r_hdr_irisadaptation_value.value - current) > 0.0001f)
4238                         Cvar_SetValueQuick(&r_hdr_irisadaptation_value, current);
4239         }
4240         else if (r_hdr_irisadaptation_value.value != 1.0f)
4241                 Cvar_SetValueQuick(&r_hdr_irisadaptation_value, 1.0f);
4242 }
4243
4244 extern cvar_t r_lockvisibility;
4245 extern cvar_t r_lockpvs;
4246
4247 static void R_View_SetFrustum(const int *scissor)
4248 {
4249         int i;
4250         double fpx = +1, fnx = -1, fpy = +1, fny = -1;
4251         vec3_t forward, left, up, origin, v;
4252         if(r_lockvisibility.integer || r_lockpvs.integer)
4253                 return;
4254         if(scissor)
4255         {
4256                 // flipped x coordinates (because x points left here)
4257                 fpx =  1.0 - 2.0 * (scissor[0]              - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4258                 fnx =  1.0 - 2.0 * (scissor[0] + scissor[2] - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4259                 // non-flipped y coordinates
4260                 fny = -1.0 + 2.0 * (scissor[1]              - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4261                 fpy = -1.0 + 2.0 * (scissor[1] + scissor[3] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4262         }
4263
4264         // we can't trust r_refdef.view.forward and friends in reflected scenes
4265         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
4266
4267 #if 0
4268         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
4269         r_refdef.view.frustum[0].normal[1] = 0 - 0;
4270         r_refdef.view.frustum[0].normal[2] = -1 - 0;
4271         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
4272         r_refdef.view.frustum[1].normal[1] = 0 + 0;
4273         r_refdef.view.frustum[1].normal[2] = -1 + 0;
4274         r_refdef.view.frustum[2].normal[0] = 0 - 0;
4275         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
4276         r_refdef.view.frustum[2].normal[2] = -1 - 0;
4277         r_refdef.view.frustum[3].normal[0] = 0 + 0;
4278         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
4279         r_refdef.view.frustum[3].normal[2] = -1 + 0;
4280 #endif
4281
4282 #if 0
4283         zNear = r_refdef.nearclip;
4284         nudge = 1.0 - 1.0 / (1<<23);
4285         r_refdef.view.frustum[4].normal[0] = 0 - 0;
4286         r_refdef.view.frustum[4].normal[1] = 0 - 0;
4287         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
4288         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
4289         r_refdef.view.frustum[5].normal[0] = 0 + 0;
4290         r_refdef.view.frustum[5].normal[1] = 0 + 0;
4291         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
4292         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
4293 #endif
4294
4295
4296
4297 #if 0
4298         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
4299         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
4300         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
4301         r_refdef.view.frustum[0].dist = m[15] - m[12];
4302
4303         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
4304         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
4305         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
4306         r_refdef.view.frustum[1].dist = m[15] + m[12];
4307
4308         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
4309         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
4310         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
4311         r_refdef.view.frustum[2].dist = m[15] - m[13];
4312
4313         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
4314         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
4315         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
4316         r_refdef.view.frustum[3].dist = m[15] + m[13];
4317
4318         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
4319         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
4320         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
4321         r_refdef.view.frustum[4].dist = m[15] - m[14];
4322
4323         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
4324         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
4325         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
4326         r_refdef.view.frustum[5].dist = m[15] + m[14];
4327 #endif
4328
4329         if (r_refdef.view.useperspective)
4330         {
4331                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
4332                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[0]);
4333                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[1]);
4334                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[2]);
4335                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[3]);
4336
4337                 // then the normals from the corners relative to origin
4338                 CrossProduct(r_refdef.view.frustumcorner[2], r_refdef.view.frustumcorner[0], r_refdef.view.frustum[0].normal);
4339                 CrossProduct(r_refdef.view.frustumcorner[1], r_refdef.view.frustumcorner[3], r_refdef.view.frustum[1].normal);
4340                 CrossProduct(r_refdef.view.frustumcorner[0], r_refdef.view.frustumcorner[1], r_refdef.view.frustum[2].normal);
4341                 CrossProduct(r_refdef.view.frustumcorner[3], r_refdef.view.frustumcorner[2], r_refdef.view.frustum[3].normal);
4342
4343                 // in a NORMAL view, forward cross left == up
4344                 // in a REFLECTED view, forward cross left == down
4345                 // so our cross products above need to be adjusted for a left handed coordinate system
4346                 CrossProduct(forward, left, v);
4347                 if(DotProduct(v, up) < 0)
4348                 {
4349                         VectorNegate(r_refdef.view.frustum[0].normal, r_refdef.view.frustum[0].normal);
4350                         VectorNegate(r_refdef.view.frustum[1].normal, r_refdef.view.frustum[1].normal);
4351                         VectorNegate(r_refdef.view.frustum[2].normal, r_refdef.view.frustum[2].normal);
4352                         VectorNegate(r_refdef.view.frustum[3].normal, r_refdef.view.frustum[3].normal);
4353                 }
4354
4355                 // Leaving those out was a mistake, those were in the old code, and they
4356                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
4357                 // I couldn't reproduce it after adding those normalizations. --blub
4358                 VectorNormalize(r_refdef.view.frustum[0].normal);
4359                 VectorNormalize(r_refdef.view.frustum[1].normal);
4360                 VectorNormalize(r_refdef.view.frustum[2].normal);
4361                 VectorNormalize(r_refdef.view.frustum[3].normal);
4362
4363                 // make the corners absolute
4364                 VectorAdd(r_refdef.view.frustumcorner[0], r_refdef.view.origin, r_refdef.view.frustumcorner[0]);
4365                 VectorAdd(r_refdef.view.frustumcorner[1], r_refdef.view.origin, r_refdef.view.frustumcorner[1]);
4366                 VectorAdd(r_refdef.view.frustumcorner[2], r_refdef.view.origin, r_refdef.view.frustumcorner[2]);
4367                 VectorAdd(r_refdef.view.frustumcorner[3], r_refdef.view.origin, r_refdef.view.frustumcorner[3]);
4368
4369                 // one more normal
4370                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
4371
4372                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
4373                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
4374                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
4375                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
4376                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
4377         }
4378         else
4379         {
4380                 VectorScale(left, -1.0f, r_refdef.view.frustum[0].normal);
4381                 VectorScale(left,  1.0f, r_refdef.view.frustum[1].normal);
4382                 VectorScale(up, -1.0f, r_refdef.view.frustum[2].normal);
4383                 VectorScale(up,  1.0f, r_refdef.view.frustum[3].normal);
4384                 VectorScale(forward, -1.0f, r_refdef.view.frustum[4].normal);
4385                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) - r_refdef.view.ortho_x;
4386                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) - r_refdef.view.ortho_x;
4387                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) - r_refdef.view.ortho_y;
4388                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) - r_refdef.view.ortho_y;
4389                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) - r_refdef.farclip;
4390         }
4391         r_refdef.view.numfrustumplanes = 5;
4392
4393         if (r_refdef.view.useclipplane)
4394         {
4395                 r_refdef.view.numfrustumplanes = 6;
4396                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
4397         }
4398
4399         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
4400                 PlaneClassify(r_refdef.view.frustum + i);
4401
4402         // LadyHavoc: note to all quake engine coders, Quake had a special case
4403         // for 90 degrees which assumed a square view (wrong), so I removed it,
4404         // Quake2 has it disabled as well.
4405
4406         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
4407         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
4408         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
4409         //PlaneClassify(&frustum[0]);
4410
4411         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
4412         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
4413         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
4414         //PlaneClassify(&frustum[1]);
4415
4416         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
4417         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
4418         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
4419         //PlaneClassify(&frustum[2]);
4420
4421         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
4422         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
4423         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
4424         //PlaneClassify(&frustum[3]);
4425
4426         // nearclip plane
4427         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
4428         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
4429         //PlaneClassify(&frustum[4]);
4430 }
4431
4432 static void R_View_UpdateWithScissor(const int *myscissor)
4433 {
4434         R_Main_ResizeViewCache();
4435         R_View_SetFrustum(myscissor);
4436         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4437         R_View_UpdateEntityVisible();
4438 }
4439
4440 static void R_View_Update(void)
4441 {
4442         R_Main_ResizeViewCache();
4443         R_View_SetFrustum(NULL);
4444         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4445         R_View_UpdateEntityVisible();
4446 }
4447
4448 float viewscalefpsadjusted = 1.0f;
4449
4450 void R_SetupView(qbool allowwaterclippingplane, int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4451 {
4452         const float *customclipplane = NULL;
4453         float plane[4];
4454         int /*rtwidth,*/ rtheight;
4455         if (r_refdef.view.useclipplane && allowwaterclippingplane)
4456         {
4457                 // LadyHavoc: couldn't figure out how to make this approach work the same in DPSOFTRAST
4458                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
4459                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
4460                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
4461                         dist = r_refdef.view.clipplane.dist;
4462                 plane[0] = r_refdef.view.clipplane.normal[0];
4463                 plane[1] = r_refdef.view.clipplane.normal[1];
4464                 plane[2] = r_refdef.view.clipplane.normal[2];
4465                 plane[3] = -dist;
4466                 customclipplane = plane;
4467         }
4468
4469         //rtwidth = viewfbo ? R_TextureWidth(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.width;
4470         rtheight = viewfbo ? R_TextureHeight(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.height;
4471
4472         if (!r_refdef.view.useperspective)
4473                 R_Viewport_InitOrtho3D(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip, customclipplane);
4474         else if (vid.stencil && r_useinfinitefarclip.integer)
4475                 R_Viewport_InitPerspectiveInfinite(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, customclipplane);
4476         else
4477                 R_Viewport_InitPerspective(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip, customclipplane);
4478         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4479         R_SetViewport(&r_refdef.view.viewport);
4480 }
4481
4482 void R_EntityMatrix(const matrix4x4_t *matrix)
4483 {
4484         if (gl_modelmatrixchanged || memcmp(matrix, &gl_modelmatrix, sizeof(matrix4x4_t)))
4485         {
4486                 gl_modelmatrixchanged = false;
4487                 gl_modelmatrix = *matrix;
4488                 Matrix4x4_Concat(&gl_modelviewmatrix, &gl_viewmatrix, &gl_modelmatrix);
4489                 Matrix4x4_Concat(&gl_modelviewprojectionmatrix, &gl_projectionmatrix, &gl_modelviewmatrix);
4490                 Matrix4x4_ToArrayFloatGL(&gl_modelviewmatrix, gl_modelview16f);
4491                 Matrix4x4_ToArrayFloatGL(&gl_modelviewprojectionmatrix, gl_modelviewprojection16f);
4492                 CHECKGLERROR
4493                 switch(vid.renderpath)
4494                 {
4495                 case RENDERPATH_GL32:
4496                 case RENDERPATH_GLES2:
4497                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
4498                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
4499                         break;
4500                 }
4501         }
4502 }
4503
4504 void R_ResetViewRendering2D_Common(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight, float x2, float y2)
4505 {
4506         r_viewport_t viewport;
4507
4508         CHECKGLERROR
4509
4510         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
4511         R_Viewport_InitOrtho(&viewport, &identitymatrix, viewx, vid.height - viewheight - viewy, viewwidth, viewheight, 0, 0, x2, y2, -10, 100, NULL);
4512         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4513         R_SetViewport(&viewport);
4514         GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
4515         GL_Color(1, 1, 1, 1);
4516         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4517         GL_BlendFunc(GL_ONE, GL_ZERO);
4518         GL_ScissorTest(false);
4519         GL_DepthMask(false);
4520         GL_DepthRange(0, 1);
4521         GL_DepthTest(false);
4522         GL_DepthFunc(GL_LEQUAL);
4523         R_EntityMatrix(&identitymatrix);
4524         R_Mesh_ResetTextureState();
4525         GL_PolygonOffset(0, 0);
4526         switch(vid.renderpath)
4527         {
4528         case RENDERPATH_GL32:
4529         case RENDERPATH_GLES2:
4530                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4531                 break;
4532         }
4533         GL_CullFace(GL_NONE);
4534
4535         CHECKGLERROR
4536 }
4537
4538 void R_ResetViewRendering2D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4539 {
4540         R_ResetViewRendering2D_Common(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight, 1.0f, 1.0f);
4541 }
4542
4543 void R_ResetViewRendering3D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4544 {
4545         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
4546         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
4547         GL_Color(1, 1, 1, 1);
4548         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4549         GL_BlendFunc(GL_ONE, GL_ZERO);
4550         GL_ScissorTest(true);
4551         GL_DepthMask(true);
4552         GL_DepthRange(0, 1);
4553         GL_DepthTest(true);
4554         GL_DepthFunc(GL_LEQUAL);
4555         R_EntityMatrix(&identitymatrix);
4556         R_Mesh_ResetTextureState();
4557         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
4558         switch(vid.renderpath)
4559         {
4560         case RENDERPATH_GL32:
4561         case RENDERPATH_GLES2:
4562                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4563                 break;
4564         }
4565         GL_CullFace(r_refdef.view.cullface_back);
4566 }
4567
4568 /*
4569 ================
4570 R_RenderView_UpdateViewVectors
4571 ================
4572 */
4573 void R_RenderView_UpdateViewVectors(void)
4574 {
4575         // break apart the view matrix into vectors for various purposes
4576         // it is important that this occurs outside the RenderScene function because that can be called from reflection renders, where the vectors come out wrong
4577         // however the r_refdef.view.origin IS updated in RenderScene intentionally - otherwise the sky renders at the wrong origin, etc
4578         Matrix4x4_ToVectors(&r_refdef.view.matrix, r_refdef.view.forward, r_refdef.view.left, r_refdef.view.up, r_refdef.view.origin);
4579         VectorNegate(r_refdef.view.left, r_refdef.view.right);
4580         // make an inverted copy of the view matrix for tracking sprites
4581         Matrix4x4_Invert_Full(&r_refdef.view.inverse_matrix, &r_refdef.view.matrix);
4582 }
4583
4584 void R_RenderTarget_FreeUnused(qbool force)
4585 {
4586         unsigned int i, j, end;
4587         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4588         for (i = 0; i < end; i++)
4589         {
4590                 r_rendertarget_t *r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4591                 // free resources for rendertargets that have not been used for a while
4592                 // (note: this check is run after the frame render, so any targets used
4593                 // this frame will not be affected even at low framerates)
4594                 if (r && (host.realtime - r->lastusetime > 0.2 || force))
4595                 {
4596                         if (r->fbo)
4597                                 R_Mesh_DestroyFramebufferObject(r->fbo);
4598                         for (j = 0; j < sizeof(r->colortexture) / sizeof(r->colortexture[0]); j++)
4599                                 if (r->colortexture[j])
4600                                         R_FreeTexture(r->colortexture[j]);
4601                         if (r->depthtexture)
4602                                 R_FreeTexture(r->depthtexture);
4603                         Mem_ExpandableArray_FreeRecord(&r_fb.rendertargets, r);
4604                 }
4605         }
4606 }
4607
4608 static void R_CalcTexCoordsForView(float x, float y, float w, float h, float tw, float th, float *texcoord2f)
4609 {
4610         float iw = 1.0f / tw, ih = 1.0f / th, x1, y1, x2, y2;
4611         x1 = x * iw;
4612         x2 = (x + w) * iw;
4613         y1 = (th - y) * ih;
4614         y2 = (th - y - h) * ih;
4615         texcoord2f[0] = x1;
4616         texcoord2f[2] = x2;
4617         texcoord2f[4] = x2;
4618         texcoord2f[6] = x1;
4619         texcoord2f[1] = y1;
4620         texcoord2f[3] = y1;
4621         texcoord2f[5] = y2;
4622         texcoord2f[7] = y2;
4623 }
4624
4625 r_rendertarget_t *R_RenderTarget_Get(int texturewidth, int textureheight, textype_t depthtextype, qbool depthisrenderbuffer, textype_t colortextype0, textype_t colortextype1, textype_t colortextype2, textype_t colortextype3)
4626 {
4627         unsigned int i, j, end;
4628         r_rendertarget_t *r = NULL;
4629         char vabuf[256];
4630         // first try to reuse an existing slot if possible
4631         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4632         for (i = 0; i < end; i++)
4633         {
4634                 r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4635                 if (r && r->lastusetime != host.realtime && r->texturewidth == texturewidth && r->textureheight == textureheight && r->depthtextype == depthtextype && r->colortextype[0] == colortextype0 && r->colortextype[1] == colortextype1 && r->colortextype[2] == colortextype2 && r->colortextype[3] == colortextype3)
4636                         break;
4637         }
4638         if (i == end)
4639         {
4640                 // no unused exact match found, so we have to make one in the first unused slot
4641                 r = (r_rendertarget_t *)Mem_ExpandableArray_AllocRecord(&r_fb.rendertargets);
4642                 r->texturewidth = texturewidth;
4643                 r->textureheight = textureheight;
4644                 r->colortextype[0] = colortextype0;
4645                 r->colortextype[1] = colortextype1;
4646                 r->colortextype[2] = colortextype2;
4647                 r->colortextype[3] = colortextype3;
4648                 r->depthtextype = depthtextype;
4649                 r->depthisrenderbuffer = depthisrenderbuffer;
4650                 for (j = 0; j < 4; j++)
4651                         if (r->colortextype[j])
4652                                 r->colortexture[j] = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_%i_type%i", i, j, (int)r->colortextype[j]), r->texturewidth, r->textureheight, NULL, r->colortextype[j], TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4653                 if (r->depthtextype)
4654                 {
4655                         if (r->depthisrenderbuffer)
4656                                 r->depthtexture = R_LoadTextureRenderBuffer(r_main_texturepool, va(vabuf, sizeof(vabuf), "renderbuffer%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, r->depthtextype);
4657                         else
4658                                 r->depthtexture = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, NULL, r->depthtextype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4659                 }
4660                 r->fbo = R_Mesh_CreateFramebufferObject(r->depthtexture, r->colortexture[0], r->colortexture[1], r->colortexture[2], r->colortexture[3]);
4661         }
4662         r_refdef.stats[r_stat_rendertargets_used]++;
4663         r_refdef.stats[r_stat_rendertargets_pixels] += r->texturewidth * r->textureheight;
4664         r->lastusetime = host.realtime;
4665         R_CalcTexCoordsForView(0, 0, r->texturewidth, r->textureheight, r->texturewidth, r->textureheight, r->texcoord2f);
4666         return r;
4667 }
4668
4669 static void R_Water_StartFrame(int viewwidth, int viewheight)
4670 {
4671         int waterwidth, waterheight;
4672
4673         if (viewwidth > (int)vid.maxtexturesize_2d || viewheight > (int)vid.maxtexturesize_2d)
4674                 return;
4675
4676         // set waterwidth and waterheight to the water resolution that will be
4677         // used (often less than the screen resolution for faster rendering)
4678         waterwidth = (int)bound(16, viewwidth * r_water_resolutionmultiplier.value, viewwidth);
4679         waterheight = (int)bound(16, viewheight * r_water_resolutionmultiplier.value, viewheight);
4680
4681         if (!r_water.integer || r_showsurfaces.integer || r_lockvisibility.integer || r_lockpvs.integer)
4682                 waterwidth = waterheight = 0;
4683
4684         // set up variables that will be used in shader setup
4685         r_fb.water.waterwidth = waterwidth;
4686         r_fb.water.waterheight = waterheight;
4687         r_fb.water.texturewidth = waterwidth;
4688         r_fb.water.textureheight = waterheight;
4689         r_fb.water.camerawidth = waterwidth;
4690         r_fb.water.cameraheight = waterheight;
4691         r_fb.water.screenscale[0] = 0.5f;
4692         r_fb.water.screenscale[1] = 0.5f;
4693         r_fb.water.screencenter[0] = 0.5f;
4694         r_fb.water.screencenter[1] = 0.5f;
4695         r_fb.water.enabled = waterwidth != 0;
4696
4697         r_fb.water.maxwaterplanes = MAX_WATERPLANES;
4698         r_fb.water.numwaterplanes = 0;
4699 }
4700
4701 void R_Water_AddWaterPlane(msurface_t *surface, int entno)
4702 {
4703         int planeindex, bestplaneindex, vertexindex;
4704         vec3_t mins, maxs, normal, center, v, n;
4705         vec_t planescore, bestplanescore;
4706         mplane_t plane;
4707         r_waterstate_waterplane_t *p;
4708         texture_t *t = R_GetCurrentTexture(surface->texture);
4709
4710         rsurface.texture = t;
4711         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS, 1, ((const msurface_t **)&surface));
4712         // if the model has no normals, it's probably off-screen and they were not generated, so don't add it anyway
4713         if (!rsurface.batchnormal3f || rsurface.batchnumvertices < 1)
4714                 return;
4715         // average the vertex normals, find the surface bounds (after deformvertexes)
4716         Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f, v);
4717         Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f, n);
4718         VectorCopy(n, normal);
4719         VectorCopy(v, mins);
4720         VectorCopy(v, maxs);
4721         for (vertexindex = 1;vertexindex < rsurface.batchnumvertices;vertexindex++)
4722         {
4723                 Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f + vertexindex*3, v);
4724                 Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f + vertexindex*3, n);
4725                 VectorAdd(normal, n, normal);
4726                 mins[0] = min(mins[0], v[0]);
4727                 mins[1] = min(mins[1], v[1]);
4728                 mins[2] = min(mins[2], v[2]);
4729                 maxs[0] = max(maxs[0], v[0]);
4730                 maxs[1] = max(maxs[1], v[1]);
4731                 maxs[2] = max(maxs[2], v[2]);
4732         }
4733         VectorNormalize(normal);
4734         VectorMAM(0.5f, mins, 0.5f, maxs, center);
4735
4736         VectorCopy(normal, plane.normal);
4737         VectorNormalize(plane.normal);
4738         plane.dist = DotProduct(center, plane.normal);
4739         PlaneClassify(&plane);
4740         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
4741         {
4742                 // skip backfaces (except if nocullface is set)
4743 //              if (!(t->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
4744 //                      return;
4745                 VectorNegate(plane.normal, plane.normal);
4746                 plane.dist *= -1;
4747                 PlaneClassify(&plane);
4748         }
4749
4750
4751         // find a matching plane if there is one
4752         bestplaneindex = -1;
4753         bestplanescore = 1048576.0f;
4754         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4755         {
4756                 if(p->camera_entity == t->camera_entity)
4757                 {
4758                         planescore = 1.0f - DotProduct(plane.normal, p->plane.normal) + fabs(plane.dist - p->plane.dist) * 0.001f;
4759                         if (bestplaneindex < 0 || bestplanescore > planescore)
4760                         {
4761                                 bestplaneindex = planeindex;
4762                                 bestplanescore = planescore;
4763                         }
4764                 }
4765         }
4766         planeindex = bestplaneindex;
4767
4768         // if this surface does not fit any known plane rendered this frame, add one
4769         if (planeindex < 0 || bestplanescore > 0.001f)
4770         {
4771                 if (r_fb.water.numwaterplanes < r_fb.water.maxwaterplanes)
4772                 {
4773                         // store the new plane
4774                         planeindex = r_fb.water.numwaterplanes++;
4775                         p = r_fb.water.waterplanes + planeindex;
4776                         p->plane = plane;
4777                         // clear materialflags and pvs
4778                         p->materialflags = 0;
4779                         p->pvsvalid = false;
4780                         p->camera_entity = t->camera_entity;
4781                         VectorCopy(mins, p->mins);
4782                         VectorCopy(maxs, p->maxs);
4783                 }
4784                 else
4785                 {
4786                         // We're totally screwed.
4787                         return;
4788                 }
4789         }
4790         else
4791         {
4792                 // merge mins/maxs when we're adding this surface to the plane
4793                 p = r_fb.water.waterplanes + planeindex;
4794                 p->mins[0] = min(p->mins[0], mins[0]);
4795                 p->mins[1] = min(p->mins[1], mins[1]);
4796                 p->mins[2] = min(p->mins[2], mins[2]);
4797                 p->maxs[0] = max(p->maxs[0], maxs[0]);
4798                 p->maxs[1] = max(p->maxs[1], maxs[1]);
4799                 p->maxs[2] = max(p->maxs[2], maxs[2]);
4800         }
4801         // merge this surface's materialflags into the waterplane
4802         p->materialflags |= t->currentmaterialflags;
4803         if(!(p->materialflags & MATERIALFLAG_CAMERA))
4804         {
4805                 // merge this surface's PVS into the waterplane
4806                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
4807                  && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
4808                 {
4809                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
4810                         p->pvsvalid = true;
4811                 }
4812         }
4813 }
4814
4815 extern cvar_t r_drawparticles;
4816 extern cvar_t r_drawdecals;
4817
4818 static void R_Water_ProcessPlanes(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int viewx, int viewy, int viewwidth, int viewheight)
4819 {
4820         int myscissor[4];
4821         r_refdef_view_t originalview;
4822         r_refdef_view_t myview;
4823         int planeindex, qualityreduction = 0, old_r_dynamic = 0, old_r_shadows = 0, old_r_worldrtlight = 0, old_r_dlight = 0, old_r_particles = 0, old_r_decals = 0;
4824         r_waterstate_waterplane_t *p;
4825         vec3_t visorigin;
4826         r_rendertarget_t *rt;
4827
4828         originalview = r_refdef.view;
4829
4830         // lowquality hack, temporarily shut down some cvars and restore afterwards
4831         qualityreduction = r_water_lowquality.integer;
4832         if (qualityreduction > 0)
4833         {
4834                 if (qualityreduction >= 1)
4835                 {
4836                         old_r_shadows = r_shadows.integer;
4837                         old_r_worldrtlight = r_shadow_realtime_world.integer;
4838                         old_r_dlight = r_shadow_realtime_dlight.integer;
4839                         Cvar_SetValueQuick(&r_shadows, 0);
4840                         Cvar_SetValueQuick(&r_shadow_realtime_world, 0);
4841                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, 0);
4842                 }
4843                 if (qualityreduction >= 2)
4844                 {
4845                         old_r_dynamic = r_dynamic.integer;
4846                         old_r_particles = r_drawparticles.integer;
4847                         old_r_decals = r_drawdecals.integer;
4848                         Cvar_SetValueQuick(&r_dynamic, 0);
4849                         Cvar_SetValueQuick(&r_drawparticles, 0);
4850                         Cvar_SetValueQuick(&r_drawdecals, 0);
4851                 }
4852         }
4853
4854         for (planeindex = 0, p = r_fb.water.waterplanes; planeindex < r_fb.water.numwaterplanes; planeindex++, p++)
4855         {
4856                 p->rt_reflection = NULL;
4857                 p->rt_refraction = NULL;
4858                 p->rt_camera = NULL;
4859         }
4860
4861         // render views
4862         r_refdef.view = originalview;
4863         r_refdef.view.showdebug = false;
4864         r_refdef.view.width = r_fb.water.waterwidth;
4865         r_refdef.view.height = r_fb.water.waterheight;
4866         r_refdef.view.useclipplane = true;
4867         myview = r_refdef.view;
4868         r_fb.water.renderingscene = true;
4869         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4870         {
4871                 if (r_water_cameraentitiesonly.value != 0 && !p->camera_entity)
4872                         continue;
4873
4874                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
4875                 {
4876                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4877                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4878                                 goto error;
4879                         r_refdef.view = myview;
4880                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
4881                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
4882                         if(r_water_scissormode.integer)
4883                         {
4884                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4885                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4886                                 {
4887                                         p->rt_reflection = NULL;
4888                                         p->rt_refraction = NULL;
4889                                         p->rt_camera = NULL;
4890                                         continue;
4891                                 }
4892                         }
4893
4894                         r_refdef.view.clipplane = p->plane;
4895                         // reflected view origin may be in solid, so don't cull with it
4896                         r_refdef.view.usevieworiginculling = false;
4897                         // reverse the cullface settings for this render
4898                         r_refdef.view.cullface_front = GL_FRONT;
4899                         r_refdef.view.cullface_back = GL_BACK;
4900                         // combined pvs (based on what can be seen from each surface center)
4901                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4902                         {
4903                                 r_refdef.view.usecustompvs = true;
4904                                 if (p->pvsvalid)
4905                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4906                                 else
4907                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4908                         }
4909
4910                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 2) && !chase_active.integer);
4911                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4912                         GL_ScissorTest(false);
4913                         R_ClearScreen(r_refdef.fogenabled);
4914                         GL_ScissorTest(true);
4915                         if(r_water_scissormode.integer & 2)
4916                                 R_View_UpdateWithScissor(myscissor);
4917                         else
4918                                 R_View_Update();
4919                         R_AnimCache_CacheVisibleEntities();
4920                         if(r_water_scissormode.integer & 1)
4921                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4922                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4923
4924                         r_fb.water.hideplayer = false;
4925                         p->rt_reflection = rt;
4926                 }
4927
4928                 // render the normal view scene and copy into texture
4929                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
4930                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
4931                 {
4932                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4933                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4934                                 goto error;
4935                         r_refdef.view = myview;
4936                         if(r_water_scissormode.integer)
4937                         {
4938                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4939                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4940                                 {
4941                                         p->rt_reflection = NULL;
4942                                         p->rt_refraction = NULL;
4943                                         p->rt_camera = NULL;
4944                                         continue;
4945                                 }
4946                         }
4947
4948                         // combined pvs (based on what can be seen from each surface center)
4949                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4950                         {
4951                                 r_refdef.view.usecustompvs = true;
4952                                 if (p->pvsvalid)
4953                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4954                                 else
4955                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4956                         }
4957
4958                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 1) && !chase_active.integer);
4959
4960                         r_refdef.view.clipplane = p->plane;
4961                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4962                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4963
4964                         if((p->materialflags & MATERIALFLAG_CAMERA) && p->camera_entity)
4965                         {
4966                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4967                                 r_fb.water.hideplayer = false; // we don't want to hide the player model from these ones
4968                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4969                                 R_RenderView_UpdateViewVectors();
4970                                 if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4971                                 {
4972                                         r_refdef.view.usecustompvs = true;
4973                                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4974                                 }
4975                         }
4976
4977                         PlaneClassify(&r_refdef.view.clipplane);
4978
4979                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4980                         GL_ScissorTest(false);
4981                         R_ClearScreen(r_refdef.fogenabled);
4982                         GL_ScissorTest(true);
4983                         if(r_water_scissormode.integer & 2)
4984                                 R_View_UpdateWithScissor(myscissor);
4985                         else
4986                                 R_View_Update();
4987                         R_AnimCache_CacheVisibleEntities();
4988                         if(r_water_scissormode.integer & 1)
4989                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4990                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4991
4992                         r_fb.water.hideplayer = false;
4993                         p->rt_refraction = rt;
4994                 }
4995                 else if (p->materialflags & MATERIALFLAG_CAMERA)
4996                 {
4997                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4998                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4999                                 goto error;
5000                         r_refdef.view = myview;
5001
5002                         r_refdef.view.clipplane = p->plane;
5003                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
5004                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
5005
5006                         r_refdef.view.width = r_fb.water.camerawidth;
5007                         r_refdef.view.height = r_fb.water.cameraheight;
5008                         r_refdef.view.frustum_x = 1; // tan(45 * M_PI / 180.0);
5009                         r_refdef.view.frustum_y = 1; // tan(45 * M_PI / 180.0);
5010                         r_refdef.view.ortho_x = 90; // abused as angle by VM_CL_R_SetView
5011                         r_refdef.view.ortho_y = 90; // abused as angle by VM_CL_R_SetView
5012
5013                         if(p->camera_entity)
5014                         {
5015                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
5016                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
5017                         }
5018
5019                         // note: all of the view is used for displaying... so
5020                         // there is no use in scissoring
5021
5022                         // reverse the cullface settings for this render
5023                         r_refdef.view.cullface_front = GL_FRONT;
5024                         r_refdef.view.cullface_back = GL_BACK;
5025                         // also reverse the view matrix
5026                         Matrix4x4_ConcatScale3(&r_refdef.view.matrix, 1, 1, -1); // this serves to invert texcoords in the result, as the copied texture is mapped the wrong way round
5027                         R_RenderView_UpdateViewVectors();
5028                         if(p->camera_entity && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
5029                         {
5030                                 r_refdef.view.usecustompvs = true;
5031                                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
5032                         }
5033                         
5034                         // camera needs no clipplane
5035                         r_refdef.view.useclipplane = false;
5036                         // TODO: is the camera origin always valid?  if so we don't need to clear this
5037                         r_refdef.view.usevieworiginculling = false;
5038
5039                         PlaneClassify(&r_refdef.view.clipplane);
5040
5041                         r_fb.water.hideplayer = false;
5042
5043                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5044                         GL_ScissorTest(false);
5045                         R_ClearScreen(r_refdef.fogenabled);
5046                         GL_ScissorTest(true);
5047                         R_View_Update();
5048                         R_AnimCache_CacheVisibleEntities();
5049                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5050
5051                         r_fb.water.hideplayer = false;
5052                         p->rt_camera = rt;
5053                 }
5054
5055         }
5056         r_fb.water.renderingscene = false;
5057         r_refdef.view = originalview;
5058         R_ResetViewRendering3D(fbo, depthtexture, colortexture, viewx, viewy, viewwidth, viewheight);
5059         R_View_Update();
5060         R_AnimCache_CacheVisibleEntities();
5061         goto finish;
5062 error:
5063         r_refdef.view = originalview;
5064         r_fb.water.renderingscene = false;
5065         Cvar_SetValueQuick(&r_water, 0);
5066         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
5067 finish:
5068         // lowquality hack, restore cvars
5069         if (qualityreduction > 0)
5070         {
5071                 if (qualityreduction >= 1)
5072                 {
5073                         Cvar_SetValueQuick(&r_shadows, old_r_shadows);
5074                         Cvar_SetValueQuick(&r_shadow_realtime_world, old_r_worldrtlight);
5075                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, old_r_dlight);
5076                 }
5077                 if (qualityreduction >= 2)
5078                 {
5079                         Cvar_SetValueQuick(&r_dynamic, old_r_dynamic);
5080                         Cvar_SetValueQuick(&r_drawparticles, old_r_particles);
5081                         Cvar_SetValueQuick(&r_drawdecals, old_r_decals);
5082                 }
5083         }
5084 }
5085
5086 static void R_Bloom_StartFrame(void)
5087 {
5088         int screentexturewidth, screentextureheight;
5089         textype_t textype = TEXTYPE_COLORBUFFER;
5090         double scale;
5091
5092         // clear the pointers to rendertargets from last frame as they're stale
5093         r_fb.rt_screen = NULL;
5094         r_fb.rt_bloom = NULL;
5095
5096         switch (vid.renderpath)
5097         {
5098         case RENDERPATH_GL32:
5099                 r_fb.usedepthtextures = r_usedepthtextures.integer != 0;
5100                 if (r_viewfbo.integer == 2) textype = TEXTYPE_COLORBUFFER16F;
5101                 if (r_viewfbo.integer == 3) textype = TEXTYPE_COLORBUFFER32F;
5102                 break;
5103         case RENDERPATH_GLES2:
5104                 r_fb.usedepthtextures = false;
5105                 break;
5106         }
5107
5108         if (r_viewscale_fpsscaling.integer)
5109         {
5110                 double actualframetime;
5111                 double targetframetime;
5112                 double adjust;
5113                 actualframetime = r_refdef.lastdrawscreentime;
5114                 targetframetime = (1.0 / r_viewscale_fpsscaling_target.value);
5115                 adjust = (targetframetime - actualframetime) * r_viewscale_fpsscaling_multiply.value;
5116                 adjust = bound(-r_viewscale_fpsscaling_stepmax.value, adjust, r_viewscale_fpsscaling_stepmax.value);
5117                 if (r_viewscale_fpsscaling_stepsize.value > 0)
5118                 {
5119                         if (adjust > 0)
5120                                 adjust = floor(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5121                         else
5122                                 adjust = ceil(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5123                 }
5124                 viewscalefpsadjusted += adjust;
5125                 viewscalefpsadjusted = bound(r_viewscale_fpsscaling_min.value, viewscalefpsadjusted, 1.0f);
5126         }
5127         else
5128                 viewscalefpsadjusted = 1.0f;
5129
5130         scale = r_viewscale.value * sqrt(viewscalefpsadjusted);
5131         if (vid.samples)
5132                 scale *= sqrt(vid.samples); // supersampling
5133         scale = bound(0.03125f, scale, 4.0f);
5134         screentexturewidth = (int)ceil(r_refdef.view.width * scale);
5135         screentextureheight = (int)ceil(r_refdef.view.height * scale);
5136         screentexturewidth = bound(1, screentexturewidth, (int)vid.maxtexturesize_2d);
5137         screentextureheight = bound(1, screentextureheight, (int)vid.maxtexturesize_2d);
5138
5139         // set bloomwidth and bloomheight to the bloom resolution that will be
5140         // used (often less than the screen resolution for faster rendering)
5141         r_fb.bloomheight = bound(1, r_bloom_resolution.value * 0.75f, screentextureheight);
5142         r_fb.bloomwidth = r_fb.bloomheight * screentexturewidth / screentextureheight;
5143         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, screentexturewidth);
5144         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, (int)vid.maxtexturesize_2d);
5145         r_fb.bloomheight = bound(1, r_fb.bloomheight, (int)vid.maxtexturesize_2d);
5146
5147         if ((r_bloom.integer || (!R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0))) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > (int)vid.maxtexturesize_2d || r_refdef.view.height > (int)vid.maxtexturesize_2d))
5148         {
5149                 Cvar_SetValueQuick(&r_bloom, 0);
5150                 Cvar_SetValueQuick(&r_motionblur, 0);
5151                 Cvar_SetValueQuick(&r_damageblur, 0);
5152         }
5153         if (!r_bloom.integer)
5154                 r_fb.bloomwidth = r_fb.bloomheight = 0;
5155
5156         // allocate motionblur ghost texture if needed - this is the only persistent texture and is only useful on the main view
5157         if (r_refdef.view.ismain && (r_fb.screentexturewidth != screentexturewidth || r_fb.screentextureheight != screentextureheight || r_fb.textype != textype))
5158         {
5159                 if (r_fb.ghosttexture)
5160                         R_FreeTexture(r_fb.ghosttexture);
5161                 r_fb.ghosttexture = NULL;
5162
5163                 r_fb.screentexturewidth = screentexturewidth;
5164                 r_fb.screentextureheight = screentextureheight;
5165                 r_fb.textype = textype;
5166
5167                 if (r_fb.screentexturewidth && r_fb.screentextureheight)
5168                 {
5169                         if (r_motionblur.value > 0 || r_damageblur.value > 0)
5170                                 r_fb.ghosttexture = R_LoadTexture2D(r_main_texturepool, "framebuffermotionblur", r_fb.screentexturewidth, r_fb.screentextureheight, NULL, r_fb.textype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
5171                         r_fb.ghosttexture_valid = false;
5172                 }
5173         }
5174
5175         r_fb.rt_screen = R_RenderTarget_Get(screentexturewidth, screentextureheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5176
5177         r_refdef.view.clear = true;
5178 }
5179
5180 static void R_Bloom_MakeTexture(void)
5181 {
5182         int x, range, dir;
5183         float xoffset, yoffset, r, brighten;
5184         float colorscale = r_bloom_colorscale.value;
5185         r_viewport_t bloomviewport;
5186         r_rendertarget_t *prev, *cur;
5187         textype_t textype = r_fb.rt_screen->colortextype[0];
5188
5189         r_refdef.stats[r_stat_bloom]++;
5190
5191         R_Viewport_InitOrtho(&bloomviewport, &identitymatrix, 0, 0, r_fb.bloomwidth, r_fb.bloomheight, 0, 0, 1, 1, -10, 100, NULL);
5192
5193         // scale down screen texture to the bloom texture size
5194         CHECKGLERROR
5195         prev = r_fb.rt_screen;
5196         cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5197         R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5198         R_SetViewport(&bloomviewport);
5199         GL_CullFace(GL_NONE);
5200         GL_DepthTest(false);
5201         GL_BlendFunc(GL_ONE, GL_ZERO);
5202         GL_Color(colorscale, colorscale, colorscale, 1);
5203         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5204         // TODO: do boxfilter scale-down in shader?
5205         R_SetupShader_Generic(prev->colortexture[0], false, true, true);
5206         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5207         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5208         // we now have a properly scaled bloom image
5209
5210         // multiply bloom image by itself as many times as desired to darken it
5211         // TODO: if people actually use this it could be done more quickly in the previous shader pass
5212         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
5213         {
5214                 prev = cur;
5215                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5216                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5217                 x *= 2;
5218                 r = bound(0, r_bloom_colorexponent.value / x, 1); // always 0.5 to 1
5219                 if(x <= 2)
5220                         GL_Clear(GL_COLOR_BUFFER_BIT, NULL, 1.0f, 0);
5221                 GL_BlendFunc(GL_SRC_COLOR, GL_ZERO); // square it
5222                 GL_Color(1,1,1,1); // no fix factor supported here
5223                 R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5224                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5225                 R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5226                 r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5227         }
5228         CHECKGLERROR
5229
5230         range = r_bloom_blur.integer * r_fb.bloomwidth / 320;
5231         brighten = r_bloom_brighten.value;
5232         brighten = sqrt(brighten);
5233         if(range >= 1)
5234                 brighten *= (3 * range) / (2 * range - 1); // compensate for the "dot particle"
5235
5236         for (dir = 0;dir < 2;dir++)
5237         {
5238                 prev = cur;
5239                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5240                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5241                 // blend on at multiple vertical offsets to achieve a vertical blur
5242                 // TODO: do offset blends using GLSL
5243                 // TODO instead of changing the texcoords, change the target positions to prevent artifacts at edges
5244                 CHECKGLERROR
5245                 GL_BlendFunc(GL_ONE, GL_ZERO);
5246                 CHECKGLERROR
5247                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5248                 CHECKGLERROR
5249                 for (x = -range;x <= range;x++)
5250                 {
5251                         if (!dir){xoffset = 0;yoffset = x;}
5252                         else {xoffset = x;yoffset = 0;}
5253                         xoffset /= (float)prev->texturewidth;
5254                         yoffset /= (float)prev->textureheight;
5255                         // compute a texcoord array with the specified x and y offset
5256                         r_fb.offsettexcoord2f[0] = xoffset+prev->texcoord2f[0];
5257                         r_fb.offsettexcoord2f[1] = yoffset+prev->texcoord2f[1];
5258                         r_fb.offsettexcoord2f[2] = xoffset+prev->texcoord2f[2];
5259                         r_fb.offsettexcoord2f[3] = yoffset+prev->texcoord2f[3];
5260                         r_fb.offsettexcoord2f[4] = xoffset+prev->texcoord2f[4];
5261                         r_fb.offsettexcoord2f[5] = yoffset+prev->texcoord2f[5];
5262                         r_fb.offsettexcoord2f[6] = xoffset+prev->texcoord2f[6];
5263                         r_fb.offsettexcoord2f[7] = yoffset+prev->texcoord2f[7];
5264                         // this r value looks like a 'dot' particle, fading sharply to
5265                         // black at the edges
5266                         // (probably not realistic but looks good enough)
5267                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
5268                         //r = brighten/(range*2+1);
5269                         r = brighten / (range * 2 + 1);
5270                         if(range >= 1)
5271                                 r *= (1 - x*x/(float)((range+1)*(range+1)));
5272                         if (r <= 0)
5273                                 continue;
5274                         CHECKGLERROR
5275                         GL_Color(r, r, r, 1);
5276                         CHECKGLERROR
5277                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.offsettexcoord2f);
5278                         CHECKGLERROR
5279                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5280                         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5281                         CHECKGLERROR
5282                         GL_BlendFunc(GL_ONE, GL_ONE);
5283                         CHECKGLERROR
5284                 }
5285         }
5286
5287         // now we have the bloom image, so keep track of it
5288         r_fb.rt_bloom = cur;
5289 }
5290
5291 static void R_BlendView(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5292 {
5293         uint64_t permutation;
5294         float uservecs[4][4];
5295         rtexture_t *viewtexture;
5296         rtexture_t *bloomtexture;
5297
5298         R_EntityMatrix(&identitymatrix);
5299
5300         if(r_refdef.view.ismain && !R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0) && r_fb.ghosttexture)
5301         {
5302                 // declare variables
5303                 float blur_factor, blur_mouseaccel, blur_velocity;
5304                 static float blur_average; 
5305                 static vec3_t blur_oldangles; // used to see how quickly the mouse is moving
5306
5307                 // set a goal for the factoring
5308                 blur_velocity = bound(0, (VectorLength(cl.movement_velocity) - r_motionblur_velocityfactor_minspeed.value) 
5309                         / max(1, r_motionblur_velocityfactor_maxspeed.value - r_motionblur_velocityfactor_minspeed.value), 1);
5310                 blur_mouseaccel = bound(0, ((fabs(VectorLength(cl.viewangles) - VectorLength(blur_oldangles)) * 10) - r_motionblur_mousefactor_minspeed.value) 
5311                         / max(1, r_motionblur_mousefactor_maxspeed.value - r_motionblur_mousefactor_minspeed.value), 1);
5312                 blur_factor = ((blur_velocity * r_motionblur_velocityfactor.value) 
5313                         + (blur_mouseaccel * r_motionblur_mousefactor.value));
5314
5315                 // from the goal, pick an averaged value between goal and last value
5316                 cl.motionbluralpha = bound(0, (cl.time - cl.oldtime) / max(0.001, r_motionblur_averaging.value), 1);
5317                 blur_average = blur_average * (1 - cl.motionbluralpha) + blur_factor * cl.motionbluralpha;
5318
5319                 // enforce minimum amount of blur 
5320                 blur_factor = blur_average * (1 - r_motionblur_minblur.value) + r_motionblur_minblur.value;
5321
5322                 //Con_Printf("motionblur: direct factor: %f, averaged factor: %f, velocity: %f, mouse accel: %f \n", blur_factor, blur_average, blur_velocity, blur_mouseaccel);
5323
5324                 // calculate values into a standard alpha
5325                 cl.motionbluralpha = 1 - exp(-
5326                                 (
5327                                         (r_motionblur.value * blur_factor / 80)
5328                                         +
5329                                         (r_damageblur.value * (cl.cshifts[CSHIFT_DAMAGE].percent / 1600))
5330                                 )
5331                                 /
5332                                 max(0.0001, cl.time - cl.oldtime) // fps independent
5333                                 );
5334
5335                 // randomization for the blur value to combat persistent ghosting
5336                 cl.motionbluralpha *= lhrandom(1 - r_motionblur_randomize.value, 1 + r_motionblur_randomize.value);
5337                 cl.motionbluralpha = bound(0, cl.motionbluralpha, r_motionblur_maxblur.value);
5338
5339                 // apply the blur
5340                 R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5341                 if (cl.motionbluralpha > 0 && !r_refdef.envmap && r_fb.ghosttexture_valid)
5342                 {
5343                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
5344                         GL_Color(1, 1, 1, cl.motionbluralpha);
5345                         R_CalcTexCoordsForView(0, 0, viewwidth, viewheight, viewwidth, viewheight, r_fb.ghosttexcoord2f);
5346                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.ghosttexcoord2f);
5347                         R_SetupShader_Generic(r_fb.ghosttexture, false, true, true);
5348                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5349                         r_refdef.stats[r_stat_bloom_drawpixels] += viewwidth * viewheight;
5350                 }
5351
5352                 // updates old view angles for next pass
5353                 VectorCopy(cl.viewangles, blur_oldangles);
5354
5355                 // copy view into the ghost texture
5356                 R_Mesh_CopyToTexture(r_fb.ghosttexture, 0, 0, viewx, viewy, viewwidth, viewheight);
5357                 r_refdef.stats[r_stat_bloom_copypixels] += viewwidth * viewheight;
5358                 r_fb.ghosttexture_valid = true;
5359         }
5360
5361         if (r_fb.bloomwidth)
5362         {
5363                 // make the bloom texture
5364                 R_Bloom_MakeTexture();
5365         }
5366
5367 #if _MSC_VER >= 1400
5368 #define sscanf sscanf_s
5369 #endif
5370         memset(uservecs, 0, sizeof(uservecs));
5371         if (r_glsl_postprocess_uservec1_enable.integer)
5372                 sscanf(r_glsl_postprocess_uservec1.string, "%f %f %f %f", &uservecs[0][0], &uservecs[0][1], &uservecs[0][2], &uservecs[0][3]);
5373         if (r_glsl_postprocess_uservec2_enable.integer)
5374                 sscanf(r_glsl_postprocess_uservec2.string, "%f %f %f %f", &uservecs[1][0], &uservecs[1][1], &uservecs[1][2], &uservecs[1][3]);
5375         if (r_glsl_postprocess_uservec3_enable.integer)
5376                 sscanf(r_glsl_postprocess_uservec3.string, "%f %f %f %f", &uservecs[2][0], &uservecs[2][1], &uservecs[2][2], &uservecs[2][3]);
5377         if (r_glsl_postprocess_uservec4_enable.integer)
5378                 sscanf(r_glsl_postprocess_uservec4.string, "%f %f %f %f", &uservecs[3][0], &uservecs[3][1], &uservecs[3][2], &uservecs[3][3]);
5379
5380         // render to the screen fbo
5381         R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5382         GL_Color(1, 1, 1, 1);
5383         GL_BlendFunc(GL_ONE, GL_ZERO);
5384
5385         viewtexture = r_fb.rt_screen->colortexture[0];
5386         bloomtexture = r_fb.rt_bloom ? r_fb.rt_bloom->colortexture[0] : NULL;
5387
5388         if (r_rendertarget_debug.integer >= 0)
5389         {
5390                 r_rendertarget_t *rt = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, r_rendertarget_debug.integer);
5391                 if (rt && rt->colortexture[0])
5392                 {
5393                         viewtexture = rt->colortexture[0];
5394                         bloomtexture = NULL;
5395                 }
5396         }
5397
5398         R_Mesh_PrepareVertices_Mesh_Arrays(4, r_screenvertex3f, NULL, NULL, NULL, NULL, r_fb.rt_screen->texcoord2f, bloomtexture ? r_fb.rt_bloom->texcoord2f : NULL);
5399         switch(vid.renderpath)
5400         {
5401         case RENDERPATH_GL32:
5402         case RENDERPATH_GLES2:
5403                 permutation =
5404                         (r_fb.bloomwidth ? SHADERPERMUTATION_BLOOM : 0)
5405                         | (r_refdef.viewblend[3] > 0 ? SHADERPERMUTATION_VIEWTINT : 0)
5406                         | (!vid_gammatables_trivial ? SHADERPERMUTATION_GAMMARAMPS : 0)
5407                         | (r_glsl_postprocess.integer ? SHADERPERMUTATION_POSTPROCESSING : 0)
5408                         | ((!R_Stereo_ColorMasking() && r_glsl_saturation.value != 1) ? SHADERPERMUTATION_SATURATION : 0);
5409                 R_SetupShader_SetPermutationGLSL(SHADERMODE_POSTPROCESS, permutation);
5410                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First     , viewtexture);
5411                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second    , bloomtexture);
5412                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps       );
5413                 if (r_glsl_permutation->loc_ViewTintColor           >= 0) qglUniform4f(r_glsl_permutation->loc_ViewTintColor     , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
5414                 if (r_glsl_permutation->loc_PixelSize               >= 0) qglUniform2f(r_glsl_permutation->loc_PixelSize         , 1.0/r_fb.screentexturewidth, 1.0/r_fb.screentextureheight);
5415                 if (r_glsl_permutation->loc_UserVec1                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec1          , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]);
5416                 if (r_glsl_permutation->loc_UserVec2                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec2          , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]);
5417                 if (r_glsl_permutation->loc_UserVec3                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec3          , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]);
5418                 if (r_glsl_permutation->loc_UserVec4                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec4          , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]);
5419                 if (r_glsl_permutation->loc_Saturation              >= 0) qglUniform1f(r_glsl_permutation->loc_Saturation        , r_glsl_saturation.value);
5420                 if (r_glsl_permutation->loc_PixelToScreenTexCoord   >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
5421                 if (r_glsl_permutation->loc_BloomColorSubtract      >= 0) qglUniform4f(r_glsl_permutation->loc_BloomColorSubtract   , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f);
5422                 if (r_glsl_permutation->loc_ColorFringe             >= 0) qglUniform1f(r_glsl_permutation->loc_ColorFringe, r_colorfringe.value );
5423                 break;
5424         }
5425         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5426         r_refdef.stats[r_stat_bloom_drawpixels] += r_refdef.view.width * r_refdef.view.height;
5427 }
5428
5429 matrix4x4_t r_waterscrollmatrix;
5430
5431 void R_UpdateFog(void)
5432 {
5433         // Nehahra fog
5434         if (gamemode == GAME_NEHAHRA)
5435         {
5436                 if (gl_fogenable.integer)
5437                 {
5438                         r_refdef.oldgl_fogenable = true;
5439                         r_refdef.fog_density = gl_fogdensity.value;
5440                         r_refdef.fog_red = gl_fogred.value;
5441                         r_refdef.fog_green = gl_foggreen.value;
5442                         r_refdef.fog_blue = gl_fogblue.value;
5443                         r_refdef.fog_alpha = 1;
5444                         r_refdef.fog_start = 0;
5445                         r_refdef.fog_end = gl_skyclip.value;
5446                         r_refdef.fog_height = 1<<30;
5447                         r_refdef.fog_fadedepth = 128;
5448                 }
5449                 else if (r_refdef.oldgl_fogenable)
5450                 {
5451                         r_refdef.oldgl_fogenable = false;
5452                         r_refdef.fog_density = 0;
5453                         r_refdef.fog_red = 0;
5454                         r_refdef.fog_green = 0;
5455                         r_refdef.fog_blue = 0;
5456                         r_refdef.fog_alpha = 0;
5457                         r_refdef.fog_start = 0;
5458                         r_refdef.fog_end = 0;
5459                         r_refdef.fog_height = 1<<30;
5460                         r_refdef.fog_fadedepth = 128;
5461                 }
5462         }
5463
5464         // fog parms
5465         r_refdef.fog_alpha = bound(0, r_refdef.fog_alpha, 1);
5466         r_refdef.fog_start = max(0, r_refdef.fog_start);
5467         r_refdef.fog_end = max(r_refdef.fog_start + 0.01, r_refdef.fog_end);
5468
5469         if (r_refdef.fog_density && r_drawfog.integer)
5470         {
5471                 r_refdef.fogenabled = true;
5472                 // this is the point where the fog reaches 0.9986 alpha, which we
5473                 // consider a good enough cutoff point for the texture
5474                 // (0.9986 * 256 == 255.6)
5475                 if (r_fog_exp2.integer)
5476                         r_refdef.fogrange = 32 / (r_refdef.fog_density * r_refdef.fog_density) + r_refdef.fog_start;
5477                 else
5478                         r_refdef.fogrange = 2048 / r_refdef.fog_density + r_refdef.fog_start;
5479                 r_refdef.fogrange = bound(r_refdef.fog_start, r_refdef.fogrange, r_refdef.fog_end);
5480                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
5481                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
5482                 if (strcmp(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename))
5483                         R_BuildFogHeightTexture();
5484                 // fog color was already set
5485                 // update the fog texture
5486                 if (r_refdef.fogmasktable_start != r_refdef.fog_start || r_refdef.fogmasktable_alpha != r_refdef.fog_alpha || r_refdef.fogmasktable_density != r_refdef.fog_density || r_refdef.fogmasktable_range != r_refdef.fogrange)
5487                         R_BuildFogTexture();
5488                 r_refdef.fog_height_texcoordscale = 1.0f / max(0.125f, r_refdef.fog_fadedepth);
5489                 r_refdef.fog_height_tablescale = r_refdef.fog_height_tablesize * r_refdef.fog_height_texcoordscale;
5490         }
5491         else
5492                 r_refdef.fogenabled = false;
5493
5494         // fog color
5495         if (r_refdef.fog_density)
5496         {
5497                 r_refdef.fogcolor[0] = r_refdef.fog_red;
5498                 r_refdef.fogcolor[1] = r_refdef.fog_green;
5499                 r_refdef.fogcolor[2] = r_refdef.fog_blue;
5500
5501                 Vector4Set(r_refdef.fogplane, 0, 0, 1, -r_refdef.fog_height);
5502                 r_refdef.fogplaneviewdist = DotProduct(r_refdef.fogplane, r_refdef.view.origin) + r_refdef.fogplane[3];
5503                 r_refdef.fogplaneviewabove = r_refdef.fogplaneviewdist >= 0;
5504                 r_refdef.fogheightfade = -0.5f/max(0.125f, r_refdef.fog_fadedepth);
5505
5506                 {
5507                         vec3_t fogvec;
5508                         VectorCopy(r_refdef.fogcolor, fogvec);
5509                         //   color.rgb *= ContrastBoost * SceneBrightness;
5510                         VectorScale(fogvec, r_refdef.view.colorscale, fogvec);
5511                         r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f);
5512                         r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f);
5513                         r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f);
5514                 }
5515         }
5516 }
5517
5518 void R_UpdateVariables(void)
5519 {
5520         R_Textures_Frame();
5521
5522         r_refdef.scene.ambientintensity = r_ambient.value * (1.0f / 64.0f);
5523
5524         r_refdef.farclip = r_farclip_base.value;
5525         if (r_refdef.scene.worldmodel)
5526                 r_refdef.farclip += r_refdef.scene.worldmodel->radius * r_farclip_world.value * 2;
5527         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
5528
5529         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
5530                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
5531         r_refdef.polygonfactor = 0;
5532         r_refdef.polygonoffset = 0;
5533
5534         r_refdef.scene.rtworld = r_shadow_realtime_world.integer != 0;
5535         r_refdef.scene.rtworldshadows = r_shadow_realtime_world_shadows.integer && vid.stencil;
5536         r_refdef.scene.rtdlight = r_shadow_realtime_dlight.integer != 0 && !gl_flashblend.integer && r_dynamic.integer;
5537         r_refdef.scene.rtdlightshadows = r_refdef.scene.rtdlight && r_shadow_realtime_dlight_shadows.integer && vid.stencil;
5538         r_refdef.scene.lightmapintensity = r_refdef.scene.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
5539         if (r_refdef.scene.worldmodel)
5540         {
5541                 r_refdef.scene.lightmapintensity *= r_refdef.scene.worldmodel->lightmapscale;
5542         }
5543         if (r_showsurfaces.integer)
5544         {
5545                 r_refdef.scene.rtworld = false;
5546                 r_refdef.scene.rtworldshadows = false;
5547                 r_refdef.scene.rtdlight = false;
5548                 r_refdef.scene.rtdlightshadows = false;
5549                 r_refdef.scene.lightmapintensity = 0;
5550         }
5551
5552         r_gpuskeletal = false;
5553         switch(vid.renderpath)
5554         {
5555         case RENDERPATH_GL32:
5556                 r_gpuskeletal = r_glsl_skeletal.integer && !r_showsurfaces.integer;
5557         case RENDERPATH_GLES2:
5558                 if(!vid_gammatables_trivial)
5559                 {
5560                         if(!r_texture_gammaramps || vid_gammatables_serial != r_texture_gammaramps_serial)
5561                         {
5562                                 // build GLSL gamma texture
5563 #define RAMPWIDTH 256
5564                                 unsigned short ramp[RAMPWIDTH * 3];
5565                                 unsigned char rampbgr[RAMPWIDTH][4];
5566                                 int i;
5567
5568                                 r_texture_gammaramps_serial = vid_gammatables_serial;
5569
5570                                 VID_BuildGammaTables(&ramp[0], RAMPWIDTH);
5571                                 for(i = 0; i < RAMPWIDTH; ++i)
5572                                 {
5573                                         rampbgr[i][0] = (unsigned char) (ramp[i + 2 * RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5574                                         rampbgr[i][1] = (unsigned char) (ramp[i + RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5575                                         rampbgr[i][2] = (unsigned char) (ramp[i] * 255.0 / 65535.0 + 0.5);
5576                                         rampbgr[i][3] = 0;
5577                                 }
5578                                 if (r_texture_gammaramps)
5579                                 {
5580                                         R_UpdateTexture(r_texture_gammaramps, &rampbgr[0][0], 0, 0, 0, RAMPWIDTH, 1, 1);
5581                                 }
5582                                 else
5583                                 {
5584                                         r_texture_gammaramps = R_LoadTexture2D(r_main_texturepool, "gammaramps", RAMPWIDTH, 1, &rampbgr[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
5585                                 }
5586                         }
5587                 }
5588                 else
5589                 {
5590                         // remove GLSL gamma texture
5591                 }
5592                 break;
5593         }
5594 }
5595
5596 static r_refdef_scene_type_t r_currentscenetype = RST_CLIENT;
5597 static r_refdef_scene_t r_scenes_store[ RST_COUNT ];
5598 /*
5599 ================
5600 R_SelectScene
5601 ================
5602 */
5603 void R_SelectScene( r_refdef_scene_type_t scenetype ) {
5604         if( scenetype != r_currentscenetype ) {
5605                 // store the old scenetype
5606                 r_scenes_store[ r_currentscenetype ] = r_refdef.scene;
5607                 r_currentscenetype = scenetype;
5608                 // move in the new scene
5609                 r_refdef.scene = r_scenes_store[ r_currentscenetype ];
5610         }
5611 }
5612
5613 /*
5614 ================
5615 R_GetScenePointer
5616 ================
5617 */
5618 r_refdef_scene_t * R_GetScenePointer( r_refdef_scene_type_t scenetype )
5619 {
5620         // of course, we could also add a qbool that provides a lock state and a ReleaseScenePointer function..
5621         if( scenetype == r_currentscenetype ) {
5622                 return &r_refdef.scene;
5623         } else {
5624                 return &r_scenes_store[ scenetype ];
5625         }
5626 }
5627
5628 static int R_SortEntities_Compare(const void *ap, const void *bp)
5629 {
5630         const entity_render_t *a = *(const entity_render_t **)ap;
5631         const entity_render_t *b = *(const entity_render_t **)bp;
5632
5633         // 1. compare model
5634         if(a->model < b->model)
5635                 return -1;
5636         if(a->model > b->model)
5637                 return +1;
5638
5639         // 2. compare skin
5640         // TODO possibly calculate the REAL skinnum here first using
5641         // skinscenes?
5642         if(a->skinnum < b->skinnum)
5643                 return -1;
5644         if(a->skinnum > b->skinnum)
5645                 return +1;
5646
5647         // everything we compared is equal
5648         return 0;
5649 }
5650 static void R_SortEntities(void)
5651 {
5652         // below or equal 2 ents, sorting never gains anything
5653         if(r_refdef.scene.numentities <= 2)
5654                 return;
5655         // sort
5656         qsort(r_refdef.scene.entities, r_refdef.scene.numentities, sizeof(*r_refdef.scene.entities), R_SortEntities_Compare);
5657 }
5658
5659 /*
5660 ================
5661 R_RenderView
5662 ================
5663 */
5664 extern cvar_t r_shadow_bouncegrid;
5665 extern cvar_t v_isometric;
5666 extern void V_MakeViewIsometric(void);
5667 void R_RenderView(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int x, int y, int width, int height)
5668 {
5669         matrix4x4_t originalmatrix = r_refdef.view.matrix, offsetmatrix;
5670         int viewfbo = 0;
5671         rtexture_t *viewdepthtexture = NULL;
5672         rtexture_t *viewcolortexture = NULL;
5673         int viewx = r_refdef.view.x, viewy = r_refdef.view.y, viewwidth = r_refdef.view.width, viewheight = r_refdef.view.height;
5674
5675         // finish any 2D rendering that was queued
5676         DrawQ_Finish();
5677
5678         if (r_timereport_active)
5679                 R_TimeReport("start");
5680         r_textureframe++; // used only by R_GetCurrentTexture
5681         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
5682
5683         if(R_CompileShader_CheckStaticParms())
5684                 R_GLSL_Restart_f(&cmd_local);
5685
5686         if (!r_drawentities.integer)
5687                 r_refdef.scene.numentities = 0;
5688         else if (r_sortentities.integer)
5689                 R_SortEntities();
5690
5691         R_AnimCache_ClearCache();
5692
5693         /* adjust for stereo display */
5694         if(R_Stereo_Active())
5695         {
5696                 Matrix4x4_CreateFromQuakeEntity(&offsetmatrix, 0, r_stereo_separation.value * (0.5f - r_stereo_side), 0, 0, r_stereo_angle.value * (0.5f - r_stereo_side), 0, 1);
5697                 Matrix4x4_Concat(&r_refdef.view.matrix, &originalmatrix, &offsetmatrix);
5698         }
5699
5700         if (r_refdef.view.isoverlay)
5701         {
5702                 // TODO: FIXME: move this into its own backend function maybe? [2/5/2008 Andreas]
5703                 R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL);
5704                 GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
5705                 R_TimeReport("depthclear");
5706
5707                 r_refdef.view.showdebug = false;
5708
5709                 r_fb.water.enabled = false;
5710                 r_fb.water.numwaterplanes = 0;
5711
5712                 R_RenderScene(0, NULL, NULL, r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
5713
5714                 r_refdef.view.matrix = originalmatrix;
5715
5716                 CHECKGLERROR
5717                 return;
5718         }
5719
5720         if (!r_refdef.scene.entities || r_refdef.view.width * r_refdef.view.height == 0 || !r_renderview.integer || cl_videoplaying/* || !r_refdef.scene.worldmodel*/)
5721         {
5722                 r_refdef.view.matrix = originalmatrix;
5723                 return;
5724         }
5725
5726         r_refdef.view.usevieworiginculling = !r_trippy.value && r_refdef.view.useperspective;
5727         if (v_isometric.integer && r_refdef.view.ismain)
5728                 V_MakeViewIsometric();
5729
5730         r_refdef.view.colorscale = r_hdr_scenebrightness.value * r_hdr_irisadaptation_value.value;
5731
5732         if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
5733                 // in sRGB fallback, behave similar to true sRGB: convert this
5734                 // value from linear to sRGB
5735                 r_refdef.view.colorscale = Image_sRGBFloatFromLinearFloat(r_refdef.view.colorscale);
5736
5737         R_RenderView_UpdateViewVectors();
5738
5739         R_Shadow_UpdateWorldLightSelection();
5740
5741         // this will set up r_fb.rt_screen
5742         R_Bloom_StartFrame();
5743
5744         // apply bloom brightness offset
5745         if(r_fb.rt_bloom)
5746                 r_refdef.view.colorscale *= r_bloom_scenebrightness.value;
5747
5748         // R_Bloom_StartFrame probably set up an fbo for us to render into, it will be rendered to the window later in R_BlendView
5749         if (r_fb.rt_screen)
5750         {
5751                 viewfbo = r_fb.rt_screen->fbo;
5752                 viewdepthtexture = r_fb.rt_screen->depthtexture;
5753                 viewcolortexture = r_fb.rt_screen->colortexture[0];
5754                 viewx = 0;
5755                 viewy = 0;
5756                 viewwidth = r_fb.rt_screen->texturewidth;
5757                 viewheight = r_fb.rt_screen->textureheight;
5758         }
5759
5760         R_Water_StartFrame(viewwidth, viewheight);
5761
5762         CHECKGLERROR
5763         if (r_timereport_active)
5764                 R_TimeReport("viewsetup");
5765
5766         R_ResetViewRendering3D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5767
5768         // clear the whole fbo every frame - otherwise the driver will consider
5769         // it to be an inter-frame texture and stall in multi-gpu configurations
5770         if (r_fb.rt_screen)
5771                 GL_ScissorTest(false);
5772         R_ClearScreen(r_refdef.fogenabled);
5773         if (r_timereport_active)
5774                 R_TimeReport("viewclear");
5775
5776         r_refdef.view.clear = true;
5777
5778         r_refdef.view.showdebug = true;
5779
5780         R_View_Update();
5781         if (r_timereport_active)
5782                 R_TimeReport("visibility");
5783
5784         R_AnimCache_CacheVisibleEntities();
5785         if (r_timereport_active)
5786                 R_TimeReport("animcache");
5787
5788         R_Shadow_UpdateBounceGridTexture();
5789         // R_Shadow_UpdateBounceGridTexture called R_TimeReport a few times internally, so we don't need to do that here.
5790
5791         r_fb.water.numwaterplanes = 0;
5792         if (r_fb.water.enabled)
5793                 R_RenderWaterPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5794
5795         // for the actual view render we use scissoring a fair amount, so scissor
5796         // test needs to be on
5797         if (r_fb.rt_screen)
5798                 GL_ScissorTest(true);
5799         GL_Scissor(viewx, viewy, viewwidth, viewheight);
5800         R_RenderScene(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5801         r_fb.water.numwaterplanes = 0;
5802
5803         // postprocess uses textures that are not aligned with the viewport we're rendering, so no scissoring
5804         GL_ScissorTest(false);
5805
5806         R_BlendView(fbo, depthtexture, colortexture, x, y, width, height);
5807         if (r_timereport_active)
5808                 R_TimeReport("blendview");
5809
5810         r_refdef.view.matrix = originalmatrix;
5811
5812         CHECKGLERROR
5813
5814         // go back to 2d rendering
5815         DrawQ_Start();
5816 }
5817
5818 void R_RenderWaterPlanes(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5819 {
5820         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawAddWaterPlanes)
5821         {
5822                 r_refdef.scene.worldmodel->DrawAddWaterPlanes(r_refdef.scene.worldentity);
5823                 if (r_timereport_active)
5824                         R_TimeReport("waterworld");
5825         }
5826
5827         // don't let sound skip if going slow
5828         if (r_refdef.scene.extraupdate)
5829                 S_ExtraUpdate ();
5830
5831         R_DrawModelsAddWaterPlanes();
5832         if (r_timereport_active)
5833                 R_TimeReport("watermodels");
5834
5835         if (r_fb.water.numwaterplanes)
5836         {
5837                 R_Water_ProcessPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5838                 if (r_timereport_active)
5839                         R_TimeReport("waterscenes");
5840         }
5841 }
5842
5843 extern cvar_t cl_locs_show;
5844 static void R_DrawLocs(void);
5845 static void R_DrawEntityBBoxes(prvm_prog_t *prog);
5846 static void R_DrawModelDecals(void);
5847 extern qbool r_shadow_usingdeferredprepass;
5848 extern int r_shadow_shadowmapatlas_modelshadows_size;
5849 void R_RenderScene(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5850 {
5851         qbool shadowmapping = false;
5852
5853         if (r_timereport_active)
5854                 R_TimeReport("beginscene");
5855
5856         r_refdef.stats[r_stat_renders]++;
5857
5858         R_UpdateFog();
5859
5860         // don't let sound skip if going slow
5861         if (r_refdef.scene.extraupdate)
5862                 S_ExtraUpdate ();
5863
5864         R_MeshQueue_BeginScene();
5865
5866         R_SkyStartFrame();
5867
5868         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.scene.time) * 0.025 * r_waterscroll.value, sin(r_refdef.scene.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
5869
5870         if (r_timereport_active)
5871                 R_TimeReport("skystartframe");
5872
5873         if (cl.csqc_vidvars.drawworld)
5874         {
5875                 // don't let sound skip if going slow
5876                 if (r_refdef.scene.extraupdate)
5877                         S_ExtraUpdate ();
5878
5879                 if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawSky)
5880                 {
5881                         r_refdef.scene.worldmodel->DrawSky(r_refdef.scene.worldentity);
5882                         if (r_timereport_active)
5883                                 R_TimeReport("worldsky");
5884                 }
5885
5886                 if (R_DrawBrushModelsSky() && r_timereport_active)
5887                         R_TimeReport("bmodelsky");
5888
5889                 if (skyrendermasked && skyrenderlater)
5890                 {
5891                         // we have to force off the water clipping plane while rendering sky
5892                         R_SetupView(false, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5893                         R_Sky();
5894                         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5895                         if (r_timereport_active)
5896                                 R_TimeReport("sky");
5897                 }
5898         }
5899
5900         // save the framebuffer info for R_Shadow_RenderMode_Reset during this view render
5901         r_shadow_viewfbo = viewfbo;
5902         r_shadow_viewdepthtexture = viewdepthtexture;
5903         r_shadow_viewcolortexture = viewcolortexture;
5904         r_shadow_viewx = viewx;
5905         r_shadow_viewy = viewy;
5906         r_shadow_viewwidth = viewwidth;
5907         r_shadow_viewheight = viewheight;
5908
5909         R_Shadow_PrepareModelShadows();
5910         R_Shadow_PrepareLights();
5911         if (r_timereport_active)
5912                 R_TimeReport("preparelights");
5913
5914         // render all the shadowmaps that will be used for this view
5915         shadowmapping = R_Shadow_ShadowMappingEnabled();
5916         if (shadowmapping || r_shadow_shadowmapatlas_modelshadows_size)
5917         {
5918                 R_Shadow_DrawShadowMaps();
5919                 if (r_timereport_active)
5920                         R_TimeReport("shadowmaps");
5921         }
5922
5923         // render prepass deferred lighting if r_shadow_deferred is on, this produces light buffers that will be sampled in forward pass
5924         if (r_shadow_usingdeferredprepass)
5925                 R_Shadow_DrawPrepass();
5926
5927         // now we begin the forward pass of the view render
5928         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDepth)
5929         {
5930                 r_refdef.scene.worldmodel->DrawDepth(r_refdef.scene.worldentity);
5931                 if (r_timereport_active)
5932                         R_TimeReport("worlddepth");
5933         }
5934         if (r_depthfirst.integer >= 2)
5935         {
5936                 R_DrawModelsDepth();
5937                 if (r_timereport_active)
5938                         R_TimeReport("modeldepth");
5939         }
5940
5941         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->Draw)
5942         {
5943                 r_refdef.scene.worldmodel->Draw(r_refdef.scene.worldentity);
5944                 if (r_timereport_active)
5945                         R_TimeReport("world");
5946         }
5947
5948         // don't let sound skip if going slow
5949         if (r_refdef.scene.extraupdate)
5950                 S_ExtraUpdate ();
5951
5952         R_DrawModels();
5953         if (r_timereport_active)
5954                 R_TimeReport("models");
5955
5956         // don't let sound skip if going slow
5957         if (r_refdef.scene.extraupdate)
5958                 S_ExtraUpdate ();
5959
5960         if (!r_shadow_usingdeferredprepass)
5961         {
5962                 R_Shadow_DrawLights();
5963                 if (r_timereport_active)
5964                         R_TimeReport("rtlights");
5965         }
5966
5967         // don't let sound skip if going slow
5968         if (r_refdef.scene.extraupdate)
5969                 S_ExtraUpdate ();
5970
5971         if (cl.csqc_vidvars.drawworld)
5972         {
5973                 R_DrawModelDecals();
5974                 if (r_timereport_active)
5975                         R_TimeReport("modeldecals");
5976
5977                 R_DrawParticles();
5978                 if (r_timereport_active)
5979                         R_TimeReport("particles");
5980
5981                 R_DrawExplosions();
5982                 if (r_timereport_active)
5983                         R_TimeReport("explosions");
5984         }
5985
5986         if (r_refdef.view.showdebug)
5987         {
5988                 if (cl_locs_show.integer)
5989                 {
5990                         R_DrawLocs();
5991                         if (r_timereport_active)
5992                                 R_TimeReport("showlocs");
5993                 }
5994
5995                 if (r_drawportals.integer)
5996                 {
5997                         R_DrawPortals();
5998                         if (r_timereport_active)
5999                                 R_TimeReport("portals");
6000                 }
6001
6002                 if (r_showbboxes_client.value > 0)
6003                 {
6004                         R_DrawEntityBBoxes(CLVM_prog);
6005                         if (r_timereport_active)
6006                                 R_TimeReport("clbboxes");
6007                 }
6008                 if (r_showbboxes.value > 0)
6009                 {
6010                         R_DrawEntityBBoxes(SVVM_prog);
6011                         if (r_timereport_active)
6012                                 R_TimeReport("svbboxes");
6013                 }
6014         }
6015
6016         if (r_transparent.integer)
6017         {
6018                 R_MeshQueue_RenderTransparent();
6019                 if (r_timereport_active)
6020                         R_TimeReport("drawtrans");
6021         }
6022
6023         if (r_refdef.view.showdebug && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value != 0 || r_showcollisionbrushes.value > 0 || r_showoverdraw.value > 0))
6024         {
6025                 r_refdef.scene.worldmodel->DrawDebug(r_refdef.scene.worldentity);
6026                 if (r_timereport_active)
6027                         R_TimeReport("worlddebug");
6028                 R_DrawModelsDebug();
6029                 if (r_timereport_active)
6030                         R_TimeReport("modeldebug");
6031         }
6032
6033         if (cl.csqc_vidvars.drawworld)
6034         {
6035                 R_Shadow_DrawCoronas();
6036                 if (r_timereport_active)
6037                         R_TimeReport("coronas");
6038         }
6039
6040         // don't let sound skip if going slow
6041         if (r_refdef.scene.extraupdate)
6042                 S_ExtraUpdate ();
6043 }
6044
6045 static const unsigned short bboxelements[36] =
6046 {
6047         5, 1, 3, 5, 3, 7,
6048         6, 2, 0, 6, 0, 4,
6049         7, 3, 2, 7, 2, 6,
6050         4, 0, 1, 4, 1, 5,
6051         4, 5, 7, 4, 7, 6,
6052         1, 0, 2, 1, 2, 3,
6053 };
6054
6055 #define BBOXEDGES 13
6056 static const float bboxedges[BBOXEDGES][6] = 
6057 {
6058         // whole box
6059         { 0, 0, 0, 1, 1, 1 },
6060         // bottom edges
6061         { 0, 0, 0, 0, 1, 0 },
6062         { 0, 0, 0, 1, 0, 0 },
6063         { 0, 1, 0, 1, 1, 0 },
6064         { 1, 0, 0, 1, 1, 0 },
6065         // top edges
6066         { 0, 0, 1, 0, 1, 1 },
6067         { 0, 0, 1, 1, 0, 1 },
6068         { 0, 1, 1, 1, 1, 1 },
6069         { 1, 0, 1, 1, 1, 1 },
6070         // vertical edges
6071         { 0, 0, 0, 0, 0, 1 },
6072         { 1, 0, 0, 1, 0, 1 },
6073         { 0, 1, 0, 0, 1, 1 },
6074         { 1, 1, 0, 1, 1, 1 },
6075 };
6076
6077 static void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
6078 {
6079         int numvertices = BBOXEDGES * 8;
6080         float vertex3f[BBOXEDGES * 8 * 3], color4f[BBOXEDGES * 8 * 4];
6081         int numtriangles = BBOXEDGES * 12;
6082         unsigned short elements[BBOXEDGES * 36];
6083         int i, edge;
6084         float *v, *c, f1, f2, edgemins[3], edgemaxs[3];
6085
6086         RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);
6087
6088         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6089         GL_DepthMask(false);
6090         GL_DepthRange(0, 1);
6091         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
6092
6093         for (edge = 0; edge < BBOXEDGES; edge++)
6094         {
6095                 for (i = 0; i < 3; i++)
6096                 {
6097                         edgemins[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][i] - 0.25f;
6098                         edgemaxs[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][3 + i] + 0.25f;
6099                 }
6100                 vertex3f[edge * 24 + 0] = edgemins[0]; vertex3f[edge * 24 + 1] = edgemins[1]; vertex3f[edge * 24 + 2] = edgemins[2];
6101                 vertex3f[edge * 24 + 3] = edgemaxs[0]; vertex3f[edge * 24 + 4] = edgemins[1]; vertex3f[edge * 24 + 5] = edgemins[2];
6102                 vertex3f[edge * 24 + 6] = edgemins[0]; vertex3f[edge * 24 + 7] = edgemaxs[1]; vertex3f[edge * 24 + 8] = edgemins[2];
6103                 vertex3f[edge * 24 + 9] = edgemaxs[0]; vertex3f[edge * 24 + 10] = edgemaxs[1]; vertex3f[edge * 24 + 11] = edgemins[2];
6104                 vertex3f[edge * 24 + 12] = edgemins[0]; vertex3f[edge * 24 + 13] = edgemins[1]; vertex3f[edge * 24 + 14] = edgemaxs[2];
6105                 vertex3f[edge * 24 + 15] = edgemaxs[0]; vertex3f[edge * 24 + 16] = edgemins[1]; vertex3f[edge * 24 + 17] = edgemaxs[2];
6106                 vertex3f[edge * 24 + 18] = edgemins[0]; vertex3f[edge * 24 + 19] = edgemaxs[1]; vertex3f[edge * 24 + 20] = edgemaxs[2];
6107                 vertex3f[edge * 24 + 21] = edgemaxs[0]; vertex3f[edge * 24 + 22] = edgemaxs[1]; vertex3f[edge * 24 + 23] = edgemaxs[2];
6108                 for (i = 0; i < 36; i++)
6109                         elements[edge * 36 + i] = edge * 8 + bboxelements[i];
6110         }
6111         R_FillColors(color4f, numvertices, cr, cg, cb, ca);
6112         if (r_refdef.fogenabled)
6113         {
6114                 for (i = 0, v = vertex3f, c = color4f; i < numvertices; i++, v += 3, c += 4)
6115                 {
6116                         f1 = RSurf_FogVertex(v);
6117                         f2 = 1 - f1;
6118                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
6119                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
6120                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
6121                 }
6122         }
6123         R_Mesh_PrepareVertices_Generic_Arrays(numvertices, vertex3f, color4f, NULL);
6124         R_Mesh_ResetTextureState();
6125         R_SetupShader_Generic_NoTexture(false, false);
6126         R_Mesh_Draw(0, numvertices, 0, numtriangles, NULL, NULL, 0, elements, NULL, 0);
6127 }
6128
6129 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6130 {
6131         // hacky overloading of the parameters
6132         prvm_prog_t *prog = (prvm_prog_t *)rtlight;
6133         int i;
6134         float color[4];
6135         prvm_edict_t *edict;
6136
6137         GL_CullFace(GL_NONE);
6138         R_SetupShader_Generic_NoTexture(false, false);
6139
6140         for (i = 0;i < numsurfaces;i++)
6141         {
6142                 edict = PRVM_EDICT_NUM(surfacelist[i]);
6143                 switch ((int)PRVM_serveredictfloat(edict, solid))
6144                 {
6145                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
6146                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
6147                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
6148                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
6149                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
6150                         case SOLID_CORPSE:   Vector4Set(color, 1, 0.5, 0, 0.05);break;
6151                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
6152                 }
6153                 if (prog == CLVM_prog)
6154                         color[3] *= r_showbboxes_client.value;
6155                 else
6156                         color[3] *= r_showbboxes.value;
6157                 color[3] = bound(0, color[3], 1);
6158                 GL_DepthTest(!r_showdisabledepthtest.integer);
6159                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
6160         }
6161 }
6162
6163 static void R_DrawEntityBBoxes(prvm_prog_t *prog)
6164 {
6165         int i;
6166         prvm_edict_t *edict;
6167         vec3_t center;
6168
6169         if (prog == NULL)
6170                 return;
6171
6172         for (i = 0; i < prog->num_edicts; i++)
6173         {
6174                 edict = PRVM_EDICT_NUM(i);
6175                 if (edict->priv.server->free)
6176                         continue;
6177                 // exclude the following for now, as they don't live in world coordinate space and can't be solid:
6178                 if (PRVM_gameedictedict(edict, tag_entity) != 0)
6179                         continue;
6180                 if (prog == SVVM_prog && PRVM_serveredictedict(edict, viewmodelforclient) != 0)
6181                         continue;
6182                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
6183                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)prog);
6184         }
6185 }
6186
6187 static const int nomodelelement3i[24] =
6188 {
6189         5, 2, 0,
6190         5, 1, 2,
6191         5, 0, 3,
6192         5, 3, 1,
6193         0, 2, 4,
6194         2, 1, 4,
6195         3, 0, 4,
6196         1, 3, 4
6197 };
6198
6199 static const unsigned short nomodelelement3s[24] =
6200 {
6201         5, 2, 0,
6202         5, 1, 2,
6203         5, 0, 3,
6204         5, 3, 1,
6205         0, 2, 4,
6206         2, 1, 4,
6207         3, 0, 4,
6208         1, 3, 4
6209 };
6210
6211 static const float nomodelvertex3f[6*3] =
6212 {
6213         -16,   0,   0,
6214          16,   0,   0,
6215           0, -16,   0,
6216           0,  16,   0,
6217           0,   0, -16,
6218           0,   0,  16
6219 };
6220
6221 static const float nomodelcolor4f[6*4] =
6222 {
6223         0.0f, 0.0f, 0.5f, 1.0f,
6224         0.0f, 0.0f, 0.5f, 1.0f,
6225         0.0f, 0.5f, 0.0f, 1.0f,
6226         0.0f, 0.5f, 0.0f, 1.0f,
6227         0.5f, 0.0f, 0.0f, 1.0f,
6228         0.5f, 0.0f, 0.0f, 1.0f
6229 };
6230
6231 static void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6232 {
6233         int i;
6234         float f1, f2, *c;
6235         float color4f[6*4];
6236
6237         RSurf_ActiveCustomEntity(&ent->matrix, &ent->inversematrix, ent->flags, ent->shadertime, ent->colormod[0], ent->colormod[1], ent->colormod[2], ent->alpha, 6, nomodelvertex3f, NULL, NULL, NULL, NULL, nomodelcolor4f, 8, nomodelelement3i, nomodelelement3s, false, false);
6238
6239         // this is only called once per entity so numsurfaces is always 1, and
6240         // surfacelist is always {0}, so this code does not handle batches
6241
6242         if (rsurface.ent_flags & RENDER_ADDITIVE)
6243         {
6244                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
6245                 GL_DepthMask(false);
6246         }
6247         else if (ent->alpha < 1)
6248         {
6249                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6250                 GL_DepthMask(false);
6251         }
6252         else
6253         {
6254                 GL_BlendFunc(GL_ONE, GL_ZERO);
6255                 GL_DepthMask(true);
6256         }
6257         GL_DepthRange(0, (rsurface.ent_flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
6258         GL_PolygonOffset(rsurface.basepolygonfactor, rsurface.basepolygonoffset);
6259         GL_DepthTest(!(rsurface.ent_flags & RENDER_NODEPTHTEST));
6260         GL_CullFace((rsurface.ent_flags & RENDER_DOUBLESIDED) ? GL_NONE : r_refdef.view.cullface_back);
6261         memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
6262         for (i = 0, c = color4f;i < 6;i++, c += 4)
6263         {
6264                 c[0] *= ent->render_fullbright[0] * r_refdef.view.colorscale;
6265                 c[1] *= ent->render_fullbright[1] * r_refdef.view.colorscale;
6266                 c[2] *= ent->render_fullbright[2] * r_refdef.view.colorscale;
6267                 c[3] *= ent->alpha;
6268         }
6269         if (r_refdef.fogenabled)
6270         {
6271                 for (i = 0, c = color4f;i < 6;i++, c += 4)
6272                 {
6273                         f1 = RSurf_FogVertex(nomodelvertex3f + 3*i);
6274                         f2 = 1 - f1;
6275                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
6276                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
6277                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
6278                 }
6279         }
6280 //      R_Mesh_ResetTextureState();
6281         R_SetupShader_Generic_NoTexture(false, false);
6282         R_Mesh_PrepareVertices_Generic_Arrays(6, nomodelvertex3f, color4f, NULL);
6283         R_Mesh_Draw(0, 6, 0, 8, nomodelelement3i, NULL, 0, nomodelelement3s, NULL, 0);
6284 }
6285
6286 void R_DrawNoModel(entity_render_t *ent)
6287 {
6288         vec3_t org;
6289         Matrix4x4_OriginFromMatrix(&ent->matrix, org);
6290         if ((ent->flags & RENDER_ADDITIVE) || (ent->alpha < 1))
6291                 R_MeshQueue_AddTransparent((ent->flags & RENDER_NODEPTHTEST) ? TRANSPARENTSORT_HUD : TRANSPARENTSORT_DISTANCE, org, R_DrawNoModel_TransparentCallback, ent, 0, rsurface.rtlight);
6292         else
6293                 R_DrawNoModel_TransparentCallback(ent, rsurface.rtlight, 0, NULL);
6294 }
6295
6296 void R_CalcBeam_Vertex3f (float *vert, const float *org1, const float *org2, float width)
6297 {
6298         vec3_t right1, right2, diff, normal;
6299
6300         VectorSubtract (org2, org1, normal);
6301
6302         // calculate 'right' vector for start
6303         VectorSubtract (r_refdef.view.origin, org1, diff);
6304         CrossProduct (normal, diff, right1);
6305         VectorNormalize (right1);
6306
6307         // calculate 'right' vector for end
6308         VectorSubtract (r_refdef.view.origin, org2, diff);
6309         CrossProduct (normal, diff, right2);
6310         VectorNormalize (right2);
6311
6312         vert[ 0] = org1[0] + width * right1[0];
6313         vert[ 1] = org1[1] + width * right1[1];
6314         vert[ 2] = org1[2] + width * right1[2];
6315         vert[ 3] = org1[0] - width * right1[0];
6316         vert[ 4] = org1[1] - width * right1[1];
6317         vert[ 5] = org1[2] - width * right1[2];
6318         vert[ 6] = org2[0] - width * right2[0];
6319         vert[ 7] = org2[1] - width * right2[1];
6320         vert[ 8] = org2[2] - width * right2[2];
6321         vert[ 9] = org2[0] + width * right2[0];
6322         vert[10] = org2[1] + width * right2[1];
6323         vert[11] = org2[2] + width * right2[2];
6324 }
6325
6326 void R_CalcSprite_Vertex3f(float *vertex3f, const vec3_t origin, const vec3_t left, const vec3_t up, float scalex1, float scalex2, float scaley1, float scaley2)
6327 {
6328         vertex3f[ 0] = origin[0] + left[0] * scalex2 + up[0] * scaley1;
6329         vertex3f[ 1] = origin[1] + left[1] * scalex2 + up[1] * scaley1;
6330         vertex3f[ 2] = origin[2] + left[2] * scalex2 + up[2] * scaley1;
6331         vertex3f[ 3] = origin[0] + left[0] * scalex2 + up[0] * scaley2;
6332         vertex3f[ 4] = origin[1] + left[1] * scalex2 + up[1] * scaley2;
6333         vertex3f[ 5] = origin[2] + left[2] * scalex2 + up[2] * scaley2;
6334         vertex3f[ 6] = origin[0] + left[0] * scalex1 + up[0] * scaley2;
6335         vertex3f[ 7] = origin[1] + left[1] * scalex1 + up[1] * scaley2;
6336         vertex3f[ 8] = origin[2] + left[2] * scalex1 + up[2] * scaley2;
6337         vertex3f[ 9] = origin[0] + left[0] * scalex1 + up[0] * scaley1;
6338         vertex3f[10] = origin[1] + left[1] * scalex1 + up[1] * scaley1;
6339         vertex3f[11] = origin[2] + left[2] * scalex1 + up[2] * scaley1;
6340 }
6341
6342 static int R_Mesh_AddVertex(rmesh_t *mesh, float x, float y, float z)
6343 {
6344         int i;
6345         float *vertex3f;
6346         float v[3];
6347         VectorSet(v, x, y, z);
6348         for (i = 0, vertex3f = mesh->vertex3f;i < mesh->numvertices;i++, vertex3f += 3)
6349                 if (VectorDistance2(v, vertex3f) < mesh->epsilon2)
6350                         break;
6351         if (i == mesh->numvertices)
6352         {
6353                 if (mesh->numvertices < mesh->maxvertices)
6354                 {
6355                         VectorCopy(v, vertex3f);
6356                         mesh->numvertices++;
6357                 }
6358                 return mesh->numvertices;
6359         }
6360         else
6361                 return i;
6362 }
6363
6364 void R_Mesh_AddPolygon3f(rmesh_t *mesh, int numvertices, float *vertex3f)
6365 {
6366         int i;
6367         int *e, element[3];
6368         element[0] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6369         element[1] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6370         e = mesh->element3i + mesh->numtriangles * 3;
6371         for (i = 0;i < numvertices - 2;i++, vertex3f += 3)
6372         {
6373                 element[2] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);
6374                 if (mesh->numtriangles < mesh->maxtriangles)
6375                 {
6376                         *e++ = element[0];
6377                         *e++ = element[1];
6378                         *e++ = element[2];
6379                         mesh->numtriangles++;
6380                 }
6381                 element[1] = element[2];
6382         }
6383 }
6384
6385 static void R_Mesh_AddPolygon3d(rmesh_t *mesh, int numvertices, double *vertex3d)
6386 {
6387         int i;
6388         int *e, element[3];
6389         element[0] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6390         element[1] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6391         e = mesh->element3i + mesh->numtriangles * 3;
6392         for (i = 0;i < numvertices - 2;i++, vertex3d += 3)
6393         {
6394                 element[2] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);
6395                 if (mesh->numtriangles < mesh->maxtriangles)
6396                 {
6397                         *e++ = element[0];
6398                         *e++ = element[1];
6399                         *e++ = element[2];
6400                         mesh->numtriangles++;
6401                 }
6402                 element[1] = element[2];
6403         }
6404 }
6405
6406 #define R_MESH_PLANE_DIST_EPSILON (1.0 / 32.0)
6407 void R_Mesh_AddBrushMeshFromPlanes(rmesh_t *mesh, int numplanes, mplane_t *planes)
6408 {
6409         int planenum, planenum2;
6410         int w;
6411         int tempnumpoints;
6412         mplane_t *plane, *plane2;
6413         double maxdist;
6414         double temppoints[2][256*3];
6415         // figure out how large a bounding box we need to properly compute this brush
6416         maxdist = 0;
6417         for (w = 0;w < numplanes;w++)
6418                 maxdist = max(maxdist, fabs(planes[w].dist));
6419         // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
6420         maxdist = floor(maxdist * (4.0 / 1024.0) + 1) * 1024.0;
6421         for (planenum = 0, plane = planes;planenum < numplanes;planenum++, plane++)
6422         {
6423                 w = 0;
6424                 tempnumpoints = 4;
6425                 PolygonD_QuadForPlane(temppoints[w], plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, maxdist);
6426                 for (planenum2 = 0, plane2 = planes;planenum2 < numplanes && tempnumpoints >= 3;planenum2++, plane2++)
6427                 {
6428                         if (planenum2 == planenum)
6429                                 continue;
6430                         PolygonD_Divide(tempnumpoints, temppoints[w], plane2->normal[0], plane2->normal[1], plane2->normal[2], plane2->dist, R_MESH_PLANE_DIST_EPSILON, 0, NULL, NULL, 256, temppoints[!w], &tempnumpoints, NULL);
6431                         w = !w;
6432                 }
6433                 if (tempnumpoints < 3)
6434                         continue;
6435                 // generate elements forming a triangle fan for this polygon
6436                 R_Mesh_AddPolygon3d(mesh, tempnumpoints, temppoints[w]);
6437         }
6438 }
6439
6440 static qbool R_TestQ3WaveFunc(q3wavefunc_t func, const float *parms)
6441 {
6442         if(parms[0] == 0 && parms[1] == 0)
6443                 return false;
6444         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6445                 if(rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)] == 0)
6446                         return false;
6447         return true;
6448 }
6449
6450 static float R_EvaluateQ3WaveFunc(q3wavefunc_t func, const float *parms)
6451 {
6452         double index, f;
6453         index = parms[2] + rsurface.shadertime * parms[3];
6454         index -= floor(index);
6455         switch (func & ((1 << Q3WAVEFUNC_USER_SHIFT) - 1))
6456         {
6457         default:
6458         case Q3WAVEFUNC_NONE:
6459         case Q3WAVEFUNC_NOISE:
6460         case Q3WAVEFUNC_COUNT:
6461                 f = 0;
6462                 break;
6463         case Q3WAVEFUNC_SIN: f = sin(index * M_PI * 2);break;
6464         case Q3WAVEFUNC_SQUARE: f = index < 0.5 ? 1 : -1;break;
6465         case Q3WAVEFUNC_SAWTOOTH: f = index;break;
6466         case Q3WAVEFUNC_INVERSESAWTOOTH: f = 1 - index;break;
6467         case Q3WAVEFUNC_TRIANGLE:
6468                 index *= 4;
6469                 f = index - floor(index);
6470                 if (index < 1)
6471                 {
6472                         // f = f;
6473                 }
6474                 else if (index < 2)
6475                         f = 1 - f;
6476                 else if (index < 3)
6477                         f = -f;
6478                 else
6479                         f = -(1 - f);
6480                 break;
6481         }
6482         f = parms[0] + parms[1] * f;
6483         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6484                 f *= rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)];
6485         return (float) f;
6486 }
6487
6488 static void R_tcMod_ApplyToMatrix(matrix4x4_t *texmatrix, q3shaderinfo_layer_tcmod_t *tcmod, int currentmaterialflags)
6489 {
6490         int w, h, idx;
6491         float shadertime;
6492         float f;
6493         float offsetd[2];
6494         float tcmat[12];
6495         matrix4x4_t matrix, temp;
6496         // if shadertime exceeds about 9 hours (32768 seconds), just wrap it,
6497         // it's better to have one huge fixup every 9 hours than gradual
6498         // degradation over time which looks consistently bad after many hours.
6499         //
6500         // tcmod scroll in particular suffers from this degradation which can't be
6501         // effectively worked around even with floor() tricks because we don't
6502         // know if tcmod scroll is the last tcmod being applied, and for clampmap
6503         // a workaround involving floor() would be incorrect anyway...
6504         shadertime = rsurface.shadertime;
6505         if (shadertime >= 32768.0f)
6506                 shadertime -= floor(rsurface.shadertime * (1.0f / 32768.0f)) * 32768.0f;
6507         switch(tcmod->tcmod)
6508         {
6509                 case Q3TCMOD_COUNT:
6510                 case Q3TCMOD_NONE:
6511                         if (currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6512                                 matrix = r_waterscrollmatrix;
6513                         else
6514                                 matrix = identitymatrix;
6515                         break;
6516                 case Q3TCMOD_ENTITYTRANSLATE:
6517                         // this is used in Q3 to allow the gamecode to control texcoord
6518                         // scrolling on the entity, which is not supported in darkplaces yet.
6519                         Matrix4x4_CreateTranslate(&matrix, 0, 0, 0);
6520                         break;
6521                 case Q3TCMOD_ROTATE:
6522                         Matrix4x4_CreateTranslate(&matrix, 0.5, 0.5, 0);
6523                         Matrix4x4_ConcatRotate(&matrix, tcmod->parms[0] * rsurface.shadertime, 0, 0, 1);
6524                         Matrix4x4_ConcatTranslate(&matrix, -0.5, -0.5, 0);
6525                         break;
6526                 case Q3TCMOD_SCALE:
6527                         Matrix4x4_CreateScale3(&matrix, tcmod->parms[0], tcmod->parms[1], 1);
6528                         break;
6529                 case Q3TCMOD_SCROLL:
6530                         // this particular tcmod is a "bug for bug" compatible one with regards to
6531                         // Quake3, the wrapping is unnecessary with our shadetime fix but quake3
6532                         // specifically did the wrapping and so we must mimic that...
6533                         offsetd[0] = tcmod->parms[0] * rsurface.shadertime;
6534                         offsetd[1] = tcmod->parms[1] * rsurface.shadertime;
6535                         Matrix4x4_CreateTranslate(&matrix, offsetd[0] - floor(offsetd[0]), offsetd[1] - floor(offsetd[1]), 0);
6536                         break;
6537                 case Q3TCMOD_PAGE: // poor man's animmap (to store animations into a single file, useful for HTTP downloaded textures)
6538                         w = (int) tcmod->parms[0];
6539                         h = (int) tcmod->parms[1];
6540                         f = rsurface.shadertime / (tcmod->parms[2] * w * h);
6541                         f = f - floor(f);
6542                         idx = (int) floor(f * w * h);
6543                         Matrix4x4_CreateTranslate(&matrix, (idx % w) / tcmod->parms[0], (idx / w) / tcmod->parms[1], 0);
6544                         break;
6545                 case Q3TCMOD_STRETCH:
6546                         f = 1.0f / R_EvaluateQ3WaveFunc(tcmod->wavefunc, tcmod->waveparms);
6547                         Matrix4x4_CreateFromQuakeEntity(&matrix, 0.5f * (1 - f), 0.5 * (1 - f), 0, 0, 0, 0, f);
6548                         break;
6549                 case Q3TCMOD_TRANSFORM:
6550                         VectorSet(tcmat +  0, tcmod->parms[0], tcmod->parms[1], 0);
6551                         VectorSet(tcmat +  3, tcmod->parms[2], tcmod->parms[3], 0);
6552                         VectorSet(tcmat +  6, 0                   , 0                , 1);
6553                         VectorSet(tcmat +  9, tcmod->parms[4], tcmod->parms[5], 0);
6554                         Matrix4x4_FromArray12FloatGL(&matrix, tcmat);
6555                         break;
6556                 case Q3TCMOD_TURBULENT:
6557                         // this is handled in the RSurf_PrepareVertices function
6558                         matrix = identitymatrix;
6559                         break;
6560         }
6561         temp = *texmatrix;
6562         Matrix4x4_Concat(texmatrix, &matrix, &temp);
6563 }
6564
6565 static void R_LoadQWSkin(r_qwskincache_t *cache, const char *skinname)
6566 {
6567         int textureflags = (r_mipskins.integer ? TEXF_MIPMAP : 0) | TEXF_PICMIP;
6568         char name[MAX_QPATH];
6569         skinframe_t *skinframe;
6570         unsigned char pixels[296*194];
6571         strlcpy(cache->name, skinname, sizeof(cache->name));
6572         dpsnprintf(name, sizeof(name), "skins/%s.pcx", cache->name);
6573         if (developer_loading.integer)
6574                 Con_Printf("loading %s\n", name);
6575         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
6576         if (!skinframe || !skinframe->base)
6577         {
6578                 unsigned char *f;
6579                 fs_offset_t filesize;
6580                 skinframe = NULL;
6581                 f = FS_LoadFile(name, tempmempool, true, &filesize);
6582                 if (f)
6583                 {
6584                         if (LoadPCX_QWSkin(f, (int)filesize, pixels, 296, 194))
6585                                 skinframe = R_SkinFrame_LoadInternalQuake(name, textureflags, true, r_fullbrights.integer, pixels, image_width, image_height);
6586                         Mem_Free(f);
6587                 }
6588         }
6589         cache->skinframe = skinframe;
6590 }
6591
6592 texture_t *R_GetCurrentTexture(texture_t *t)
6593 {
6594         int i, q;
6595         const entity_render_t *ent = rsurface.entity;
6596         model_t *model = ent->model; // when calling this, ent must not be NULL
6597         q3shaderinfo_layer_tcmod_t *tcmod;
6598         float specularscale = 0.0f;
6599
6600         if (t->update_lastrenderframe == r_textureframe && t->update_lastrenderentity == (void *)ent && !rsurface.forcecurrenttextureupdate)
6601                 return t->currentframe;
6602         t->update_lastrenderframe = r_textureframe;
6603         t->update_lastrenderentity = (void *)ent;
6604
6605         if(ent->entitynumber >= MAX_EDICTS && ent->entitynumber < 2 * MAX_EDICTS)
6606                 t->camera_entity = ent->entitynumber;
6607         else
6608                 t->camera_entity = 0;
6609
6610         // switch to an alternate material if this is a q1bsp animated material
6611         {
6612                 texture_t *texture = t;
6613                 int s = rsurface.ent_skinnum;
6614                 if ((unsigned int)s >= (unsigned int)model->numskins)
6615                         s = 0;
6616                 if (model->skinscenes)
6617                 {
6618                         if (model->skinscenes[s].framecount > 1)
6619                                 s = model->skinscenes[s].firstframe + (unsigned int) (rsurface.shadertime * model->skinscenes[s].framerate) % model->skinscenes[s].framecount;
6620                         else
6621                                 s = model->skinscenes[s].firstframe;
6622                 }
6623                 if (s > 0)
6624                         t = t + s * model->num_surfaces;
6625                 if (t->animated)
6626                 {
6627                         // use an alternate animation if the entity's frame is not 0,
6628                         // and only if the texture has an alternate animation
6629                         if (t->animated == 2) // q2bsp
6630                                 t = t->anim_frames[0][ent->framegroupblend[0].frame % t->anim_total[0]];
6631                         else if (rsurface.ent_alttextures && t->anim_total[1])
6632                                 t = t->anim_frames[1][(t->anim_total[1] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[1]) : 0];
6633                         else
6634                                 t = t->anim_frames[0][(t->anim_total[0] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[0]) : 0];
6635                 }
6636                 texture->currentframe = t;
6637         }
6638
6639         // update currentskinframe to be a qw skin or animation frame
6640         if (rsurface.ent_qwskin >= 0)
6641         {
6642                 i = rsurface.ent_qwskin;
6643                 if (!r_qwskincache || r_qwskincache_size != cl.maxclients)
6644                 {
6645                         r_qwskincache_size = cl.maxclients;
6646                         if (r_qwskincache)
6647                                 Mem_Free(r_qwskincache);
6648                         r_qwskincache = (r_qwskincache_t *)Mem_Alloc(r_main_mempool, sizeof(*r_qwskincache) * r_qwskincache_size);
6649                 }
6650                 if (strcmp(r_qwskincache[i].name, cl.scores[i].qw_skin))
6651                         R_LoadQWSkin(&r_qwskincache[i], cl.scores[i].qw_skin);
6652                 t->currentskinframe = r_qwskincache[i].skinframe;
6653                 if (t->materialshaderpass && t->currentskinframe == NULL)
6654                         t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6655         }
6656         else if (t->materialshaderpass && t->materialshaderpass->numframes >= 2)
6657                 t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6658         if (t->backgroundshaderpass && t->backgroundshaderpass->numframes >= 2)
6659                 t->backgroundcurrentskinframe = t->backgroundshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->backgroundshaderpass->framerate, t->backgroundshaderpass->numframes)];
6660
6661         t->currentmaterialflags = t->basematerialflags;
6662         t->currentalpha = rsurface.entity->alpha * t->basealpha;
6663         if (t->basematerialflags & MATERIALFLAG_WATERALPHA && (model->brush.supportwateralpha || r_water.integer || r_novis.integer || r_trippy.integer))
6664                 t->currentalpha *= r_wateralpha.value;
6665         if(t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay)
6666                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; // we apply wateralpha later
6667         if(!r_fb.water.enabled || r_refdef.view.isoverlay)
6668                 t->currentmaterialflags &= ~(MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA);
6669
6670         // decide on which type of lighting to use for this surface
6671         if (rsurface.entity->render_modellight_forced)
6672                 t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT;
6673         if (rsurface.entity->render_rtlight_disabled)
6674                 t->currentmaterialflags |= MATERIALFLAG_NORTLIGHT;
6675         if (rsurface.entity->render_lightgrid)
6676                 t->currentmaterialflags |= MATERIALFLAG_LIGHTGRID;
6677         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND && !(R_BlendFuncFlags(t->customblendfunc[0], t->customblendfunc[1]) & BLENDFUNC_ALLOWS_COLORMOD))
6678         {
6679                 // some CUSTOMBLEND blendfuncs are too weird, we have to ignore colormod and view colorscale
6680                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NORTLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6681                 for (q = 0; q < 3; q++)
6682                 {
6683                         t->render_glowmod[q] = rsurface.entity->glowmod[q];
6684                         t->render_modellight_lightdir_world[q] = q == 2;
6685                         t->render_modellight_lightdir_local[q] = q == 2;
6686                         t->render_modellight_ambient[q] = 1;
6687                         t->render_modellight_diffuse[q] = 0;
6688                         t->render_modellight_specular[q] = 0;
6689                         t->render_lightmap_ambient[q] = 0;
6690                         t->render_lightmap_diffuse[q] = 0;
6691                         t->render_lightmap_specular[q] = 0;
6692                         t->render_rtlight_diffuse[q] = 0;
6693                         t->render_rtlight_specular[q] = 0;
6694                 }
6695         }
6696         else if ((t->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) || !(rsurface.ent_flags & RENDER_LIGHT))
6697         {
6698                 // fullbright is basically MATERIALFLAG_MODELLIGHT but with ambient locked to 1,1,1 and no shading
6699                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_NORTLIGHT | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6700                 for (q = 0; q < 3; q++)
6701                 {
6702                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6703                         t->render_modellight_ambient[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6704                         t->render_modellight_lightdir_world[q] = q == 2;
6705                         t->render_modellight_lightdir_local[q] = q == 2;
6706                         t->render_modellight_diffuse[q] = 0;
6707                         t->render_modellight_specular[q] = 0;
6708                         t->render_lightmap_ambient[q] = 0;
6709                         t->render_lightmap_diffuse[q] = 0;
6710                         t->render_lightmap_specular[q] = 0;
6711                         t->render_rtlight_diffuse[q] = 0;
6712                         t->render_rtlight_specular[q] = 0;
6713                 }
6714         }
6715         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
6716         {
6717                 t->currentmaterialflags &= ~MATERIALFLAG_MODELLIGHT;
6718                 for (q = 0; q < 3; q++)
6719                 {
6720                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6721                         t->render_modellight_lightdir_world[q] = q == 2;
6722                         t->render_modellight_lightdir_local[q] = q == 2;
6723                         t->render_modellight_ambient[q] = 0;
6724                         t->render_modellight_diffuse[q] = 0;
6725                         t->render_modellight_specular[q] = 0;
6726                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6727                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6728                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6729                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6730                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6731                 }
6732         }
6733         else if ((rsurface.ent_flags & (RENDER_DYNAMICMODELLIGHT | RENDER_CUSTOMIZEDMODELLIGHT)) || rsurface.modeltexcoordlightmap2f == NULL)
6734         {
6735                 // ambient + single direction light (modellight)
6736                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6737                 for (q = 0; q < 3; q++)
6738                 {
6739                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6740                         t->render_modellight_lightdir_world[q] = rsurface.entity->render_modellight_lightdir_world[q];
6741                         t->render_modellight_lightdir_local[q] = rsurface.entity->render_modellight_lightdir_local[q];
6742                         t->render_modellight_ambient[q] = rsurface.entity->render_modellight_ambient[q] * r_refdef.view.colorscale;
6743                         t->render_modellight_diffuse[q] = rsurface.entity->render_modellight_diffuse[q] * r_refdef.view.colorscale;
6744                         t->render_modellight_specular[q] = rsurface.entity->render_modellight_specular[q] * r_refdef.view.colorscale;
6745                         t->render_lightmap_ambient[q] = 0;
6746                         t->render_lightmap_diffuse[q] = 0;
6747                         t->render_lightmap_specular[q] = 0;
6748                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6749                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6750                 }
6751         }
6752         else
6753         {
6754                 // lightmap - 2x diffuse and specular brightness because bsp files have 0-2 colors as 0-1
6755                 for (q = 0; q < 3; q++)
6756                 {
6757                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6758                         t->render_modellight_lightdir_world[q] = q == 2;
6759                         t->render_modellight_lightdir_local[q] = q == 2;
6760                         t->render_modellight_ambient[q] = 0;
6761                         t->render_modellight_diffuse[q] = 0;
6762                         t->render_modellight_specular[q] = 0;
6763                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6764                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6765                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6766                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6767                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6768                 }
6769         }
6770
6771         if (t->currentmaterialflags & MATERIALFLAG_VERTEXCOLOR)
6772         {
6773                 // since MATERIALFLAG_VERTEXCOLOR uses the lightmapcolor4f vertex
6774                 // attribute, we punt it to the lightmap path and hope for the best,
6775                 // but lighting doesn't work.
6776                 //
6777                 // FIXME: this is fine for effects but CSQC polygons should be subject
6778                 // to lighting.
6779                 t->currentmaterialflags &= ~(MATERIALFLAG_MODELLIGHT | MATERIALFLAG_LIGHTGRID);
6780                 for (q = 0; q < 3; q++)
6781                 {
6782                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6783                         t->render_modellight_lightdir_world[q] = q == 2;
6784                         t->render_modellight_lightdir_local[q] = q == 2;
6785                         t->render_modellight_ambient[q] = 0;
6786                         t->render_modellight_diffuse[q] = 0;
6787                         t->render_modellight_specular[q] = 0;
6788                         t->render_lightmap_ambient[q] = 0;
6789                         t->render_lightmap_diffuse[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6790                         t->render_lightmap_specular[q] = 0;
6791                         t->render_rtlight_diffuse[q] = 0;
6792                         t->render_rtlight_specular[q] = 0;
6793                 }
6794         }
6795
6796         for (q = 0; q < 3; q++)
6797         {
6798                 t->render_colormap_pants[q] = rsurface.entity->colormap_pantscolor[q];
6799                 t->render_colormap_shirt[q] = rsurface.entity->colormap_shirtcolor[q];
6800         }
6801
6802         if (rsurface.ent_flags & RENDER_ADDITIVE)
6803                 t->currentmaterialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6804         else if (t->currentalpha < 1)
6805                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6806         // LadyHavoc: prevent bugs where code checks add or alpha at higher priority than customblend by clearing these flags
6807         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6808                 t->currentmaterialflags &= ~(MATERIALFLAG_ADD | MATERIALFLAG_ALPHA);
6809         if (rsurface.ent_flags & RENDER_DOUBLESIDED)
6810                 t->currentmaterialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_NOCULLFACE;
6811         if (rsurface.ent_flags & (RENDER_NODEPTHTEST | RENDER_VIEWMODEL))
6812                 t->currentmaterialflags |= MATERIALFLAG_SHORTDEPTHRANGE;
6813         if (t->backgroundshaderpass)
6814                 t->currentmaterialflags |= MATERIALFLAG_VERTEXTEXTUREBLEND;
6815         if (t->currentmaterialflags & MATERIALFLAG_BLENDED)
6816         {
6817                 if (t->currentmaterialflags & (MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA))
6818                         t->currentmaterialflags &= ~MATERIALFLAG_BLENDED;
6819         }
6820         else
6821                 t->currentmaterialflags &= ~(MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA);
6822         if (vid.allowalphatocoverage && r_transparent_alphatocoverage.integer >= 2 && ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA | MATERIALFLAG_ADD | MATERIALFLAG_CUSTOMBLEND)) == (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)))
6823         {
6824                 // promote alphablend to alphatocoverage (a type of alphatest) if antialiasing is on
6825                 t->currentmaterialflags = (t->currentmaterialflags & ~(MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)) | MATERIALFLAG_ALPHATEST;
6826         }
6827         if ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST)) == MATERIALFLAG_BLENDED && r_transparentdepthmasking.integer && !(t->basematerialflags & MATERIALFLAG_BLENDED))
6828                 t->currentmaterialflags |= MATERIALFLAG_TRANSDEPTH;
6829
6830         // there is no tcmod
6831         if (t->currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6832         {
6833                 t->currenttexmatrix = r_waterscrollmatrix;
6834                 t->currentbackgroundtexmatrix = r_waterscrollmatrix;
6835         }
6836         else if (!(t->currentmaterialflags & MATERIALFLAG_CUSTOMSURFACE))
6837         {
6838                 Matrix4x4_CreateIdentity(&t->currenttexmatrix);
6839                 Matrix4x4_CreateIdentity(&t->currentbackgroundtexmatrix);
6840         }
6841
6842         if (t->materialshaderpass)
6843                 for (i = 0, tcmod = t->materialshaderpass->tcmods;i < Q3MAXTCMODS && tcmod->tcmod;i++, tcmod++)
6844                         R_tcMod_ApplyToMatrix(&t->currenttexmatrix, tcmod, t->currentmaterialflags);
6845
6846         t->colormapping = VectorLength2(t->render_colormap_pants) + VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f);
6847         if (t->currentskinframe->qpixels)
6848                 R_SkinFrame_GenerateTexturesFromQPixels(t->currentskinframe, t->colormapping);
6849         t->basetexture = (!t->colormapping && t->currentskinframe->merged) ? t->currentskinframe->merged : t->currentskinframe->base;
6850         if (!t->basetexture)
6851                 t->basetexture = r_texture_notexture;
6852         t->pantstexture = t->colormapping ? t->currentskinframe->pants : NULL;
6853         t->shirttexture = t->colormapping ? t->currentskinframe->shirt : NULL;
6854         t->nmaptexture = t->currentskinframe->nmap;
6855         if (!t->nmaptexture)
6856                 t->nmaptexture = r_texture_blanknormalmap;
6857         t->glosstexture = r_texture_black;
6858         t->glowtexture = t->currentskinframe->glow;
6859         t->fogtexture = t->currentskinframe->fog;
6860         t->reflectmasktexture = t->currentskinframe->reflect;
6861         if (t->backgroundshaderpass)
6862         {
6863                 for (i = 0, tcmod = t->backgroundshaderpass->tcmods; i < Q3MAXTCMODS && tcmod->tcmod; i++, tcmod++)
6864                         R_tcMod_ApplyToMatrix(&t->currentbackgroundtexmatrix, tcmod, t->currentmaterialflags);
6865                 t->backgroundbasetexture = (!t->colormapping && t->backgroundcurrentskinframe->merged) ? t->backgroundcurrentskinframe->merged : t->backgroundcurrentskinframe->base;
6866                 t->backgroundnmaptexture = t->backgroundcurrentskinframe->nmap;
6867                 t->backgroundglosstexture = r_texture_black;
6868                 t->backgroundglowtexture = t->backgroundcurrentskinframe->glow;
6869                 if (!t->backgroundnmaptexture)
6870                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6871                 // make sure that if glow is going to be used, both textures are not NULL
6872                 if (!t->backgroundglowtexture && t->glowtexture)
6873                         t->backgroundglowtexture = r_texture_black;
6874                 if (!t->glowtexture && t->backgroundglowtexture)
6875                         t->glowtexture = r_texture_black;
6876         }
6877         else
6878         {
6879                 t->backgroundbasetexture = r_texture_white;
6880                 t->backgroundnmaptexture = r_texture_blanknormalmap;
6881                 t->backgroundglosstexture = r_texture_black;
6882                 t->backgroundglowtexture = NULL;
6883         }
6884         t->specularpower = r_shadow_glossexponent.value;
6885         // TODO: store reference values for these in the texture?
6886         if (r_shadow_gloss.integer > 0)
6887         {
6888                 if (t->currentskinframe->gloss || (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss))
6889                 {
6890                         if (r_shadow_glossintensity.value > 0)
6891                         {
6892                                 t->glosstexture = t->currentskinframe->gloss ? t->currentskinframe->gloss : r_texture_white;
6893                                 t->backgroundglosstexture = (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss) ? t->backgroundcurrentskinframe->gloss : r_texture_white;
6894                                 specularscale = r_shadow_glossintensity.value;
6895                         }
6896                 }
6897                 else if (r_shadow_gloss.integer >= 2 && r_shadow_gloss2intensity.value > 0)
6898                 {
6899                         t->glosstexture = r_texture_white;
6900                         t->backgroundglosstexture = r_texture_white;
6901                         specularscale = r_shadow_gloss2intensity.value;
6902                         t->specularpower = r_shadow_gloss2exponent.value;
6903                 }
6904         }
6905         specularscale *= t->specularscalemod;
6906         t->specularpower *= t->specularpowermod;
6907
6908         // lightmaps mode looks bad with dlights using actual texturing, so turn
6909         // off the colormap and glossmap, but leave the normalmap on as it still
6910         // accurately represents the shading involved
6911         if (gl_lightmaps.integer && ent != &cl_meshentities[MESH_UI].render)
6912         {
6913                 t->basetexture = r_texture_grey128;
6914                 t->pantstexture = r_texture_black;
6915                 t->shirttexture = r_texture_black;
6916                 if (gl_lightmaps.integer < 2)
6917                         t->nmaptexture = r_texture_blanknormalmap;
6918                 t->glosstexture = r_texture_black;
6919                 t->glowtexture = NULL;
6920                 t->fogtexture = NULL;
6921                 t->reflectmasktexture = NULL;
6922                 t->backgroundbasetexture = NULL;
6923                 if (gl_lightmaps.integer < 2)
6924                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6925                 t->backgroundglosstexture = r_texture_black;
6926                 t->backgroundglowtexture = NULL;
6927                 specularscale = 0;
6928                 t->currentmaterialflags = MATERIALFLAG_WALL | (t->currentmaterialflags & (MATERIALFLAG_NOCULLFACE | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SHORTDEPTHRANGE));
6929         }
6930
6931         if (specularscale != 1.0f)
6932         {
6933                 for (q = 0; q < 3; q++)
6934                 {
6935                         t->render_modellight_specular[q] *= specularscale;
6936                         t->render_lightmap_specular[q] *= specularscale;
6937                         t->render_rtlight_specular[q] *= specularscale;
6938                 }
6939         }
6940
6941         t->currentblendfunc[0] = GL_ONE;
6942         t->currentblendfunc[1] = GL_ZERO;
6943         if (t->currentmaterialflags & MATERIALFLAG_ADD)
6944         {
6945                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6946                 t->currentblendfunc[1] = GL_ONE;
6947         }
6948         else if (t->currentmaterialflags & MATERIALFLAG_ALPHA)
6949         {
6950                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6951                 t->currentblendfunc[1] = GL_ONE_MINUS_SRC_ALPHA;
6952         }
6953         else if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6954         {
6955                 t->currentblendfunc[0] = t->customblendfunc[0];
6956                 t->currentblendfunc[1] = t->customblendfunc[1];
6957         }
6958
6959         return t;
6960 }
6961
6962 rsurfacestate_t rsurface;
6963
6964 void RSurf_ActiveModelEntity(const entity_render_t *ent, qbool wantnormals, qbool wanttangents, qbool prepass)
6965 {
6966         model_t *model = ent->model;
6967         //if (rsurface.entity == ent && (!model->surfmesh.isanimated || (!wantnormals && !wanttangents)))
6968         //      return;
6969         rsurface.entity = (entity_render_t *)ent;
6970         rsurface.skeleton = ent->skeleton;
6971         memcpy(rsurface.userwavefunc_param, ent->userwavefunc_param, sizeof(rsurface.userwavefunc_param));
6972         rsurface.ent_skinnum = ent->skinnum;
6973         rsurface.ent_qwskin = (ent->entitynumber <= cl.maxclients && ent->entitynumber >= 1 && cls.protocol == PROTOCOL_QUAKEWORLD && cl.scores[ent->entitynumber - 1].qw_skin[0] && !strcmp(ent->model->name, "progs/player.mdl")) ? (ent->entitynumber - 1) : -1;
6974         rsurface.ent_flags = ent->flags;
6975         if (r_fullbright_directed.integer && (r_fullbright.integer || !model->lit))
6976                 rsurface.ent_flags |= RENDER_LIGHT | RENDER_DYNAMICMODELLIGHT;
6977         rsurface.shadertime = r_refdef.scene.time - ent->shadertime;
6978         rsurface.matrix = ent->matrix;
6979         rsurface.inversematrix = ent->inversematrix;
6980         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
6981         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
6982         R_EntityMatrix(&rsurface.matrix);
6983         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
6984         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
6985         rsurface.fogplaneviewdist = r_refdef.fogplaneviewdist * rsurface.inversematrixscale;
6986         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
6987         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
6988         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
6989         memcpy(rsurface.frameblend, ent->frameblend, sizeof(ent->frameblend));
6990         rsurface.ent_alttextures = ent->framegroupblend[0].frame != 0;
6991         rsurface.basepolygonfactor = r_refdef.polygonfactor;
6992         rsurface.basepolygonoffset = r_refdef.polygonoffset;
6993         if (ent->model->brush.submodel && !prepass)
6994         {
6995                 rsurface.basepolygonfactor += r_polygonoffset_submodel_factor.value;
6996                 rsurface.basepolygonoffset += r_polygonoffset_submodel_offset.value;
6997         }
6998         // if the animcache code decided it should use the shader path, skip the deform step
6999         rsurface.entityskeletaltransform3x4 = ent->animcache_skeletaltransform3x4;
7000         rsurface.entityskeletaltransform3x4buffer = ent->animcache_skeletaltransform3x4buffer;
7001         rsurface.entityskeletaltransform3x4offset = ent->animcache_skeletaltransform3x4offset;
7002         rsurface.entityskeletaltransform3x4size = ent->animcache_skeletaltransform3x4size;
7003         rsurface.entityskeletalnumtransforms = rsurface.entityskeletaltransform3x4 ? model->num_bones : 0;
7004         if (model->surfmesh.isanimated && model->AnimateVertices && !rsurface.entityskeletaltransform3x4)
7005         {
7006                 if (ent->animcache_vertex3f)
7007                 {
7008                         r_refdef.stats[r_stat_batch_entitycache_count]++;
7009                         r_refdef.stats[r_stat_batch_entitycache_surfaces] += model->num_surfaces;
7010                         r_refdef.stats[r_stat_batch_entitycache_vertices] += model->surfmesh.num_vertices;
7011                         r_refdef.stats[r_stat_batch_entitycache_triangles] += model->surfmesh.num_triangles;
7012                         rsurface.modelvertex3f = ent->animcache_vertex3f;
7013                         rsurface.modelvertex3f_vertexbuffer = ent->animcache_vertex3f_vertexbuffer;
7014                         rsurface.modelvertex3f_bufferoffset = ent->animcache_vertex3f_bufferoffset;
7015                         rsurface.modelsvector3f = wanttangents ? ent->animcache_svector3f : NULL;
7016                         rsurface.modelsvector3f_vertexbuffer = wanttangents ? ent->animcache_svector3f_vertexbuffer : NULL;
7017                         rsurface.modelsvector3f_bufferoffset = wanttangents ? ent->animcache_svector3f_bufferoffset : 0;
7018                         rsurface.modeltvector3f = wanttangents ? ent->animcache_tvector3f : NULL;
7019                         rsurface.modeltvector3f_vertexbuffer = wanttangents ? ent->animcache_tvector3f_vertexbuffer : NULL;
7020                         rsurface.modeltvector3f_bufferoffset = wanttangents ? ent->animcache_tvector3f_bufferoffset : 0;
7021                         rsurface.modelnormal3f = wantnormals ? ent->animcache_normal3f : NULL;
7022                         rsurface.modelnormal3f_vertexbuffer = wantnormals ? ent->animcache_normal3f_vertexbuffer : NULL;
7023                         rsurface.modelnormal3f_bufferoffset = wantnormals ? ent->animcache_normal3f_bufferoffset : 0;
7024                 }
7025                 else if (wanttangents)
7026                 {
7027                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7028                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7029                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7030                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7031                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7032                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7033                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7034                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7035                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, rsurface.modelsvector3f, rsurface.modeltvector3f);
7036                         rsurface.modelvertex3f_vertexbuffer = NULL;
7037                         rsurface.modelvertex3f_bufferoffset = 0;
7038                         rsurface.modelvertex3f_vertexbuffer = 0;
7039                         rsurface.modelvertex3f_bufferoffset = 0;
7040                         rsurface.modelsvector3f_vertexbuffer = 0;
7041                         rsurface.modelsvector3f_bufferoffset = 0;
7042                         rsurface.modeltvector3f_vertexbuffer = 0;
7043                         rsurface.modeltvector3f_bufferoffset = 0;
7044                         rsurface.modelnormal3f_vertexbuffer = 0;
7045                         rsurface.modelnormal3f_bufferoffset = 0;
7046                 }
7047                 else if (wantnormals)
7048                 {
7049                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7050                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7051                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7052                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7053                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7054                         rsurface.modelsvector3f = NULL;
7055                         rsurface.modeltvector3f = NULL;
7056                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7057                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, NULL, NULL);
7058                         rsurface.modelvertex3f_vertexbuffer = NULL;
7059                         rsurface.modelvertex3f_bufferoffset = 0;
7060                         rsurface.modelvertex3f_vertexbuffer = 0;
7061                         rsurface.modelvertex3f_bufferoffset = 0;
7062                         rsurface.modelsvector3f_vertexbuffer = 0;
7063                         rsurface.modelsvector3f_bufferoffset = 0;
7064                         rsurface.modeltvector3f_vertexbuffer = 0;
7065                         rsurface.modeltvector3f_bufferoffset = 0;
7066                         rsurface.modelnormal3f_vertexbuffer = 0;
7067                         rsurface.modelnormal3f_bufferoffset = 0;
7068                 }
7069                 else
7070                 {
7071                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7072                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7073                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7074                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7075                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7076                         rsurface.modelsvector3f = NULL;
7077                         rsurface.modeltvector3f = NULL;
7078                         rsurface.modelnormal3f = NULL;
7079                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, NULL, NULL, NULL);
7080                         rsurface.modelvertex3f_vertexbuffer = NULL;
7081                         rsurface.modelvertex3f_bufferoffset = 0;
7082                         rsurface.modelvertex3f_vertexbuffer = 0;
7083                         rsurface.modelvertex3f_bufferoffset = 0;
7084                         rsurface.modelsvector3f_vertexbuffer = 0;
7085                         rsurface.modelsvector3f_bufferoffset = 0;
7086                         rsurface.modeltvector3f_vertexbuffer = 0;
7087                         rsurface.modeltvector3f_bufferoffset = 0;
7088                         rsurface.modelnormal3f_vertexbuffer = 0;
7089                         rsurface.modelnormal3f_bufferoffset = 0;
7090                 }
7091                 rsurface.modelgeneratedvertex = true;
7092         }
7093         else
7094         {
7095                 if (rsurface.entityskeletaltransform3x4)
7096                 {
7097                         r_refdef.stats[r_stat_batch_entityskeletal_count]++;
7098                         r_refdef.stats[r_stat_batch_entityskeletal_surfaces] += model->num_surfaces;
7099                         r_refdef.stats[r_stat_batch_entityskeletal_vertices] += model->surfmesh.num_vertices;
7100                         r_refdef.stats[r_stat_batch_entityskeletal_triangles] += model->surfmesh.num_triangles;
7101                 }
7102                 else
7103                 {
7104                         r_refdef.stats[r_stat_batch_entitystatic_count]++;
7105                         r_refdef.stats[r_stat_batch_entitystatic_surfaces] += model->num_surfaces;
7106                         r_refdef.stats[r_stat_batch_entitystatic_vertices] += model->surfmesh.num_vertices;
7107                         r_refdef.stats[r_stat_batch_entitystatic_triangles] += model->surfmesh.num_triangles;
7108                 }
7109                 rsurface.modelvertex3f  = model->surfmesh.data_vertex3f;
7110                 rsurface.modelvertex3f_vertexbuffer = model->surfmesh.data_vertex3f_vertexbuffer;
7111                 rsurface.modelvertex3f_bufferoffset = model->surfmesh.data_vertex3f_bufferoffset;
7112                 rsurface.modelsvector3f = model->surfmesh.data_svector3f;
7113                 rsurface.modelsvector3f_vertexbuffer = model->surfmesh.data_svector3f_vertexbuffer;
7114                 rsurface.modelsvector3f_bufferoffset = model->surfmesh.data_svector3f_bufferoffset;
7115                 rsurface.modeltvector3f = model->surfmesh.data_tvector3f;
7116                 rsurface.modeltvector3f_vertexbuffer = model->surfmesh.data_tvector3f_vertexbuffer;
7117                 rsurface.modeltvector3f_bufferoffset = model->surfmesh.data_tvector3f_bufferoffset;
7118                 rsurface.modelnormal3f  = model->surfmesh.data_normal3f;
7119                 rsurface.modelnormal3f_vertexbuffer = model->surfmesh.data_normal3f_vertexbuffer;
7120                 rsurface.modelnormal3f_bufferoffset = model->surfmesh.data_normal3f_bufferoffset;
7121                 rsurface.modelgeneratedvertex = false;
7122         }
7123         rsurface.modellightmapcolor4f  = model->surfmesh.data_lightmapcolor4f;
7124         rsurface.modellightmapcolor4f_vertexbuffer = model->surfmesh.data_lightmapcolor4f_vertexbuffer;
7125         rsurface.modellightmapcolor4f_bufferoffset = model->surfmesh.data_lightmapcolor4f_bufferoffset;
7126         rsurface.modeltexcoordtexture2f  = model->surfmesh.data_texcoordtexture2f;
7127         rsurface.modeltexcoordtexture2f_vertexbuffer = model->surfmesh.data_texcoordtexture2f_vertexbuffer;
7128         rsurface.modeltexcoordtexture2f_bufferoffset = model->surfmesh.data_texcoordtexture2f_bufferoffset;
7129         rsurface.modeltexcoordlightmap2f  = model->surfmesh.data_texcoordlightmap2f;
7130         rsurface.modeltexcoordlightmap2f_vertexbuffer = model->surfmesh.data_texcoordlightmap2f_vertexbuffer;
7131         rsurface.modeltexcoordlightmap2f_bufferoffset = model->surfmesh.data_texcoordlightmap2f_bufferoffset;
7132         rsurface.modelskeletalindex4ub = model->surfmesh.data_skeletalindex4ub;
7133         rsurface.modelskeletalindex4ub_vertexbuffer = model->surfmesh.data_skeletalindex4ub_vertexbuffer;
7134         rsurface.modelskeletalindex4ub_bufferoffset = model->surfmesh.data_skeletalindex4ub_bufferoffset;
7135         rsurface.modelskeletalweight4ub = model->surfmesh.data_skeletalweight4ub;
7136         rsurface.modelskeletalweight4ub_vertexbuffer = model->surfmesh.data_skeletalweight4ub_vertexbuffer;
7137         rsurface.modelskeletalweight4ub_bufferoffset = model->surfmesh.data_skeletalweight4ub_bufferoffset;
7138         rsurface.modelelement3i = model->surfmesh.data_element3i;
7139         rsurface.modelelement3i_indexbuffer = model->surfmesh.data_element3i_indexbuffer;
7140         rsurface.modelelement3i_bufferoffset = model->surfmesh.data_element3i_bufferoffset;
7141         rsurface.modelelement3s = model->surfmesh.data_element3s;
7142         rsurface.modelelement3s_indexbuffer = model->surfmesh.data_element3s_indexbuffer;
7143         rsurface.modelelement3s_bufferoffset = model->surfmesh.data_element3s_bufferoffset;
7144         rsurface.modellightmapoffsets = model->surfmesh.data_lightmapoffsets;
7145         rsurface.modelnumvertices = model->surfmesh.num_vertices;
7146         rsurface.modelnumtriangles = model->surfmesh.num_triangles;
7147         rsurface.modelsurfaces = model->data_surfaces;
7148         rsurface.batchgeneratedvertex = false;
7149         rsurface.batchfirstvertex = 0;
7150         rsurface.batchnumvertices = 0;
7151         rsurface.batchfirsttriangle = 0;
7152         rsurface.batchnumtriangles = 0;
7153         rsurface.batchvertex3f  = NULL;
7154         rsurface.batchvertex3f_vertexbuffer = NULL;
7155         rsurface.batchvertex3f_bufferoffset = 0;
7156         rsurface.batchsvector3f = NULL;
7157         rsurface.batchsvector3f_vertexbuffer = NULL;
7158         rsurface.batchsvector3f_bufferoffset = 0;
7159         rsurface.batchtvector3f = NULL;
7160         rsurface.batchtvector3f_vertexbuffer = NULL;
7161         rsurface.batchtvector3f_bufferoffset = 0;
7162         rsurface.batchnormal3f  = NULL;
7163         rsurface.batchnormal3f_vertexbuffer = NULL;
7164         rsurface.batchnormal3f_bufferoffset = 0;
7165         rsurface.batchlightmapcolor4f = NULL;
7166         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7167         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7168         rsurface.batchtexcoordtexture2f = NULL;
7169         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7170         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7171         rsurface.batchtexcoordlightmap2f = NULL;
7172         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7173         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7174         rsurface.batchskeletalindex4ub = NULL;
7175         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7176         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7177         rsurface.batchskeletalweight4ub = NULL;
7178         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7179         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7180         rsurface.batchelement3i = NULL;
7181         rsurface.batchelement3i_indexbuffer = NULL;
7182         rsurface.batchelement3i_bufferoffset = 0;
7183         rsurface.batchelement3s = NULL;
7184         rsurface.batchelement3s_indexbuffer = NULL;
7185         rsurface.batchelement3s_bufferoffset = 0;
7186         rsurface.forcecurrenttextureupdate = false;
7187 }
7188
7189 void RSurf_ActiveCustomEntity(const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, int entflags, double shadertime, float r, float g, float b, float a, int numvertices, const float *vertex3f, const float *texcoord2f, const float *normal3f, const float *svector3f, const float *tvector3f, const float *color4f, int numtriangles, const int *element3i, const unsigned short *element3s, qbool wantnormals, qbool wanttangents)
7190 {
7191         rsurface.entity = r_refdef.scene.worldentity;
7192         if (r != 1.0f || g != 1.0f || b != 1.0f || a != 1.0f) {
7193                 // HACK to provide a valid entity with modded colors to R_GetCurrentTexture.
7194                 // A better approach could be making this copy only once per frame.
7195                 static entity_render_t custom_entity;
7196                 int q;
7197                 custom_entity = *rsurface.entity;
7198                 for (q = 0; q < 3; ++q) {
7199                         float colormod = q == 0 ? r : q == 1 ? g : b;
7200                         custom_entity.render_fullbright[q] *= colormod;
7201                         custom_entity.render_modellight_ambient[q] *= colormod;
7202                         custom_entity.render_modellight_diffuse[q] *= colormod;
7203                         custom_entity.render_lightmap_ambient[q] *= colormod;
7204                         custom_entity.render_lightmap_diffuse[q] *= colormod;
7205                         custom_entity.render_rtlight_diffuse[q] *= colormod;
7206                 }
7207                 custom_entity.alpha *= a;
7208                 rsurface.entity = &custom_entity;
7209         }
7210         rsurface.skeleton = NULL;
7211         rsurface.ent_skinnum = 0;
7212         rsurface.ent_qwskin = -1;
7213         rsurface.ent_flags = entflags;
7214         rsurface.shadertime = r_refdef.scene.time - shadertime;
7215         rsurface.modelnumvertices = numvertices;
7216         rsurface.modelnumtriangles = numtriangles;
7217         rsurface.matrix = *matrix;
7218         rsurface.inversematrix = *inversematrix;
7219         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
7220         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
7221         R_EntityMatrix(&rsurface.matrix);
7222         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
7223         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
7224         rsurface.fogplaneviewdist *= rsurface.inversematrixscale;
7225         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
7226         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
7227         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
7228         memset(rsurface.frameblend, 0, sizeof(rsurface.frameblend));
7229         rsurface.frameblend[0].lerp = 1;
7230         rsurface.ent_alttextures = false;
7231         rsurface.basepolygonfactor = r_refdef.polygonfactor;
7232         rsurface.basepolygonoffset = r_refdef.polygonoffset;
7233         rsurface.entityskeletaltransform3x4 = NULL;
7234         rsurface.entityskeletaltransform3x4buffer = NULL;
7235         rsurface.entityskeletaltransform3x4offset = 0;
7236         rsurface.entityskeletaltransform3x4size = 0;
7237         rsurface.entityskeletalnumtransforms = 0;
7238         r_refdef.stats[r_stat_batch_entitycustom_count]++;
7239         r_refdef.stats[r_stat_batch_entitycustom_surfaces] += 1;
7240         r_refdef.stats[r_stat_batch_entitycustom_vertices] += rsurface.modelnumvertices;
7241         r_refdef.stats[r_stat_batch_entitycustom_triangles] += rsurface.modelnumtriangles;
7242         if (wanttangents)
7243         {
7244                 rsurface.modelvertex3f = (float *)vertex3f;
7245                 rsurface.modelsvector3f = svector3f ? (float *)svector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7246                 rsurface.modeltvector3f = tvector3f ? (float *)tvector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7247                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7248         }
7249         else if (wantnormals)
7250         {
7251                 rsurface.modelvertex3f = (float *)vertex3f;
7252                 rsurface.modelsvector3f = NULL;
7253                 rsurface.modeltvector3f = NULL;
7254                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7255         }
7256         else
7257         {
7258                 rsurface.modelvertex3f = (float *)vertex3f;
7259                 rsurface.modelsvector3f = NULL;
7260                 rsurface.modeltvector3f = NULL;
7261                 rsurface.modelnormal3f = NULL;
7262         }
7263         rsurface.modelvertex3f_vertexbuffer = 0;
7264         rsurface.modelvertex3f_bufferoffset = 0;
7265         rsurface.modelsvector3f_vertexbuffer = 0;
7266         rsurface.modelsvector3f_bufferoffset = 0;
7267         rsurface.modeltvector3f_vertexbuffer = 0;
7268         rsurface.modeltvector3f_bufferoffset = 0;
7269         rsurface.modelnormal3f_vertexbuffer = 0;
7270         rsurface.modelnormal3f_bufferoffset = 0;
7271         rsurface.modelgeneratedvertex = true;
7272         rsurface.modellightmapcolor4f  = (float *)color4f;
7273         rsurface.modellightmapcolor4f_vertexbuffer = 0;
7274         rsurface.modellightmapcolor4f_bufferoffset = 0;
7275         rsurface.modeltexcoordtexture2f  = (float *)texcoord2f;
7276         rsurface.modeltexcoordtexture2f_vertexbuffer = 0;
7277         rsurface.modeltexcoordtexture2f_bufferoffset = 0;
7278         rsurface.modeltexcoordlightmap2f  = NULL;
7279         rsurface.modeltexcoordlightmap2f_vertexbuffer = 0;
7280         rsurface.modeltexcoordlightmap2f_bufferoffset = 0;
7281         rsurface.modelskeletalindex4ub = NULL;
7282         rsurface.modelskeletalindex4ub_vertexbuffer = NULL;
7283         rsurface.modelskeletalindex4ub_bufferoffset = 0;
7284         rsurface.modelskeletalweight4ub = NULL;
7285         rsurface.modelskeletalweight4ub_vertexbuffer = NULL;
7286         rsurface.modelskeletalweight4ub_bufferoffset = 0;
7287         rsurface.modelelement3i = (int *)element3i;
7288         rsurface.modelelement3i_indexbuffer = NULL;
7289         rsurface.modelelement3i_bufferoffset = 0;
7290         rsurface.modelelement3s = (unsigned short *)element3s;
7291         rsurface.modelelement3s_indexbuffer = NULL;
7292         rsurface.modelelement3s_bufferoffset = 0;
7293         rsurface.modellightmapoffsets = NULL;
7294         rsurface.modelsurfaces = NULL;
7295         rsurface.batchgeneratedvertex = false;
7296         rsurface.batchfirstvertex = 0;
7297         rsurface.batchnumvertices = 0;
7298         rsurface.batchfirsttriangle = 0;
7299         rsurface.batchnumtriangles = 0;
7300         rsurface.batchvertex3f  = NULL;
7301         rsurface.batchvertex3f_vertexbuffer = NULL;
7302         rsurface.batchvertex3f_bufferoffset = 0;
7303         rsurface.batchsvector3f = NULL;
7304         rsurface.batchsvector3f_vertexbuffer = NULL;
7305         rsurface.batchsvector3f_bufferoffset = 0;
7306         rsurface.batchtvector3f = NULL;
7307         rsurface.batchtvector3f_vertexbuffer = NULL;
7308         rsurface.batchtvector3f_bufferoffset = 0;
7309         rsurface.batchnormal3f  = NULL;
7310         rsurface.batchnormal3f_vertexbuffer = NULL;
7311         rsurface.batchnormal3f_bufferoffset = 0;
7312         rsurface.batchlightmapcolor4f = NULL;
7313         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7314         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7315         rsurface.batchtexcoordtexture2f = NULL;
7316         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7317         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7318         rsurface.batchtexcoordlightmap2f = NULL;
7319         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7320         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7321         rsurface.batchskeletalindex4ub = NULL;
7322         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7323         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7324         rsurface.batchskeletalweight4ub = NULL;
7325         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7326         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7327         rsurface.batchelement3i = NULL;
7328         rsurface.batchelement3i_indexbuffer = NULL;
7329         rsurface.batchelement3i_bufferoffset = 0;
7330         rsurface.batchelement3s = NULL;
7331         rsurface.batchelement3s_indexbuffer = NULL;
7332         rsurface.batchelement3s_bufferoffset = 0;
7333         rsurface.forcecurrenttextureupdate = true;
7334
7335         if (rsurface.modelnumvertices && rsurface.modelelement3i)
7336         {
7337                 if ((wantnormals || wanttangents) && !normal3f)
7338                 {
7339                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7340                         Mod_BuildNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modelelement3i, rsurface.modelnormal3f, r_smoothnormals_areaweighting.integer != 0);
7341                 }
7342                 if (wanttangents && !svector3f)
7343                 {
7344                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7345                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7346                         Mod_BuildTextureVectorsFromNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modeltexcoordtexture2f, rsurface.modelnormal3f, rsurface.modelelement3i, rsurface.modelsvector3f, rsurface.modeltvector3f, r_smoothnormals_areaweighting.integer != 0);
7347                 }
7348         }
7349 }
7350
7351 float RSurf_FogPoint(const float *v)
7352 {
7353         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7354         float FogPlaneViewDist = r_refdef.fogplaneviewdist;
7355         float FogPlaneVertexDist = DotProduct(r_refdef.fogplane, v) + r_refdef.fogplane[3];
7356         float FogHeightFade = r_refdef.fogheightfade;
7357         float fogfrac;
7358         unsigned int fogmasktableindex;
7359         if (r_refdef.fogplaneviewabove)
7360                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7361         else
7362                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7363         fogmasktableindex = (unsigned int)(VectorDistance(r_refdef.view.origin, v) * fogfrac * r_refdef.fogmasktabledistmultiplier);
7364         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7365 }
7366
7367 float RSurf_FogVertex(const float *v)
7368 {
7369         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7370         float FogPlaneViewDist = rsurface.fogplaneviewdist;
7371         float FogPlaneVertexDist = DotProduct(rsurface.fogplane, v) + rsurface.fogplane[3];
7372         float FogHeightFade = rsurface.fogheightfade;
7373         float fogfrac;
7374         unsigned int fogmasktableindex;
7375         if (r_refdef.fogplaneviewabove)
7376                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7377         else
7378                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7379         fogmasktableindex = (unsigned int)(VectorDistance(rsurface.localvieworigin, v) * fogfrac * rsurface.fogmasktabledistmultiplier);
7380         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7381 }
7382
7383 void RSurf_UploadBuffersForBatch(void)
7384 {
7385         // upload buffer data for generated vertex data (dynamicvertex case) or index data (copytriangles case) and models that lack it to begin with (e.g. DrawQ_FlushUI)
7386         // note that if rsurface.batchvertex3f_vertexbuffer is NULL, dynamicvertex is forced as we don't account for the proper base vertex here.
7387         if (rsurface.batchvertex3f && !rsurface.batchvertex3f_vertexbuffer)
7388                 rsurface.batchvertex3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f, R_BUFFERDATA_VERTEX, &rsurface.batchvertex3f_bufferoffset);
7389         if (rsurface.batchsvector3f && !rsurface.batchsvector3f_vertexbuffer)
7390                 rsurface.batchsvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchsvector3f_bufferoffset);
7391         if (rsurface.batchtvector3f && !rsurface.batchtvector3f_vertexbuffer)
7392                 rsurface.batchtvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchtvector3f_bufferoffset);
7393         if (rsurface.batchnormal3f && !rsurface.batchnormal3f_vertexbuffer)
7394                 rsurface.batchnormal3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f, R_BUFFERDATA_VERTEX, &rsurface.batchnormal3f_bufferoffset);
7395         if (rsurface.batchlightmapcolor4f && !rsurface.batchlightmapcolor4f_vertexbuffer)
7396                 rsurface.batchlightmapcolor4f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[4]), rsurface.batchlightmapcolor4f, R_BUFFERDATA_VERTEX, &rsurface.batchlightmapcolor4f_bufferoffset);
7397         if (rsurface.batchtexcoordtexture2f && !rsurface.batchtexcoordtexture2f_vertexbuffer)
7398                 rsurface.batchtexcoordtexture2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordtexture2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordtexture2f_bufferoffset);
7399         if (rsurface.batchtexcoordlightmap2f && !rsurface.batchtexcoordlightmap2f_vertexbuffer)
7400                 rsurface.batchtexcoordlightmap2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordlightmap2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordlightmap2f_bufferoffset);
7401         if (rsurface.batchskeletalindex4ub && !rsurface.batchskeletalindex4ub_vertexbuffer)
7402                 rsurface.batchskeletalindex4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalindex4ub_bufferoffset);
7403         if (rsurface.batchskeletalweight4ub && !rsurface.batchskeletalweight4ub_vertexbuffer)
7404                 rsurface.batchskeletalweight4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalweight4ub_bufferoffset);
7405
7406         if (rsurface.batchelement3s && !rsurface.batchelement3s_indexbuffer)
7407                 rsurface.batchelement3s_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(short[3]), rsurface.batchelement3s, R_BUFFERDATA_INDEX16, &rsurface.batchelement3s_bufferoffset);
7408         else if (rsurface.batchelement3i && !rsurface.batchelement3i_indexbuffer)
7409                 rsurface.batchelement3i_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(int[3]), rsurface.batchelement3i, R_BUFFERDATA_INDEX32, &rsurface.batchelement3i_bufferoffset);
7410
7411         R_Mesh_VertexPointer(     3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
7412         R_Mesh_ColorPointer(      4, GL_FLOAT, sizeof(float[4]), rsurface.batchlightmapcolor4f, rsurface.batchlightmapcolor4f_vertexbuffer, rsurface.batchlightmapcolor4f_bufferoffset);
7413         R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
7414         R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchsvector3f, rsurface.batchsvector3f_vertexbuffer, rsurface.batchsvector3f_bufferoffset);
7415         R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchtvector3f, rsurface.batchtvector3f_vertexbuffer, rsurface.batchtvector3f_bufferoffset);
7416         R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchnormal3f, rsurface.batchnormal3f_vertexbuffer, rsurface.batchnormal3f_bufferoffset);
7417         R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset);
7418         R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
7419         R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, rsurface.batchskeletalindex4ub_vertexbuffer, rsurface.batchskeletalindex4ub_bufferoffset);
7420         R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, rsurface.batchskeletalweight4ub_vertexbuffer, rsurface.batchskeletalweight4ub_bufferoffset);
7421 }
7422
7423 static void RSurf_RenumberElements(const int *inelement3i, int *outelement3i, int numelements, int adjust)
7424 {
7425         int i;
7426         for (i = 0;i < numelements;i++)
7427                 outelement3i[i] = inelement3i[i] + adjust;
7428 }
7429
7430 static const int quadedges[6][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}};
7431 void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const msurface_t **texturesurfacelist)
7432 {
7433         int deformindex;
7434         int firsttriangle;
7435         int numtriangles;
7436         int firstvertex;
7437         int endvertex;
7438         int numvertices;
7439         int surfacefirsttriangle;
7440         int surfacenumtriangles;
7441         int surfacefirstvertex;
7442         int surfaceendvertex;
7443         int surfacenumvertices;
7444         int batchnumsurfaces = texturenumsurfaces;
7445         int batchnumvertices;
7446         int batchnumtriangles;
7447         int i, j;
7448         qbool gaps;
7449         qbool dynamicvertex;
7450         float amplitude;
7451         float animpos;
7452         float center[3], forward[3], right[3], up[3], v[3], newforward[3], newright[3], newup[3];
7453         float waveparms[4];
7454         unsigned char *ub;
7455         q3shaderinfo_deform_t *deform;
7456         const msurface_t *surface, *firstsurface;
7457         if (!texturenumsurfaces)
7458                 return;
7459         // find vertex range of this surface batch
7460         gaps = false;
7461         firstsurface = texturesurfacelist[0];
7462         firsttriangle = firstsurface->num_firsttriangle;
7463         batchnumvertices = 0;
7464         batchnumtriangles = 0;
7465         firstvertex = endvertex = firstsurface->num_firstvertex;
7466         for (i = 0;i < texturenumsurfaces;i++)
7467         {
7468                 surface = texturesurfacelist[i];
7469                 if (surface != firstsurface + i)
7470                         gaps = true;
7471                 surfacefirstvertex = surface->num_firstvertex;
7472                 surfaceendvertex = surfacefirstvertex + surface->num_vertices;
7473                 surfacenumvertices = surface->num_vertices;
7474                 surfacenumtriangles = surface->num_triangles;
7475                 if (firstvertex > surfacefirstvertex)
7476                         firstvertex = surfacefirstvertex;
7477                 if (endvertex < surfaceendvertex)
7478                         endvertex = surfaceendvertex;
7479                 batchnumvertices += surfacenumvertices;
7480                 batchnumtriangles += surfacenumtriangles;
7481         }
7482
7483         r_refdef.stats[r_stat_batch_batches]++;
7484         if (gaps)
7485                 r_refdef.stats[r_stat_batch_withgaps]++;
7486         r_refdef.stats[r_stat_batch_surfaces] += batchnumsurfaces;
7487         r_refdef.stats[r_stat_batch_vertices] += batchnumvertices;
7488         r_refdef.stats[r_stat_batch_triangles] += batchnumtriangles;
7489
7490         // we now know the vertex range used, and if there are any gaps in it
7491         rsurface.batchfirstvertex = firstvertex;
7492         rsurface.batchnumvertices = endvertex - firstvertex;
7493         rsurface.batchfirsttriangle = firsttriangle;
7494         rsurface.batchnumtriangles = batchnumtriangles;
7495
7496         // check if any dynamic vertex processing must occur
7497         dynamicvertex = false;
7498
7499         // we must use vertexbuffers for rendering, we can upload vertex buffers
7500         // easily enough but if the basevertex is non-zero it becomes more
7501         // difficult, so force dynamicvertex path in that case - it's suboptimal
7502         // but the most optimal case is to have the geometry sources provide their
7503         // own anyway.
7504         if (!rsurface.modelvertex3f_vertexbuffer && firstvertex != 0)
7505                 dynamicvertex = true;
7506
7507         // a cvar to force the dynamic vertex path to be taken, for debugging
7508         if (r_batch_debugdynamicvertexpath.integer)
7509         {
7510                 if (!dynamicvertex)
7511                 {
7512                         r_refdef.stats[r_stat_batch_dynamic_batches_because_cvar] += 1;
7513                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_cvar] += batchnumsurfaces;
7514                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_cvar] += batchnumvertices;
7515                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_cvar] += batchnumtriangles;
7516                 }
7517                 dynamicvertex = true;
7518         }
7519
7520         // if there is a chance of animated vertex colors, it's a dynamic batch
7521         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
7522         {
7523                 if (!dynamicvertex)
7524                 {
7525                         r_refdef.stats[r_stat_batch_dynamic_batches_because_lightmapvertex] += 1;
7526                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_lightmapvertex] += batchnumsurfaces;
7527                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_lightmapvertex] += batchnumvertices;
7528                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_lightmapvertex] += batchnumtriangles;
7529                 }
7530                 dynamicvertex = true;
7531         }
7532
7533         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
7534         {
7535                 switch (deform->deform)
7536                 {
7537                 default:
7538                 case Q3DEFORM_PROJECTIONSHADOW:
7539                 case Q3DEFORM_TEXT0:
7540                 case Q3DEFORM_TEXT1:
7541                 case Q3DEFORM_TEXT2:
7542                 case Q3DEFORM_TEXT3:
7543                 case Q3DEFORM_TEXT4:
7544                 case Q3DEFORM_TEXT5:
7545                 case Q3DEFORM_TEXT6:
7546                 case Q3DEFORM_TEXT7:
7547                 case Q3DEFORM_NONE:
7548                         break;
7549                 case Q3DEFORM_AUTOSPRITE:
7550                         if (!dynamicvertex)
7551                         {
7552                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite] += 1;
7553                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite] += batchnumsurfaces;
7554                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite] += batchnumvertices;
7555                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite] += batchnumtriangles;
7556                         }
7557                         dynamicvertex = true;
7558                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_TEXCOORD;
7559                         break;
7560                 case Q3DEFORM_AUTOSPRITE2:
7561                         if (!dynamicvertex)
7562                         {
7563                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite2] += 1;
7564                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite2] += batchnumsurfaces;
7565                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite2] += batchnumvertices;
7566                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite2] += batchnumtriangles;
7567                         }
7568                         dynamicvertex = true;
7569                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7570                         break;
7571                 case Q3DEFORM_NORMAL:
7572                         if (!dynamicvertex)
7573                         {
7574                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_normal] += 1;
7575                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_normal] += batchnumsurfaces;
7576                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_normal] += batchnumvertices;
7577                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_normal] += batchnumtriangles;
7578                         }
7579                         dynamicvertex = true;
7580                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7581                         break;
7582                 case Q3DEFORM_WAVE:
7583                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7584                                 break; // if wavefunc is a nop, ignore this transform
7585                         if (!dynamicvertex)
7586                         {
7587                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_wave] += 1;
7588                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_wave] += batchnumsurfaces;
7589                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_wave] += batchnumvertices;
7590                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_wave] += batchnumtriangles;
7591                         }
7592                         dynamicvertex = true;
7593                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7594                         break;
7595                 case Q3DEFORM_BULGE:
7596                         if (!dynamicvertex)
7597                         {
7598                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_bulge] += 1;
7599                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_bulge] += batchnumsurfaces;
7600                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_bulge] += batchnumvertices;
7601                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_bulge] += batchnumtriangles;
7602                         }
7603                         dynamicvertex = true;
7604                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7605                         break;
7606                 case Q3DEFORM_MOVE:
7607                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7608                                 break; // if wavefunc is a nop, ignore this transform
7609                         if (!dynamicvertex)
7610                         {
7611                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_move] += 1;
7612                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_move] += batchnumsurfaces;
7613                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_move] += batchnumvertices;
7614                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_move] += batchnumtriangles;
7615                         }
7616                         dynamicvertex = true;
7617                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7618                         break;
7619                 }
7620         }
7621         if (rsurface.texture->materialshaderpass)
7622         {
7623                 switch (rsurface.texture->materialshaderpass->tcgen.tcgen)
7624                 {
7625                 default:
7626                 case Q3TCGEN_TEXTURE:
7627                         break;
7628                 case Q3TCGEN_LIGHTMAP:
7629                         if (!dynamicvertex)
7630                         {
7631                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_lightmap] += 1;
7632                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_lightmap] += batchnumsurfaces;
7633                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_lightmap] += batchnumvertices;
7634                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_lightmap] += batchnumtriangles;
7635                         }
7636                         dynamicvertex = true;
7637                         batchneed |= BATCHNEED_ARRAY_LIGHTMAP;
7638                         break;
7639                 case Q3TCGEN_VECTOR:
7640                         if (!dynamicvertex)
7641                         {
7642                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_vector] += 1;
7643                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_vector] += batchnumsurfaces;
7644                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_vector] += batchnumvertices;
7645                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_vector] += batchnumtriangles;
7646                         }
7647                         dynamicvertex = true;
7648                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7649                         break;
7650                 case Q3TCGEN_ENVIRONMENT:
7651                         if (!dynamicvertex)
7652                         {
7653                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_environment] += 1;
7654                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_environment] += batchnumsurfaces;
7655                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_environment] += batchnumvertices;
7656                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_environment] += batchnumtriangles;
7657                         }
7658                         dynamicvertex = true;
7659                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL;
7660                         break;
7661                 }
7662                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
7663                 {
7664                         if (!dynamicvertex)
7665                         {
7666                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcmod_turbulent] += 1;
7667                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcmod_turbulent] += batchnumsurfaces;
7668                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcmod_turbulent] += batchnumvertices;
7669                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcmod_turbulent] += batchnumtriangles;
7670                         }
7671                         dynamicvertex = true;
7672                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7673                 }
7674         }
7675
7676         // the caller can specify BATCHNEED_NOGAPS to force a batch with
7677         // firstvertex = 0 and endvertex = numvertices (no gaps, no firstvertex),
7678         // we ensure this by treating the vertex batch as dynamic...
7679         if ((batchneed & BATCHNEED_ALWAYSCOPY) || ((batchneed & BATCHNEED_NOGAPS) && (gaps || firstvertex > 0)))
7680         {
7681                 if (!dynamicvertex)
7682                 {
7683                         r_refdef.stats[r_stat_batch_dynamic_batches_because_nogaps] += 1;
7684                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_nogaps] += batchnumsurfaces;
7685                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_nogaps] += batchnumvertices;
7686                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_nogaps] += batchnumtriangles;
7687                 }
7688                 dynamicvertex = true;
7689         }
7690
7691         // if we're going to have to apply the skeletal transform manually, we need to batch the skeletal data
7692         if (dynamicvertex && rsurface.entityskeletaltransform3x4)
7693                 batchneed |= BATCHNEED_ARRAY_SKELETAL;
7694
7695         rsurface.batchvertex3f = rsurface.modelvertex3f;
7696         rsurface.batchvertex3f_vertexbuffer = rsurface.modelvertex3f_vertexbuffer;
7697         rsurface.batchvertex3f_bufferoffset = rsurface.modelvertex3f_bufferoffset;
7698         rsurface.batchsvector3f = rsurface.modelsvector3f;
7699         rsurface.batchsvector3f_vertexbuffer = rsurface.modelsvector3f_vertexbuffer;
7700         rsurface.batchsvector3f_bufferoffset = rsurface.modelsvector3f_bufferoffset;
7701         rsurface.batchtvector3f = rsurface.modeltvector3f;
7702         rsurface.batchtvector3f_vertexbuffer = rsurface.modeltvector3f_vertexbuffer;
7703         rsurface.batchtvector3f_bufferoffset = rsurface.modeltvector3f_bufferoffset;
7704         rsurface.batchnormal3f = rsurface.modelnormal3f;
7705         rsurface.batchnormal3f_vertexbuffer = rsurface.modelnormal3f_vertexbuffer;
7706         rsurface.batchnormal3f_bufferoffset = rsurface.modelnormal3f_bufferoffset;
7707         rsurface.batchlightmapcolor4f = rsurface.modellightmapcolor4f;
7708         rsurface.batchlightmapcolor4f_vertexbuffer  = rsurface.modellightmapcolor4f_vertexbuffer;
7709         rsurface.batchlightmapcolor4f_bufferoffset  = rsurface.modellightmapcolor4f_bufferoffset;
7710         rsurface.batchtexcoordtexture2f = rsurface.modeltexcoordtexture2f;
7711         rsurface.batchtexcoordtexture2f_vertexbuffer  = rsurface.modeltexcoordtexture2f_vertexbuffer;
7712         rsurface.batchtexcoordtexture2f_bufferoffset  = rsurface.modeltexcoordtexture2f_bufferoffset;
7713         rsurface.batchtexcoordlightmap2f = rsurface.modeltexcoordlightmap2f;
7714         rsurface.batchtexcoordlightmap2f_vertexbuffer = rsurface.modeltexcoordlightmap2f_vertexbuffer;
7715         rsurface.batchtexcoordlightmap2f_bufferoffset = rsurface.modeltexcoordlightmap2f_bufferoffset;
7716         rsurface.batchskeletalindex4ub = rsurface.modelskeletalindex4ub;
7717         rsurface.batchskeletalindex4ub_vertexbuffer = rsurface.modelskeletalindex4ub_vertexbuffer;
7718         rsurface.batchskeletalindex4ub_bufferoffset = rsurface.modelskeletalindex4ub_bufferoffset;
7719         rsurface.batchskeletalweight4ub = rsurface.modelskeletalweight4ub;
7720         rsurface.batchskeletalweight4ub_vertexbuffer = rsurface.modelskeletalweight4ub_vertexbuffer;
7721         rsurface.batchskeletalweight4ub_bufferoffset = rsurface.modelskeletalweight4ub_bufferoffset;
7722         rsurface.batchelement3i = rsurface.modelelement3i;
7723         rsurface.batchelement3i_indexbuffer = rsurface.modelelement3i_indexbuffer;
7724         rsurface.batchelement3i_bufferoffset = rsurface.modelelement3i_bufferoffset;
7725         rsurface.batchelement3s = rsurface.modelelement3s;
7726         rsurface.batchelement3s_indexbuffer = rsurface.modelelement3s_indexbuffer;
7727         rsurface.batchelement3s_bufferoffset = rsurface.modelelement3s_bufferoffset;
7728         rsurface.batchskeletaltransform3x4 = rsurface.entityskeletaltransform3x4;
7729         rsurface.batchskeletaltransform3x4buffer = rsurface.entityskeletaltransform3x4buffer;
7730         rsurface.batchskeletaltransform3x4offset = rsurface.entityskeletaltransform3x4offset;
7731         rsurface.batchskeletaltransform3x4size = rsurface.entityskeletaltransform3x4size;
7732         rsurface.batchskeletalnumtransforms = rsurface.entityskeletalnumtransforms;
7733
7734         // if any dynamic vertex processing has to occur in software, we copy the
7735         // entire surface list together before processing to rebase the vertices
7736         // to start at 0 (otherwise we waste a lot of room in a vertex buffer).
7737         //
7738         // if any gaps exist and we do not have a static vertex buffer, we have to
7739         // copy the surface list together to avoid wasting upload bandwidth on the
7740         // vertices in the gaps.
7741         //
7742         // if gaps exist and we have a static vertex buffer, we can choose whether
7743         // to combine the index buffer ranges into one dynamic index buffer or
7744         // simply issue multiple glDrawElements calls (BATCHNEED_ALLOWMULTIDRAW).
7745         //
7746         // in many cases the batch is reduced to one draw call.
7747
7748         rsurface.batchmultidraw = false;
7749         rsurface.batchmultidrawnumsurfaces = 0;
7750         rsurface.batchmultidrawsurfacelist = NULL;
7751
7752         if (!dynamicvertex)
7753         {
7754                 // static vertex data, just set pointers...
7755                 rsurface.batchgeneratedvertex = false;
7756                 // if there are gaps, we want to build a combined index buffer,
7757                 // otherwise use the original static buffer with an appropriate offset
7758                 if (gaps)
7759                 {
7760                         r_refdef.stats[r_stat_batch_copytriangles_batches] += 1;
7761                         r_refdef.stats[r_stat_batch_copytriangles_surfaces] += batchnumsurfaces;
7762                         r_refdef.stats[r_stat_batch_copytriangles_vertices] += batchnumvertices;
7763                         r_refdef.stats[r_stat_batch_copytriangles_triangles] += batchnumtriangles;
7764                         if ((batchneed & BATCHNEED_ALLOWMULTIDRAW) && r_batch_multidraw.integer && batchnumtriangles >= r_batch_multidraw_mintriangles.integer)
7765                         {
7766                                 rsurface.batchmultidraw = true;
7767                                 rsurface.batchmultidrawnumsurfaces = texturenumsurfaces;
7768                                 rsurface.batchmultidrawsurfacelist = texturesurfacelist;
7769                                 return;
7770                         }
7771                         // build a new triangle elements array for this batch
7772                         rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7773                         rsurface.batchfirsttriangle = 0;
7774                         numtriangles = 0;
7775                         for (i = 0;i < texturenumsurfaces;i++)
7776                         {
7777                                 surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7778                                 surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7779                                 memcpy(rsurface.batchelement3i + 3*numtriangles, rsurface.modelelement3i + 3*surfacefirsttriangle, surfacenumtriangles*sizeof(int[3]));
7780                                 numtriangles += surfacenumtriangles;
7781                         }
7782                         rsurface.batchelement3i_indexbuffer = NULL;
7783                         rsurface.batchelement3i_bufferoffset = 0;
7784                         rsurface.batchelement3s = NULL;
7785                         rsurface.batchelement3s_indexbuffer = NULL;
7786                         rsurface.batchelement3s_bufferoffset = 0;
7787                         if (endvertex <= 65536)
7788                         {
7789                                 // make a 16bit (unsigned short) index array if possible
7790                                 rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7791                                 for (i = 0;i < numtriangles*3;i++)
7792                                         rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7793                         }
7794                 }
7795                 else
7796                 {
7797                         r_refdef.stats[r_stat_batch_fast_batches] += 1;
7798                         r_refdef.stats[r_stat_batch_fast_surfaces] += batchnumsurfaces;
7799                         r_refdef.stats[r_stat_batch_fast_vertices] += batchnumvertices;
7800                         r_refdef.stats[r_stat_batch_fast_triangles] += batchnumtriangles;
7801                 }
7802                 return;
7803         }
7804
7805         // something needs software processing, do it for real...
7806         // we only directly handle separate array data in this case and then
7807         // generate interleaved data if needed...
7808         rsurface.batchgeneratedvertex = true;
7809         r_refdef.stats[r_stat_batch_dynamic_batches] += 1;
7810         r_refdef.stats[r_stat_batch_dynamic_surfaces] += batchnumsurfaces;
7811         r_refdef.stats[r_stat_batch_dynamic_vertices] += batchnumvertices;
7812         r_refdef.stats[r_stat_batch_dynamic_triangles] += batchnumtriangles;
7813
7814         // now copy the vertex data into a combined array and make an index array
7815         // (this is what Quake3 does all the time)
7816         // we also apply any skeletal animation here that would have been done in
7817         // the vertex shader, because most of the dynamic vertex animation cases
7818         // need actual vertex positions and normals
7819         //if (dynamicvertex)
7820         {
7821                 rsurface.batchvertex3f = NULL;
7822                 rsurface.batchvertex3f_vertexbuffer = NULL;
7823                 rsurface.batchvertex3f_bufferoffset = 0;
7824                 rsurface.batchsvector3f = NULL;
7825                 rsurface.batchsvector3f_vertexbuffer = NULL;
7826                 rsurface.batchsvector3f_bufferoffset = 0;
7827                 rsurface.batchtvector3f = NULL;
7828                 rsurface.batchtvector3f_vertexbuffer = NULL;
7829                 rsurface.batchtvector3f_bufferoffset = 0;
7830                 rsurface.batchnormal3f = NULL;
7831                 rsurface.batchnormal3f_vertexbuffer = NULL;
7832                 rsurface.batchnormal3f_bufferoffset = 0;
7833                 rsurface.batchlightmapcolor4f = NULL;
7834                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7835                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
7836                 rsurface.batchtexcoordtexture2f = NULL;
7837                 rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7838                 rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7839                 rsurface.batchtexcoordlightmap2f = NULL;
7840                 rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7841                 rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7842                 rsurface.batchskeletalindex4ub = NULL;
7843                 rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7844                 rsurface.batchskeletalindex4ub_bufferoffset = 0;
7845                 rsurface.batchskeletalweight4ub = NULL;
7846                 rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7847                 rsurface.batchskeletalweight4ub_bufferoffset = 0;
7848                 rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7849                 rsurface.batchelement3i_indexbuffer = NULL;
7850                 rsurface.batchelement3i_bufferoffset = 0;
7851                 rsurface.batchelement3s = NULL;
7852                 rsurface.batchelement3s_indexbuffer = NULL;
7853                 rsurface.batchelement3s_bufferoffset = 0;
7854                 rsurface.batchskeletaltransform3x4buffer = NULL;
7855                 rsurface.batchskeletaltransform3x4offset = 0;
7856                 rsurface.batchskeletaltransform3x4size = 0;
7857                 // we'll only be setting up certain arrays as needed
7858                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7859                         rsurface.batchvertex3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7860                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7861                         rsurface.batchnormal3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7862                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7863                 {
7864                         rsurface.batchsvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7865                         rsurface.batchtvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7866                 }
7867                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7868                         rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
7869                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7870                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7871                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7872                         rsurface.batchtexcoordlightmap2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7873                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7874                 {
7875                         rsurface.batchskeletalindex4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7876                         rsurface.batchskeletalweight4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7877                 }
7878                 numvertices = 0;
7879                 numtriangles = 0;
7880                 for (i = 0;i < texturenumsurfaces;i++)
7881                 {
7882                         surfacefirstvertex = texturesurfacelist[i]->num_firstvertex;
7883                         surfacenumvertices = texturesurfacelist[i]->num_vertices;
7884                         surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7885                         surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7886                         // copy only the data requested
7887                         if (batchneed & (BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ARRAY_LIGHTMAP))
7888                         {
7889                                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7890                                 {
7891                                         if (rsurface.batchvertex3f)
7892                                                 memcpy(rsurface.batchvertex3f + 3*numvertices, rsurface.modelvertex3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7893                                         else
7894                                                 memset(rsurface.batchvertex3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7895                                 }
7896                                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7897                                 {
7898                                         if (rsurface.modelnormal3f)
7899                                                 memcpy(rsurface.batchnormal3f + 3*numvertices, rsurface.modelnormal3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7900                                         else
7901                                                 memset(rsurface.batchnormal3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7902                                 }
7903                                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7904                                 {
7905                                         if (rsurface.modelsvector3f)
7906                                         {
7907                                                 memcpy(rsurface.batchsvector3f + 3*numvertices, rsurface.modelsvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7908                                                 memcpy(rsurface.batchtvector3f + 3*numvertices, rsurface.modeltvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7909                                         }
7910                                         else
7911                                         {
7912                                                 memset(rsurface.batchsvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7913                                                 memset(rsurface.batchtvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7914                                         }
7915                                 }
7916                                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7917                                 {
7918                                         if (rsurface.modellightmapcolor4f)
7919                                                 memcpy(rsurface.batchlightmapcolor4f + 4*numvertices, rsurface.modellightmapcolor4f + 4*surfacefirstvertex, surfacenumvertices * sizeof(float[4]));
7920                                         else
7921                                                 memset(rsurface.batchlightmapcolor4f + 4*numvertices, 0, surfacenumvertices * sizeof(float[4]));
7922                                 }
7923                                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7924                                 {
7925                                         if (rsurface.modeltexcoordtexture2f)
7926                                                 memcpy(rsurface.batchtexcoordtexture2f + 2*numvertices, rsurface.modeltexcoordtexture2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7927                                         else
7928                                                 memset(rsurface.batchtexcoordtexture2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7929                                 }
7930                                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7931                                 {
7932                                         if (rsurface.modeltexcoordlightmap2f)
7933                                                 memcpy(rsurface.batchtexcoordlightmap2f + 2*numvertices, rsurface.modeltexcoordlightmap2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7934                                         else
7935                                                 memset(rsurface.batchtexcoordlightmap2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7936                                 }
7937                                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7938                                 {
7939                                         if (rsurface.modelskeletalindex4ub)
7940                                         {
7941                                                 memcpy(rsurface.batchskeletalindex4ub + 4*numvertices, rsurface.modelskeletalindex4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7942                                                 memcpy(rsurface.batchskeletalweight4ub + 4*numvertices, rsurface.modelskeletalweight4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7943                                         }
7944                                         else
7945                                         {
7946                                                 memset(rsurface.batchskeletalindex4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7947                                                 memset(rsurface.batchskeletalweight4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7948                                                 ub = rsurface.batchskeletalweight4ub + 4*numvertices;
7949                                                 for (j = 0;j < surfacenumvertices;j++)
7950                                                         ub[j*4] = 255;
7951                                         }
7952                                 }
7953                         }
7954                         RSurf_RenumberElements(rsurface.modelelement3i + 3*surfacefirsttriangle, rsurface.batchelement3i + 3*numtriangles, 3*surfacenumtriangles, numvertices - surfacefirstvertex);
7955                         numvertices += surfacenumvertices;
7956                         numtriangles += surfacenumtriangles;
7957                 }
7958
7959                 // generate a 16bit index array as well if possible
7960                 // (in general, dynamic batches fit)
7961                 if (numvertices <= 65536)
7962                 {
7963                         rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7964                         for (i = 0;i < numtriangles*3;i++)
7965                                 rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7966                 }
7967
7968                 // since we've copied everything, the batch now starts at 0
7969                 rsurface.batchfirstvertex = 0;
7970                 rsurface.batchnumvertices = batchnumvertices;
7971                 rsurface.batchfirsttriangle = 0;
7972                 rsurface.batchnumtriangles = batchnumtriangles;
7973         }
7974
7975         // apply skeletal animation that would have been done in the vertex shader
7976         if (rsurface.batchskeletaltransform3x4)
7977         {
7978                 const unsigned char *si;
7979                 const unsigned char *sw;
7980                 const float *t[4];
7981                 const float *b = rsurface.batchskeletaltransform3x4;
7982                 float *vp, *vs, *vt, *vn;
7983                 float w[4];
7984                 float m[3][4], n[3][4];
7985                 float tp[3], ts[3], tt[3], tn[3];
7986                 r_refdef.stats[r_stat_batch_dynamicskeletal_batches] += 1;
7987                 r_refdef.stats[r_stat_batch_dynamicskeletal_surfaces] += batchnumsurfaces;
7988                 r_refdef.stats[r_stat_batch_dynamicskeletal_vertices] += batchnumvertices;
7989                 r_refdef.stats[r_stat_batch_dynamicskeletal_triangles] += batchnumtriangles;
7990                 si = rsurface.batchskeletalindex4ub;
7991                 sw = rsurface.batchskeletalweight4ub;
7992                 vp = rsurface.batchvertex3f;
7993                 vs = rsurface.batchsvector3f;
7994                 vt = rsurface.batchtvector3f;
7995                 vn = rsurface.batchnormal3f;
7996                 memset(m[0], 0, sizeof(m));
7997                 memset(n[0], 0, sizeof(n));
7998                 for (i = 0;i < batchnumvertices;i++)
7999                 {
8000                         t[0] = b + si[0]*12;
8001                         if (sw[0] == 255)
8002                         {
8003                                 // common case - only one matrix
8004                                 m[0][0] = t[0][ 0];
8005                                 m[0][1] = t[0][ 1];
8006                                 m[0][2] = t[0][ 2];
8007                                 m[0][3] = t[0][ 3];
8008                                 m[1][0] = t[0][ 4];
8009                                 m[1][1] = t[0][ 5];
8010                                 m[1][2] = t[0][ 6];
8011                                 m[1][3] = t[0][ 7];
8012                                 m[2][0] = t[0][ 8];
8013                                 m[2][1] = t[0][ 9];
8014                                 m[2][2] = t[0][10];
8015                                 m[2][3] = t[0][11];
8016                         }
8017                         else if (sw[2] + sw[3])
8018                         {
8019                                 // blend 4 matrices
8020                                 t[1] = b + si[1]*12;
8021                                 t[2] = b + si[2]*12;
8022                                 t[3] = b + si[3]*12;
8023                                 w[0] = sw[0] * (1.0f / 255.0f);
8024                                 w[1] = sw[1] * (1.0f / 255.0f);
8025                                 w[2] = sw[2] * (1.0f / 255.0f);
8026                                 w[3] = sw[3] * (1.0f / 255.0f);
8027                                 // blend the matrices
8028                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1] + t[2][ 0] * w[2] + t[3][ 0] * w[3];
8029                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1] + t[2][ 1] * w[2] + t[3][ 1] * w[3];
8030                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1] + t[2][ 2] * w[2] + t[3][ 2] * w[3];
8031                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1] + t[2][ 3] * w[2] + t[3][ 3] * w[3];
8032                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1] + t[2][ 4] * w[2] + t[3][ 4] * w[3];
8033                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1] + t[2][ 5] * w[2] + t[3][ 5] * w[3];
8034                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1] + t[2][ 6] * w[2] + t[3][ 6] * w[3];
8035                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1] + t[2][ 7] * w[2] + t[3][ 7] * w[3];
8036                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1] + t[2][ 8] * w[2] + t[3][ 8] * w[3];
8037                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1] + t[2][ 9] * w[2] + t[3][ 9] * w[3];
8038                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1] + t[2][10] * w[2] + t[3][10] * w[3];
8039                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1] + t[2][11] * w[2] + t[3][11] * w[3];
8040                         }
8041                         else
8042                         {
8043                                 // blend 2 matrices
8044                                 t[1] = b + si[1]*12;
8045                                 w[0] = sw[0] * (1.0f / 255.0f);
8046                                 w[1] = sw[1] * (1.0f / 255.0f);
8047                                 // blend the matrices
8048                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1];
8049                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1];
8050                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1];
8051                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1];
8052                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1];
8053                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1];
8054                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1];
8055                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1];
8056                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1];
8057                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1];
8058                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1];
8059                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1];
8060                         }
8061                         si += 4;
8062                         sw += 4;
8063                         // modify the vertex
8064                         VectorCopy(vp, tp);
8065                         vp[0] = tp[0] * m[0][0] + tp[1] * m[0][1] + tp[2] * m[0][2] + m[0][3];
8066                         vp[1] = tp[0] * m[1][0] + tp[1] * m[1][1] + tp[2] * m[1][2] + m[1][3];
8067                         vp[2] = tp[0] * m[2][0] + tp[1] * m[2][1] + tp[2] * m[2][2] + m[2][3];
8068                         vp += 3;
8069                         if (vn)
8070                         {
8071                                 // the normal transformation matrix is a set of cross products...
8072                                 CrossProduct(m[1], m[2], n[0]);
8073                                 CrossProduct(m[2], m[0], n[1]);
8074                                 CrossProduct(m[0], m[1], n[2]); // is actually transpose(inverse(m)) * det(m)
8075                                 VectorCopy(vn, tn);
8076                                 vn[0] = tn[0] * n[0][0] + tn[1] * n[0][1] + tn[2] * n[0][2];
8077                                 vn[1] = tn[0] * n[1][0] + tn[1] * n[1][1] + tn[2] * n[1][2];
8078                                 vn[2] = tn[0] * n[2][0] + tn[1] * n[2][1] + tn[2] * n[2][2];
8079                                 VectorNormalize(vn);
8080                                 vn += 3;
8081                                 if (vs)
8082                                 {
8083                                         VectorCopy(vs, ts);
8084                                         vs[0] = ts[0] * n[0][0] + ts[1] * n[0][1] + ts[2] * n[0][2];
8085                                         vs[1] = ts[0] * n[1][0] + ts[1] * n[1][1] + ts[2] * n[1][2];
8086                                         vs[2] = ts[0] * n[2][0] + ts[1] * n[2][1] + ts[2] * n[2][2];
8087                                         VectorNormalize(vs);
8088                                         vs += 3;
8089                                         VectorCopy(vt, tt);
8090                                         vt[0] = tt[0] * n[0][0] + tt[1] * n[0][1] + tt[2] * n[0][2];
8091                                         vt[1] = tt[0] * n[1][0] + tt[1] * n[1][1] + tt[2] * n[1][2];
8092                                         vt[2] = tt[0] * n[2][0] + tt[1] * n[2][1] + tt[2] * n[2][2];
8093                                         VectorNormalize(vt);
8094                                         vt += 3;
8095                                 }
8096                         }
8097                 }
8098                 rsurface.batchskeletaltransform3x4 = NULL;
8099                 rsurface.batchskeletalnumtransforms = 0;
8100         }
8101
8102         // q1bsp surfaces rendered in vertex color mode have to have colors
8103         // calculated based on lightstyles
8104         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
8105         {
8106                 // generate color arrays for the surfaces in this list
8107                 int c[4];
8108                 int scale;
8109                 int size3;
8110                 const int *offsets;
8111                 const unsigned char *lm;
8112                 rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
8113                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
8114                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
8115                 numvertices = 0;
8116                 for (i = 0;i < texturenumsurfaces;i++)
8117                 {
8118                         surface = texturesurfacelist[i];
8119                         offsets = rsurface.modellightmapoffsets + surface->num_firstvertex;
8120                         surfacenumvertices = surface->num_vertices;
8121                         if (surface->lightmapinfo->samples)
8122                         {
8123                                 for (j = 0;j < surfacenumvertices;j++)
8124                                 {
8125                                         lm = surface->lightmapinfo->samples + offsets[j];
8126                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[0]];
8127                                         VectorScale(lm, scale, c);
8128                                         if (surface->lightmapinfo->styles[1] != 255)
8129                                         {
8130                                                 size3 = ((surface->lightmapinfo->extents[0]>>4)+1)*((surface->lightmapinfo->extents[1]>>4)+1)*3;
8131                                                 lm += size3;
8132                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[1]];
8133                                                 VectorMA(c, scale, lm, c);
8134                                                 if (surface->lightmapinfo->styles[2] != 255)
8135                                                 {
8136                                                         lm += size3;
8137                                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[2]];
8138                                                         VectorMA(c, scale, lm, c);
8139                                                         if (surface->lightmapinfo->styles[3] != 255)
8140                                                         {
8141                                                                 lm += size3;
8142                                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[3]];
8143                                                                 VectorMA(c, scale, lm, c);
8144                                                         }
8145                                                 }
8146                                         }
8147                                         c[0] >>= 7;
8148                                         c[1] >>= 7;
8149                                         c[2] >>= 7;
8150                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, min(c[0], 255) * (1.0f / 255.0f), min(c[1], 255) * (1.0f / 255.0f), min(c[2], 255) * (1.0f / 255.0f), 1);
8151                                         numvertices++;
8152                                 }
8153                         }
8154                         else
8155                         {
8156                                 for (j = 0;j < surfacenumvertices;j++)
8157                                 {
8158                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, 0, 0, 0, 1);
8159                                         numvertices++;
8160                                 }
8161                         }
8162                 }
8163         }
8164
8165         // if vertices are deformed (sprite flares and things in maps, possibly
8166         // water waves, bulges and other deformations), modify the copied vertices
8167         // in place
8168         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
8169         {
8170                 float scale;
8171                 switch (deform->deform)
8172                 {
8173                 default:
8174                 case Q3DEFORM_PROJECTIONSHADOW:
8175                 case Q3DEFORM_TEXT0:
8176                 case Q3DEFORM_TEXT1:
8177                 case Q3DEFORM_TEXT2:
8178                 case Q3DEFORM_TEXT3:
8179                 case Q3DEFORM_TEXT4:
8180                 case Q3DEFORM_TEXT5:
8181                 case Q3DEFORM_TEXT6:
8182                 case Q3DEFORM_TEXT7:
8183                 case Q3DEFORM_NONE:
8184                         break;
8185                 case Q3DEFORM_AUTOSPRITE:
8186                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8187                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8188                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8189                         VectorNormalize(newforward);
8190                         VectorNormalize(newright);
8191                         VectorNormalize(newup);
8192 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8193 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8194 //                      rsurface.batchvertex3f_bufferoffset = 0;
8195 //                      rsurface.batchsvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f);
8196 //                      rsurface.batchsvector3f_vertexbuffer = NULL;
8197 //                      rsurface.batchsvector3f_bufferoffset = 0;
8198 //                      rsurface.batchtvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f);
8199 //                      rsurface.batchtvector3f_vertexbuffer = NULL;
8200 //                      rsurface.batchtvector3f_bufferoffset = 0;
8201 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8202 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8203 //                      rsurface.batchnormal3f_bufferoffset = 0;
8204                         // sometimes we're on a renderpath that does not use vectors (GL11/GL13/GLES1)
8205                         if (!VectorLength2(rsurface.batchnormal3f + 3*rsurface.batchfirstvertex))
8206                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8207                         if (!VectorLength2(rsurface.batchsvector3f + 3*rsurface.batchfirstvertex))
8208                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8209                         // a single autosprite surface can contain multiple sprites...
8210                         for (j = 0;j < batchnumvertices - 3;j += 4)
8211                         {
8212                                 VectorClear(center);
8213                                 for (i = 0;i < 4;i++)
8214                                         VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8215                                 VectorScale(center, 0.25f, center);
8216                                 VectorCopy(rsurface.batchnormal3f + 3*j, forward);
8217                                 VectorCopy(rsurface.batchsvector3f + 3*j, right);
8218                                 VectorCopy(rsurface.batchtvector3f + 3*j, up);
8219                                 for (i = 0;i < 4;i++)
8220                                 {
8221                                         VectorSubtract(rsurface.batchvertex3f + 3*(j+i), center, v);
8222                                         VectorMAMAMAM(1, center, DotProduct(forward, v), newforward, DotProduct(right, v), newright, DotProduct(up, v), newup, rsurface.batchvertex3f + 3*(j+i));
8223                                 }
8224                         }
8225                         // if we get here, BATCHNEED_ARRAY_NORMAL and BATCHNEED_ARRAY_VECTOR are in batchneed, so no need to check
8226                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8227                         Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8228                         break;
8229                 case Q3DEFORM_AUTOSPRITE2:
8230                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8231                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8232                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8233                         VectorNormalize(newforward);
8234                         VectorNormalize(newright);
8235                         VectorNormalize(newup);
8236 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8237 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8238 //                      rsurface.batchvertex3f_bufferoffset = 0;
8239                         {
8240                                 const float *v1, *v2;
8241                                 vec3_t start, end;
8242                                 float f, l;
8243                                 struct
8244                                 {
8245                                         float length2;
8246                                         const float *v1;
8247                                         const float *v2;
8248                                 }
8249                                 shortest[2];
8250                                 memset(shortest, 0, sizeof(shortest));
8251                                 // a single autosprite surface can contain multiple sprites...
8252                                 for (j = 0;j < batchnumvertices - 3;j += 4)
8253                                 {
8254                                         VectorClear(center);
8255                                         for (i = 0;i < 4;i++)
8256                                                 VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8257                                         VectorScale(center, 0.25f, center);
8258                                         // find the two shortest edges, then use them to define the
8259                                         // axis vectors for rotating around the central axis
8260                                         for (i = 0;i < 6;i++)
8261                                         {
8262                                                 v1 = rsurface.batchvertex3f + 3*(j+quadedges[i][0]);
8263                                                 v2 = rsurface.batchvertex3f + 3*(j+quadedges[i][1]);
8264                                                 l = VectorDistance2(v1, v2);
8265                                                 // this length bias tries to make sense of square polygons, assuming they are meant to be upright
8266                                                 if (v1[2] != v2[2])
8267                                                         l += (1.0f / 1024.0f);
8268                                                 if (shortest[0].length2 > l || i == 0)
8269                                                 {
8270                                                         shortest[1] = shortest[0];
8271                                                         shortest[0].length2 = l;
8272                                                         shortest[0].v1 = v1;
8273                                                         shortest[0].v2 = v2;
8274                                                 }
8275                                                 else if (shortest[1].length2 > l || i == 1)
8276                                                 {
8277                                                         shortest[1].length2 = l;
8278                                                         shortest[1].v1 = v1;
8279                                                         shortest[1].v2 = v2;
8280                                                 }
8281                                         }
8282                                         VectorLerp(shortest[0].v1, 0.5f, shortest[0].v2, start);
8283                                         VectorLerp(shortest[1].v1, 0.5f, shortest[1].v2, end);
8284                                         // this calculates the right vector from the shortest edge
8285                                         // and the up vector from the edge midpoints
8286                                         VectorSubtract(shortest[0].v1, shortest[0].v2, right);
8287                                         VectorNormalize(right);
8288                                         VectorSubtract(end, start, up);
8289                                         VectorNormalize(up);
8290                                         // calculate a forward vector to use instead of the original plane normal (this is how we get a new right vector)
8291                                         VectorSubtract(rsurface.localvieworigin, center, forward);
8292                                         //Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, forward);
8293                                         VectorNegate(forward, forward);
8294                                         VectorReflect(forward, 0, up, forward);
8295                                         VectorNormalize(forward);
8296                                         CrossProduct(up, forward, newright);
8297                                         VectorNormalize(newright);
8298                                         // rotate the quad around the up axis vector, this is made
8299                                         // especially easy by the fact we know the quad is flat,
8300                                         // so we only have to subtract the center position and
8301                                         // measure distance along the right vector, and then
8302                                         // multiply that by the newright vector and add back the
8303                                         // center position
8304                                         // we also need to subtract the old position to undo the
8305                                         // displacement from the center, which we do with a
8306                                         // DotProduct, the subtraction/addition of center is also
8307                                         // optimized into DotProducts here
8308                                         l = DotProduct(right, center);
8309                                         for (i = 0;i < 4;i++)
8310                                         {
8311                                                 v1 = rsurface.batchvertex3f + 3*(j+i);
8312                                                 f = DotProduct(right, v1) - l;
8313                                                 VectorMAMAM(1, v1, -f, right, f, newright, rsurface.batchvertex3f + 3*(j+i));
8314                                         }
8315                                 }
8316                         }
8317                         if(batchneed & (BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR)) // otherwise these can stay NULL
8318                         {
8319 //                              rsurface.batchnormal3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8320 //                              rsurface.batchnormal3f_vertexbuffer = NULL;
8321 //                              rsurface.batchnormal3f_bufferoffset = 0;
8322                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8323                         }
8324                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8325                         {
8326 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8327 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8328 //                              rsurface.batchsvector3f_bufferoffset = 0;
8329 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8330 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8331 //                              rsurface.batchtvector3f_bufferoffset = 0;
8332                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8333                         }
8334                         break;
8335                 case Q3DEFORM_NORMAL:
8336                         // deform the normals to make reflections wavey
8337                         rsurface.batchnormal3f = (float *)R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8338                         rsurface.batchnormal3f_vertexbuffer = NULL;
8339                         rsurface.batchnormal3f_bufferoffset = 0;
8340                         for (j = 0;j < batchnumvertices;j++)
8341                         {
8342                                 float vertex[3];
8343                                 float *normal = rsurface.batchnormal3f + 3*j;
8344                                 VectorScale(rsurface.batchvertex3f + 3*j, 0.98f, vertex);
8345                                 normal[0] = rsurface.batchnormal3f[j*3+0] + deform->parms[0] * noise4f(      vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8346                                 normal[1] = rsurface.batchnormal3f[j*3+1] + deform->parms[0] * noise4f( 98 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8347                                 normal[2] = rsurface.batchnormal3f[j*3+2] + deform->parms[0] * noise4f(196 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8348                                 VectorNormalize(normal);
8349                         }
8350                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8351                         {
8352 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8353 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8354 //                              rsurface.batchsvector3f_bufferoffset = 0;
8355 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8356 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8357 //                              rsurface.batchtvector3f_bufferoffset = 0;
8358                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8359                         }
8360                         break;
8361                 case Q3DEFORM_WAVE:
8362                         // deform vertex array to make wavey water and flags and such
8363                         waveparms[0] = deform->waveparms[0];
8364                         waveparms[1] = deform->waveparms[1];
8365                         waveparms[2] = deform->waveparms[2];
8366                         waveparms[3] = deform->waveparms[3];
8367                         if(!R_TestQ3WaveFunc(deform->wavefunc, waveparms))
8368                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8369                         // this is how a divisor of vertex influence on deformation
8370                         animpos = deform->parms[0] ? 1.0f / deform->parms[0] : 100.0f;
8371                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8372 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8373 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8374 //                      rsurface.batchvertex3f_bufferoffset = 0;
8375 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8376 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8377 //                      rsurface.batchnormal3f_bufferoffset = 0;
8378                         for (j = 0;j < batchnumvertices;j++)
8379                         {
8380                                 // if the wavefunc depends on time, evaluate it per-vertex
8381                                 if (waveparms[3])
8382                                 {
8383                                         waveparms[2] = deform->waveparms[2] + (rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+1] + rsurface.batchvertex3f[j*3+2]) * animpos;
8384                                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8385                                 }
8386                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8387                         }
8388                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8389                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8390                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8391                         {
8392 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8393 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8394 //                              rsurface.batchsvector3f_bufferoffset = 0;
8395 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8396 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8397 //                              rsurface.batchtvector3f_bufferoffset = 0;
8398                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8399                         }
8400                         break;
8401                 case Q3DEFORM_BULGE:
8402                         // deform vertex array to make the surface have moving bulges
8403 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8404 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8405 //                      rsurface.batchvertex3f_bufferoffset = 0;
8406 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8407 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8408 //                      rsurface.batchnormal3f_bufferoffset = 0;
8409                         for (j = 0;j < batchnumvertices;j++)
8410                         {
8411                                 scale = sin(rsurface.batchtexcoordtexture2f[j*2+0] * deform->parms[0] + rsurface.shadertime * deform->parms[2]) * deform->parms[1];
8412                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8413                         }
8414                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8415                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8416                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8417                         {
8418 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8419 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8420 //                              rsurface.batchsvector3f_bufferoffset = 0;
8421 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8422 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8423 //                              rsurface.batchtvector3f_bufferoffset = 0;
8424                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8425                         }
8426                         break;
8427                 case Q3DEFORM_MOVE:
8428                         // deform vertex array
8429                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
8430                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8431                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, deform->waveparms);
8432                         VectorScale(deform->parms, scale, waveparms);
8433 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8434 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8435 //                      rsurface.batchvertex3f_bufferoffset = 0;
8436                         for (j = 0;j < batchnumvertices;j++)
8437                                 VectorAdd(rsurface.batchvertex3f + 3*j, waveparms, rsurface.batchvertex3f + 3*j);
8438                         break;
8439                 }
8440         }
8441
8442         if (rsurface.batchtexcoordtexture2f && rsurface.texture->materialshaderpass)
8443         {
8444         // generate texcoords based on the chosen texcoord source
8445                 switch(rsurface.texture->materialshaderpass->tcgen.tcgen)
8446                 {
8447                 default:
8448                 case Q3TCGEN_TEXTURE:
8449                         break;
8450                 case Q3TCGEN_LIGHTMAP:
8451         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8452         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8453         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8454                         if (rsurface.batchtexcoordlightmap2f)
8455                                 memcpy(rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordlightmap2f, batchnumvertices * sizeof(float[2]));
8456                         break;
8457                 case Q3TCGEN_VECTOR:
8458         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8459         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8460         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8461                         for (j = 0;j < batchnumvertices;j++)
8462                         {
8463                                 rsurface.batchtexcoordtexture2f[j*2+0] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms);
8464                                 rsurface.batchtexcoordtexture2f[j*2+1] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms + 3);
8465                         }
8466                         break;
8467                 case Q3TCGEN_ENVIRONMENT:
8468                         // make environment reflections using a spheremap
8469                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8470                         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8471                         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8472                         for (j = 0;j < batchnumvertices;j++)
8473                         {
8474                                 // identical to Q3A's method, but executed in worldspace so
8475                                 // carried models can be shiny too
8476
8477                                 float viewer[3], d, reflected[3], worldreflected[3];
8478
8479                                 VectorSubtract(rsurface.localvieworigin, rsurface.batchvertex3f + 3*j, viewer);
8480                                 // VectorNormalize(viewer);
8481
8482                                 d = DotProduct(rsurface.batchnormal3f + 3*j, viewer);
8483
8484                                 reflected[0] = rsurface.batchnormal3f[j*3+0]*2*d - viewer[0];
8485                                 reflected[1] = rsurface.batchnormal3f[j*3+1]*2*d - viewer[1];
8486                                 reflected[2] = rsurface.batchnormal3f[j*3+2]*2*d - viewer[2];
8487                                 // note: this is proportinal to viewer, so we can normalize later
8488
8489                                 Matrix4x4_Transform3x3(&rsurface.matrix, reflected, worldreflected);
8490                                 VectorNormalize(worldreflected);
8491
8492                                 // note: this sphere map only uses world x and z!
8493                                 // so positive and negative y will LOOK THE SAME.
8494                                 rsurface.batchtexcoordtexture2f[j*2+0] = 0.5 + 0.5 * worldreflected[1];
8495                                 rsurface.batchtexcoordtexture2f[j*2+1] = 0.5 - 0.5 * worldreflected[2];
8496                         }
8497                         break;
8498                 }
8499                 // the only tcmod that needs software vertex processing is turbulent, so
8500                 // check for it here and apply the changes if needed
8501                 // and we only support that as the first one
8502                 // (handling a mixture of turbulent and other tcmods would be problematic
8503                 //  without punting it entirely to a software path)
8504                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
8505                 {
8506                         amplitude = rsurface.texture->materialshaderpass->tcmods[0].parms[1];
8507                         animpos = rsurface.texture->materialshaderpass->tcmods[0].parms[2] + rsurface.shadertime * rsurface.texture->materialshaderpass->tcmods[0].parms[3];
8508         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8509         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8510         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8511                         for (j = 0;j < batchnumvertices;j++)
8512                         {
8513                                 rsurface.batchtexcoordtexture2f[j*2+0] += amplitude * sin(((rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+2]) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8514                                 rsurface.batchtexcoordtexture2f[j*2+1] += amplitude * sin(((rsurface.batchvertex3f[j*3+1]                                ) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8515                         }
8516                 }
8517         }
8518 }
8519
8520 void RSurf_DrawBatch(void)
8521 {
8522         // sometimes a zero triangle surface (usually a degenerate patch) makes it
8523         // through the pipeline, killing it earlier in the pipeline would have
8524         // per-surface overhead rather than per-batch overhead, so it's best to
8525         // reject it here, before it hits glDraw.
8526         if (rsurface.batchnumtriangles == 0)
8527                 return;
8528 #if 0
8529         // batch debugging code
8530         if (r_test.integer && rsurface.entity == r_refdef.scene.worldentity && rsurface.batchvertex3f == r_refdef.scene.worldentity->model->surfmesh.data_vertex3f)
8531         {
8532                 int i;
8533                 int j;
8534                 int c;
8535                 const int *e;
8536                 e = rsurface.batchelement3i + rsurface.batchfirsttriangle*3;
8537                 for (i = 0;i < rsurface.batchnumtriangles*3;i++)
8538                 {
8539                         c = e[i];
8540                         for (j = 0;j < rsurface.entity->model->num_surfaces;j++)
8541                         {
8542                                 if (c >= rsurface.modelsurfaces[j].num_firstvertex && c < (rsurface.modelsurfaces[j].num_firstvertex + rsurface.modelsurfaces[j].num_vertices))
8543                                 {
8544                                         if (rsurface.modelsurfaces[j].texture != rsurface.texture)
8545                                                 Sys_Error("RSurf_DrawBatch: index %i uses different texture (%s) than surface %i which it belongs to (which uses %s)\n", c, rsurface.texture->name, j, rsurface.modelsurfaces[j].texture->name);
8546                                         break;
8547                                 }
8548                         }
8549                 }
8550         }
8551 #endif
8552         if (rsurface.batchmultidraw)
8553         {
8554                 // issue multiple draws rather than copying index data
8555                 int numsurfaces = rsurface.batchmultidrawnumsurfaces;
8556                 const msurface_t **surfacelist = rsurface.batchmultidrawsurfacelist;
8557                 int i, j, k, firstvertex, endvertex, firsttriangle, endtriangle;
8558                 for (i = 0;i < numsurfaces;)
8559                 {
8560                         // combine consecutive surfaces as one draw
8561                         for (k = i, j = i + 1;j < numsurfaces;k = j, j++)
8562                                 if (surfacelist[j] != surfacelist[k] + 1)
8563                                         break;
8564                         firstvertex = surfacelist[i]->num_firstvertex;
8565                         endvertex = surfacelist[k]->num_firstvertex + surfacelist[k]->num_vertices;
8566                         firsttriangle = surfacelist[i]->num_firsttriangle;
8567                         endtriangle = surfacelist[k]->num_firsttriangle + surfacelist[k]->num_triangles;
8568                         R_Mesh_Draw(firstvertex, endvertex - firstvertex, firsttriangle, endtriangle - firsttriangle, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8569                         i = j;
8570                 }
8571         }
8572         else
8573         {
8574                 // there is only one consecutive run of index data (may have been combined)
8575                 R_Mesh_Draw(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchfirsttriangle, rsurface.batchnumtriangles, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8576         }
8577 }
8578
8579 static int RSurf_FindWaterPlaneForSurface(const msurface_t *surface)
8580 {
8581         // pick the closest matching water plane
8582         int planeindex, vertexindex, bestplaneindex = -1;
8583         float d, bestd;
8584         vec3_t vert;
8585         const float *v;
8586         r_waterstate_waterplane_t *p;
8587         qbool prepared = false;
8588         bestd = 0;
8589         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
8590         {
8591                 if(p->camera_entity != rsurface.texture->camera_entity)
8592                         continue;
8593                 d = 0;
8594                 if(!prepared)
8595                 {
8596                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX, 1, &surface);
8597                         prepared = true;
8598                         if(rsurface.batchnumvertices == 0)
8599                                 break;
8600                 }
8601                 for (vertexindex = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3;vertexindex < rsurface.batchnumvertices;vertexindex++, v += 3)
8602                 {
8603                         Matrix4x4_Transform(&rsurface.matrix, v, vert);
8604                         d += fabs(PlaneDiff(vert, &p->plane));
8605                 }
8606                 if (bestd > d || bestplaneindex < 0)
8607                 {
8608                         bestd = d;
8609                         bestplaneindex = planeindex;
8610                 }
8611         }
8612         return bestplaneindex;
8613         // NOTE: this MAY return a totally unrelated water plane; we can ignore
8614         // this situation though, as it might be better to render single larger
8615         // batches with useless stuff (backface culled for example) than to
8616         // render multiple smaller batches
8617 }
8618
8619 void RSurf_SetupDepthAndCulling(void)
8620 {
8621         // submodels are biased to avoid z-fighting with world surfaces that they
8622         // may be exactly overlapping (avoids z-fighting artifacts on certain
8623         // doors and things in Quake maps)
8624         GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1);
8625         GL_PolygonOffset(rsurface.basepolygonfactor + rsurface.texture->biaspolygonfactor, rsurface.basepolygonoffset + rsurface.texture->biaspolygonoffset);
8626         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST));
8627         GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
8628 }
8629
8630 static void R_DrawTextureSurfaceList_Sky(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8631 {
8632         int j;
8633         const float *v;
8634         float p[3], mins[3], maxs[3];
8635         int scissor[4];
8636         // transparent sky would be ridiculous
8637         if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8638                 return;
8639         R_SetupShader_Generic_NoTexture(false, false);
8640         skyrenderlater = true;
8641         RSurf_SetupDepthAndCulling();
8642         GL_DepthMask(true);
8643
8644         // add the vertices of the surfaces to a world bounding box so we can scissor the sky render later
8645         if (r_sky_scissor.integer)
8646         {
8647                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8648                 for (j = 0, v = rsurface.batchvertex3f + 3 * rsurface.batchfirstvertex; j < rsurface.batchnumvertices; j++, v += 3)
8649                 {
8650                         Matrix4x4_Transform(&rsurface.matrix, v, p);
8651                         if (j > 0)
8652                         {
8653                                 if (mins[0] > p[0]) mins[0] = p[0];
8654                                 if (mins[1] > p[1]) mins[1] = p[1];
8655                                 if (mins[2] > p[2]) mins[2] = p[2];
8656                                 if (maxs[0] < p[0]) maxs[0] = p[0];
8657                                 if (maxs[1] < p[1]) maxs[1] = p[1];
8658                                 if (maxs[2] < p[2]) maxs[2] = p[2];
8659                         }
8660                         else
8661                         {
8662                                 VectorCopy(p, mins);
8663                                 VectorCopy(p, maxs);
8664                         }
8665                 }
8666                 if (!R_ScissorForBBox(mins, maxs, scissor))
8667                 {
8668                         if (skyscissor[2])
8669                         {
8670                                 if (skyscissor[0] > scissor[0])
8671                                 {
8672                                         skyscissor[2] += skyscissor[0] - scissor[0];
8673                                         skyscissor[0] = scissor[0];
8674                                 }
8675                                 if (skyscissor[1] > scissor[1])
8676                                 {
8677                                         skyscissor[3] += skyscissor[1] - scissor[1];
8678                                         skyscissor[1] = scissor[1];
8679                                 }
8680                                 if (skyscissor[0] + skyscissor[2] < scissor[0] + scissor[2])
8681                                         skyscissor[2] = scissor[0] + scissor[2] - skyscissor[0];
8682                                 if (skyscissor[1] + skyscissor[3] < scissor[1] + scissor[3])
8683                                         skyscissor[3] = scissor[1] + scissor[3] - skyscissor[1];
8684                         }
8685                         else
8686                                 Vector4Copy(scissor, skyscissor);
8687                 }
8688         }
8689
8690         // LadyHavoc: HalfLife maps have freaky skypolys so don't use
8691         // skymasking on them, and Quake3 never did sky masking (unlike
8692         // software Quake and software Quake2), so disable the sky masking
8693         // in Quake3 maps as it causes problems with q3map2 sky tricks,
8694         // and skymasking also looks very bad when noclipping outside the
8695         // level, so don't use it then either.
8696         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.skymasking && (r_refdef.scene.worldmodel->brush.isq3bsp ? r_q3bsp_renderskydepth.integer : r_q1bsp_skymasking.integer) && !r_refdef.viewcache.world_novis && !r_trippy.integer)
8697         {
8698                 R_Mesh_ResetTextureState();
8699                 if (skyrendermasked)
8700                 {
8701                         R_SetupShader_DepthOrShadow(false, false, false);
8702                         // depth-only (masking)
8703                         GL_ColorMask(0, 0, 0, 0);
8704                         // just to make sure that braindead drivers don't draw
8705                         // anything despite that colormask...
8706                         GL_BlendFunc(GL_ZERO, GL_ONE);
8707                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8708                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8709                 }
8710                 else
8711                 {
8712                         R_SetupShader_Generic_NoTexture(false, false);
8713                         // fog sky
8714                         GL_BlendFunc(GL_ONE, GL_ZERO);
8715                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8716                         GL_Color(r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], 1);
8717                         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
8718                 }
8719                 RSurf_DrawBatch();
8720                 if (skyrendermasked)
8721                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8722         }
8723         R_Mesh_ResetTextureState();
8724         GL_Color(1, 1, 1, 1);
8725 }
8726
8727 extern rtexture_t *r_shadow_prepasslightingdiffusetexture;
8728 extern rtexture_t *r_shadow_prepasslightingspeculartexture;
8729 static void R_DrawTextureSurfaceList_GL20(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8730 {
8731         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)))
8732                 return;
8733         if (prepass)
8734         {
8735                 // render screenspace normalmap to texture
8736                 GL_DepthMask(true);
8737                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_DEFERREDGEOMETRY, texturenumsurfaces, texturesurfacelist, NULL, false);
8738                 RSurf_DrawBatch();
8739                 return;
8740         }
8741
8742         // bind lightmap texture
8743
8744         // water/refraction/reflection/camera surfaces have to be handled specially
8745         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA | MATERIALFLAG_REFLECTION)))
8746         {
8747                 int start, end, startplaneindex;
8748                 for (start = 0;start < texturenumsurfaces;start = end)
8749                 {
8750                         startplaneindex = RSurf_FindWaterPlaneForSurface(texturesurfacelist[start]);
8751                         if(startplaneindex < 0)
8752                         {
8753                                 // this happens if the plane e.g. got backface culled and thus didn't get a water plane. We can just ignore this.
8754                                 // Con_Printf("No matching water plane for surface with material flags 0x%08x - PLEASE DEBUG THIS\n", rsurface.texture->currentmaterialflags);
8755                                 end = start + 1;
8756                                 continue;
8757                         }
8758                         for (end = start + 1;end < texturenumsurfaces && startplaneindex == RSurf_FindWaterPlaneForSurface(texturesurfacelist[end]);end++)
8759                                 ;
8760                         // now that we have a batch using the same planeindex, render it
8761                         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA)))
8762                         {
8763                                 // render water or distortion background
8764                                 GL_DepthMask(true);
8765                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BACKGROUND, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false);
8766                                 RSurf_DrawBatch();
8767                                 // blend surface on top
8768                                 GL_DepthMask(false);
8769                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, NULL, false);
8770                                 RSurf_DrawBatch();
8771                         }
8772                         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION))
8773                         {
8774                                 // render surface with reflection texture as input
8775                                 GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8776                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false);
8777                                 RSurf_DrawBatch();
8778                         }
8779                 }
8780                 return;
8781         }
8782
8783         // render surface batch normally
8784         GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8785         R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, texturenumsurfaces, texturesurfacelist, NULL, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) != 0 || ui);
8786         RSurf_DrawBatch();
8787 }
8788
8789 static void R_DrawTextureSurfaceList_ShowSurfaces(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth)
8790 {
8791         int vi;
8792         int j;
8793         int texturesurfaceindex;
8794         int k;
8795         const msurface_t *surface;
8796         float surfacecolor4f[4];
8797
8798 //      R_Mesh_ResetTextureState();
8799         R_SetupShader_Generic_NoTexture(false, false);
8800
8801         GL_BlendFunc(GL_ONE, GL_ZERO);
8802         GL_DepthMask(writedepth);
8803
8804         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ALWAYSCOPY, texturenumsurfaces, texturesurfacelist);
8805         vi = 0;
8806         for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++)
8807         {
8808                 surface = texturesurfacelist[texturesurfaceindex];
8809                 k = (int)(((size_t)surface) / sizeof(msurface_t));
8810                 Vector4Set(surfacecolor4f, (k & 0xF) * (1.0f / 16.0f), (k & 0xF0) * (1.0f / 256.0f), (k & 0xF00) * (1.0f / 4096.0f), 1);
8811                 for (j = 0;j < surface->num_vertices;j++)
8812                 {
8813                         Vector4Copy(surfacecolor4f, rsurface.batchlightmapcolor4f + 4 * vi);
8814                         vi++;
8815                 }
8816         }
8817         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchlightmapcolor4f, rsurface.batchtexcoordtexture2f);
8818         RSurf_DrawBatch();
8819 }
8820
8821 static void R_DrawModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8822 {
8823         CHECKGLERROR
8824         RSurf_SetupDepthAndCulling();
8825         if (r_showsurfaces.integer && r_refdef.view.showdebug)
8826         {
8827                 R_DrawTextureSurfaceList_ShowSurfaces(texturenumsurfaces, texturesurfacelist, writedepth);
8828                 return;
8829         }
8830         switch (vid.renderpath)
8831         {
8832         case RENDERPATH_GL32:
8833         case RENDERPATH_GLES2:
8834                 R_DrawTextureSurfaceList_GL20(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8835                 break;
8836         }
8837         CHECKGLERROR
8838 }
8839
8840 static void R_DrawSurface_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
8841 {
8842         int i, j;
8843         int texturenumsurfaces, endsurface;
8844         texture_t *texture;
8845         const msurface_t *surface;
8846         const msurface_t *texturesurfacelist[MESHQUEUE_TRANSPARENT_BATCHSIZE];
8847
8848         RSurf_ActiveModelEntity(ent, true, true, false);
8849
8850         if (r_transparentdepthmasking.integer)
8851         {
8852                 qbool setup = false;
8853                 for (i = 0;i < numsurfaces;i = j)
8854                 {
8855                         j = i + 1;
8856                         surface = rsurface.modelsurfaces + surfacelist[i];
8857                         texture = surface->texture;
8858                         rsurface.texture = R_GetCurrentTexture(texture);
8859                         rsurface.lightmaptexture = NULL;
8860                         rsurface.deluxemaptexture = NULL;
8861                         rsurface.uselightmaptexture = false;
8862                         // scan ahead until we find a different texture
8863                         endsurface = min(i + 1024, numsurfaces);
8864                         texturenumsurfaces = 0;
8865                         texturesurfacelist[texturenumsurfaces++] = surface;
8866                         for (;j < endsurface;j++)
8867                         {
8868                                 surface = rsurface.modelsurfaces + surfacelist[j];
8869                                 if (texture != surface->texture)
8870                                         break;
8871                                 texturesurfacelist[texturenumsurfaces++] = surface;
8872                         }
8873                         if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_TRANSDEPTH))
8874                                 continue;
8875                         // render the range of surfaces as depth
8876                         if (!setup)
8877                         {
8878                                 setup = true;
8879                                 GL_ColorMask(0,0,0,0);
8880                                 GL_Color(1,1,1,1);
8881                                 GL_DepthTest(true);
8882                                 GL_BlendFunc(GL_ONE, GL_ZERO);
8883                                 GL_DepthMask(true);
8884 //                              R_Mesh_ResetTextureState();
8885                         }
8886                         RSurf_SetupDepthAndCulling();
8887                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8888                         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8889                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8890                         RSurf_DrawBatch();
8891                 }
8892                 if (setup)
8893                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8894         }
8895
8896         for (i = 0;i < numsurfaces;i = j)
8897         {
8898                 j = i + 1;
8899                 surface = rsurface.modelsurfaces + surfacelist[i];
8900                 texture = surface->texture;
8901                 rsurface.texture = R_GetCurrentTexture(texture);
8902                 // scan ahead until we find a different texture
8903                 endsurface = min(i + MESHQUEUE_TRANSPARENT_BATCHSIZE, numsurfaces);
8904                 texturenumsurfaces = 0;
8905                 texturesurfacelist[texturenumsurfaces++] = surface;
8906                         rsurface.lightmaptexture = surface->lightmaptexture;
8907                         rsurface.deluxemaptexture = surface->deluxemaptexture;
8908                         rsurface.uselightmaptexture = surface->lightmaptexture != NULL;
8909                         for (;j < endsurface;j++)
8910                         {
8911                                 surface = rsurface.modelsurfaces + surfacelist[j];
8912                                 if (texture != surface->texture || rsurface.lightmaptexture != surface->lightmaptexture)
8913                                         break;
8914                                 texturesurfacelist[texturenumsurfaces++] = surface;
8915                         }
8916                 // render the range of surfaces
8917                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, false, false, false);
8918         }
8919         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
8920 }
8921
8922 static void R_ProcessTransparentTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8923 {
8924         // transparent surfaces get pushed off into the transparent queue
8925         int surfacelistindex;
8926         const msurface_t *surface;
8927         vec3_t tempcenter, center;
8928         for (surfacelistindex = 0;surfacelistindex < texturenumsurfaces;surfacelistindex++)
8929         {
8930                 surface = texturesurfacelist[surfacelistindex];
8931                 if (r_transparent_sortsurfacesbynearest.integer)
8932                 {
8933                         tempcenter[0] = bound(surface->mins[0], rsurface.localvieworigin[0], surface->maxs[0]);
8934                         tempcenter[1] = bound(surface->mins[1], rsurface.localvieworigin[1], surface->maxs[1]);
8935                         tempcenter[2] = bound(surface->mins[2], rsurface.localvieworigin[2], surface->maxs[2]);
8936                 }
8937                 else
8938                 {
8939                         tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f;
8940                         tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f;
8941                         tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f;
8942                 }
8943                 Matrix4x4_Transform(&rsurface.matrix, tempcenter, center);
8944                 if (rsurface.entity->transparent_offset) // transparent offset
8945                 {
8946                         center[0] += r_refdef.view.forward[0]*rsurface.entity->transparent_offset;
8947                         center[1] += r_refdef.view.forward[1]*rsurface.entity->transparent_offset;
8948                         center[2] += r_refdef.view.forward[2]*rsurface.entity->transparent_offset;
8949                 }
8950                 R_MeshQueue_AddTransparent((rsurface.entity->flags & RENDER_WORLDOBJECT) ? TRANSPARENTSORT_SKY : (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) ? TRANSPARENTSORT_HUD : rsurface.texture->transparentsort, center, R_DrawSurface_TransparentCallback, rsurface.entity, surface - rsurface.modelsurfaces, rsurface.rtlight);
8951         }
8952 }
8953
8954 static void R_DrawTextureSurfaceList_DepthOnly(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8955 {
8956         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHATEST)))
8957                 return;
8958         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION)))
8959                 return;
8960         RSurf_SetupDepthAndCulling();
8961         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8962         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8963         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8964         RSurf_DrawBatch();
8965 }
8966
8967 static void R_ProcessModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
8968 {
8969         CHECKGLERROR
8970         if (ui)
8971                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8972         else if (depthonly)
8973                 R_DrawTextureSurfaceList_DepthOnly(texturenumsurfaces, texturesurfacelist);
8974         else if (prepass)
8975         {
8976                 if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8977                         return;
8978                 if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8979                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8980                 else
8981                         R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8982         }
8983         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) && (!r_showsurfaces.integer || r_showsurfaces.integer == 3))
8984                 R_DrawTextureSurfaceList_Sky(texturenumsurfaces, texturesurfacelist);
8985         else if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8986                 return;
8987         else if (((rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) || (r_showsurfaces.integer == 3 && (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST))))
8988         {
8989                 // in the deferred case, transparent surfaces were queued during prepass
8990                 if (!r_shadow_usingdeferredprepass)
8991                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8992         }
8993         else
8994         {
8995                 // the alphatest check is to make sure we write depth for anything we skipped on the depth-only pass earlier
8996                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST), prepass, ui);
8997         }
8998         CHECKGLERROR
8999 }
9000
9001 static void R_QueueModelSurfaceList(entity_render_t *ent, int numsurfaces, const msurface_t **surfacelist, int flagsmask, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
9002 {
9003         int i, j;
9004         texture_t *texture;
9005         R_FrameData_SetMark();
9006         // break the surface list down into batches by texture and use of lightmapping
9007         for (i = 0;i < numsurfaces;i = j)
9008         {
9009                 j = i + 1;
9010                 // texture is the base texture pointer, rsurface.texture is the
9011                 // current frame/skin the texture is directing us to use (for example
9012                 // if a model has 2 skins and it is on skin 1, then skin 0 tells us to
9013                 // use skin 1 instead)
9014                 texture = surfacelist[i]->texture;
9015                 rsurface.texture = R_GetCurrentTexture(texture);
9016                 if (!(rsurface.texture->currentmaterialflags & flagsmask) || (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODRAW))
9017                 {
9018                         // if this texture is not the kind we want, skip ahead to the next one
9019                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
9020                                 ;
9021                         continue;
9022                 }
9023                 if(depthonly || prepass)
9024                 {
9025                         rsurface.lightmaptexture = NULL;
9026                         rsurface.deluxemaptexture = NULL;
9027                         rsurface.uselightmaptexture = false;
9028                         // simply scan ahead until we find a different texture or lightmap state
9029                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
9030                                 ;
9031                 }
9032                 else
9033                 {
9034                         rsurface.lightmaptexture = surfacelist[i]->lightmaptexture;
9035                         rsurface.deluxemaptexture = surfacelist[i]->deluxemaptexture;
9036                         rsurface.uselightmaptexture = surfacelist[i]->lightmaptexture != NULL;
9037                         // simply scan ahead until we find a different texture or lightmap state
9038                         for (;j < numsurfaces && texture == surfacelist[j]->texture && rsurface.lightmaptexture == surfacelist[j]->lightmaptexture;j++)
9039                                 ;
9040                 }
9041                 // render the range of surfaces
9042                 R_ProcessModelTextureSurfaceList(j - i, surfacelist + i, writedepth, depthonly, prepass, ui);
9043         }
9044         R_FrameData_ReturnToMark();
9045 }
9046
9047 float locboxvertex3f[6*4*3] =
9048 {
9049         1,0,1, 1,0,0, 1,1,0, 1,1,1,
9050         0,1,1, 0,1,0, 0,0,0, 0,0,1,
9051         1,1,1, 1,1,0, 0,1,0, 0,1,1,
9052         0,0,1, 0,0,0, 1,0,0, 1,0,1,
9053         0,0,1, 1,0,1, 1,1,1, 0,1,1,
9054         1,0,0, 0,0,0, 0,1,0, 1,1,0
9055 };
9056
9057 unsigned short locboxelements[6*2*3] =
9058 {
9059          0, 1, 2, 0, 2, 3,
9060          4, 5, 6, 4, 6, 7,
9061          8, 9,10, 8,10,11,
9062         12,13,14, 12,14,15,
9063         16,17,18, 16,18,19,
9064         20,21,22, 20,22,23
9065 };
9066
9067 static void R_DrawLoc_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
9068 {
9069         int i, j;
9070         cl_locnode_t *loc = (cl_locnode_t *)ent;
9071         vec3_t mins, size;
9072         float vertex3f[6*4*3];
9073         CHECKGLERROR
9074         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9075         GL_DepthMask(false);
9076         GL_DepthRange(0, 1);
9077         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9078         GL_DepthTest(true);
9079         GL_CullFace(GL_NONE);
9080         R_EntityMatrix(&identitymatrix);
9081
9082 //      R_Mesh_ResetTextureState();
9083
9084         i = surfacelist[0];
9085         GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9086                          ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9087                          ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9088                         surfacelist[0] < 0 ? 0.5f : 0.125f);
9089
9090         if (VectorCompare(loc->mins, loc->maxs))
9091         {
9092                 VectorSet(size, 2, 2, 2);
9093                 VectorMA(loc->mins, -0.5f, size, mins);
9094         }
9095         else
9096         {
9097                 VectorCopy(loc->mins, mins);
9098                 VectorSubtract(loc->maxs, loc->mins, size);
9099         }
9100
9101         for (i = 0;i < 6*4*3;)
9102                 for (j = 0;j < 3;j++, i++)
9103                         vertex3f[i] = mins[j] + size[j] * locboxvertex3f[i];
9104
9105         R_Mesh_PrepareVertices_Generic_Arrays(6*4, vertex3f, NULL, NULL);
9106         R_SetupShader_Generic_NoTexture(false, false);
9107         R_Mesh_Draw(0, 6*4, 0, 6*2, NULL, NULL, 0, locboxelements, NULL, 0);
9108 }
9109
9110 void R_DrawLocs(void)
9111 {
9112         int index;
9113         cl_locnode_t *loc, *nearestloc;
9114         vec3_t center;
9115         nearestloc = CL_Locs_FindNearest(cl.movement_origin);
9116         for (loc = cl.locnodes, index = 0;loc;loc = loc->next, index++)
9117         {
9118                 VectorLerp(loc->mins, 0.5f, loc->maxs, center);
9119                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawLoc_Callback, (entity_render_t *)loc, loc == nearestloc ? -1 : index, NULL);
9120         }
9121 }
9122
9123 void R_DecalSystem_Reset(decalsystem_t *decalsystem)
9124 {
9125         if (decalsystem->decals)
9126                 Mem_Free(decalsystem->decals);
9127         memset(decalsystem, 0, sizeof(*decalsystem));
9128 }
9129
9130 static void R_DecalSystem_SpawnTriangle(decalsystem_t *decalsystem, const float *v0, const float *v1, const float *v2, const float *t0, const float *t1, const float *t2, const float *c0, const float *c1, const float *c2, int triangleindex, int surfaceindex, unsigned int decalsequence)
9131 {
9132         tridecal_t *decal;
9133         tridecal_t *decals;
9134         int i;
9135
9136         // expand or initialize the system
9137         if (decalsystem->maxdecals <= decalsystem->numdecals)
9138         {
9139                 decalsystem_t old = *decalsystem;
9140                 qbool useshortelements;
9141                 decalsystem->maxdecals = max(16, decalsystem->maxdecals * 2);
9142                 useshortelements = decalsystem->maxdecals * 3 <= 65536;
9143                 decalsystem->decals = (tridecal_t *)Mem_Alloc(cls.levelmempool, decalsystem->maxdecals * (sizeof(tridecal_t) + sizeof(float[3][3]) + sizeof(float[3][2]) + sizeof(float[3][4]) + sizeof(int[3]) + (useshortelements ? sizeof(unsigned short[3]) : 0)));
9144                 decalsystem->color4f = (float *)(decalsystem->decals + decalsystem->maxdecals);
9145                 decalsystem->texcoord2f = (float *)(decalsystem->color4f + decalsystem->maxdecals*12);
9146                 decalsystem->vertex3f = (float *)(decalsystem->texcoord2f + decalsystem->maxdecals*6);
9147                 decalsystem->element3i = (int *)(decalsystem->vertex3f + decalsystem->maxdecals*9);
9148                 decalsystem->element3s = (useshortelements ? ((unsigned short *)(decalsystem->element3i + decalsystem->maxdecals*3)) : NULL);
9149                 if (decalsystem->numdecals)
9150                         memcpy(decalsystem->decals, old.decals, decalsystem->numdecals * sizeof(tridecal_t));
9151                 if (old.decals)
9152                         Mem_Free(old.decals);
9153                 for (i = 0;i < decalsystem->maxdecals*3;i++)
9154                         decalsystem->element3i[i] = i;
9155                 if (useshortelements)
9156                         for (i = 0;i < decalsystem->maxdecals*3;i++)
9157                                 decalsystem->element3s[i] = i;
9158         }
9159
9160         // grab a decal and search for another free slot for the next one
9161         decals = decalsystem->decals;
9162         decal = decalsystem->decals + (i = decalsystem->freedecal++);
9163         for (i = decalsystem->freedecal;i < decalsystem->numdecals && decals[i].color4f[0][3];i++)
9164                 ;
9165         decalsystem->freedecal = i;
9166         if (decalsystem->numdecals <= i)
9167                 decalsystem->numdecals = i + 1;
9168
9169         // initialize the decal
9170         decal->lived = 0;
9171         decal->triangleindex = triangleindex;
9172         decal->surfaceindex = surfaceindex;
9173         decal->decalsequence = decalsequence;
9174         decal->color4f[0][0] = c0[0];
9175         decal->color4f[0][1] = c0[1];
9176         decal->color4f[0][2] = c0[2];
9177         decal->color4f[0][3] = 1;
9178         decal->color4f[1][0] = c1[0];
9179         decal->color4f[1][1] = c1[1];
9180         decal->color4f[1][2] = c1[2];
9181         decal->color4f[1][3] = 1;
9182         decal->color4f[2][0] = c2[0];
9183         decal->color4f[2][1] = c2[1];
9184         decal->color4f[2][2] = c2[2];
9185         decal->color4f[2][3] = 1;
9186         decal->vertex3f[0][0] = v0[0];
9187         decal->vertex3f[0][1] = v0[1];
9188         decal->vertex3f[0][2] = v0[2];
9189         decal->vertex3f[1][0] = v1[0];
9190         decal->vertex3f[1][1] = v1[1];
9191         decal->vertex3f[1][2] = v1[2];
9192         decal->vertex3f[2][0] = v2[0];
9193         decal->vertex3f[2][1] = v2[1];
9194         decal->vertex3f[2][2] = v2[2];
9195         decal->texcoord2f[0][0] = t0[0];
9196         decal->texcoord2f[0][1] = t0[1];
9197         decal->texcoord2f[1][0] = t1[0];
9198         decal->texcoord2f[1][1] = t1[1];
9199         decal->texcoord2f[2][0] = t2[0];
9200         decal->texcoord2f[2][1] = t2[1];
9201         TriangleNormal(v0, v1, v2, decal->plane);
9202         VectorNormalize(decal->plane);
9203         decal->plane[3] = DotProduct(v0, decal->plane);
9204 }
9205
9206 extern cvar_t cl_decals_bias;
9207 extern cvar_t cl_decals_models;
9208 extern cvar_t cl_decals_newsystem_intensitymultiplier;
9209 // baseparms, parms, temps
9210 static void R_DecalSystem_SplatTriangle(decalsystem_t *decalsystem, float r, float g, float b, float a, float s1, float t1, float s2, float t2, unsigned int decalsequence, qbool dynamic, float (*planes)[4], matrix4x4_t *projection, int triangleindex, int surfaceindex)
9211 {
9212         int cornerindex;
9213         int index;
9214         float v[9][3];
9215         const float *vertex3f;
9216         const float *normal3f;
9217         int numpoints;
9218         float points[2][9][3];
9219         float temp[3];
9220         float tc[9][2];
9221         float f;
9222         float c[9][4];
9223         const int *e;
9224
9225         e = rsurface.modelelement3i + 3*triangleindex;
9226
9227         vertex3f = rsurface.modelvertex3f;
9228         normal3f = rsurface.modelnormal3f;
9229
9230         if (normal3f)
9231         {
9232                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9233                 {
9234                         index = 3*e[cornerindex];
9235                         VectorMA(vertex3f + index, cl_decals_bias.value, normal3f + index, v[cornerindex]);
9236                 }
9237         }
9238         else
9239         {
9240                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9241                 {
9242                         index = 3*e[cornerindex];
9243                         VectorCopy(vertex3f + index, v[cornerindex]);
9244                 }
9245         }
9246
9247         // cull backfaces
9248         //TriangleNormal(v[0], v[1], v[2], normal);
9249         //if (DotProduct(normal, localnormal) < 0.0f)
9250         //      continue;
9251         // clip by each of the box planes formed from the projection matrix
9252         // if anything survives, we emit the decal
9253         numpoints = PolygonF_Clip(3        , v[0]        , planes[0][0], planes[0][1], planes[0][2], planes[0][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9254         if (numpoints < 3)
9255                 return;
9256         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[1][0], planes[1][1], planes[1][2], planes[1][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9257         if (numpoints < 3)
9258                 return;
9259         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[2][0], planes[2][1], planes[2][2], planes[2][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9260         if (numpoints < 3)
9261                 return;
9262         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[3][0], planes[3][1], planes[3][2], planes[3][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9263         if (numpoints < 3)
9264                 return;
9265         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[4][0], planes[4][1], planes[4][2], planes[4][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9266         if (numpoints < 3)
9267                 return;
9268         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[5][0], planes[5][1], planes[5][2], planes[5][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), v[0]);
9269         if (numpoints < 3)
9270                 return;
9271         // some part of the triangle survived, so we have to accept it...
9272         if (dynamic)
9273         {
9274                 // dynamic always uses the original triangle
9275                 numpoints = 3;
9276                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9277                 {
9278                         index = 3*e[cornerindex];
9279                         VectorCopy(vertex3f + index, v[cornerindex]);
9280                 }
9281         }
9282         for (cornerindex = 0;cornerindex < numpoints;cornerindex++)
9283         {
9284                 // convert vertex positions to texcoords
9285                 Matrix4x4_Transform(projection, v[cornerindex], temp);
9286                 tc[cornerindex][0] = (temp[1]+1.0f)*0.5f * (s2-s1) + s1;
9287                 tc[cornerindex][1] = (temp[2]+1.0f)*0.5f * (t2-t1) + t1;
9288                 // calculate distance fade from the projection origin
9289                 f = a * (1.0f-fabs(temp[0])) * cl_decals_newsystem_intensitymultiplier.value;
9290                 f = bound(0.0f, f, 1.0f);
9291                 c[cornerindex][0] = r * f;
9292                 c[cornerindex][1] = g * f;
9293                 c[cornerindex][2] = b * f;
9294                 c[cornerindex][3] = 1.0f;
9295                 //VectorMA(v[cornerindex], cl_decals_bias.value, localnormal, v[cornerindex]);
9296         }
9297         if (dynamic)
9298                 R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[1], v[2], tc[0], tc[1], tc[2], c[0], c[1], c[2], triangleindex, surfaceindex, decalsequence);
9299         else
9300                 for (cornerindex = 0;cornerindex < numpoints-2;cornerindex++)
9301                         R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[cornerindex+1], v[cornerindex+2], tc[0], tc[cornerindex+1], tc[cornerindex+2], c[0], c[cornerindex+1], c[cornerindex+2], -1, surfaceindex, decalsequence);
9302 }
9303 static void R_DecalSystem_SplatEntity(entity_render_t *ent, const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9304 {
9305         matrix4x4_t projection;
9306         decalsystem_t *decalsystem;
9307         qbool dynamic;
9308         model_t *model;
9309         const msurface_t *surface;
9310         const msurface_t *surfaces;
9311         const int *surfacelist;
9312         const texture_t *texture;
9313         int numtriangles;
9314         int numsurfacelist;
9315         int surfacelistindex;
9316         int surfaceindex;
9317         int triangleindex;
9318         float localorigin[3];
9319         float localnormal[3];
9320         float localmins[3];
9321         float localmaxs[3];
9322         float localsize;
9323         //float normal[3];
9324         float planes[6][4];
9325         float angles[3];
9326         bih_t *bih;
9327         int bih_triangles_count;
9328         int bih_triangles[256];
9329         int bih_surfaces[256];
9330
9331         decalsystem = &ent->decalsystem;
9332         model = ent->model;
9333         if (!model || !ent->allowdecals || ent->alpha < 1 || (ent->flags & (RENDER_ADDITIVE | RENDER_NODEPTHTEST)))
9334         {
9335                 R_DecalSystem_Reset(&ent->decalsystem);
9336                 return;
9337         }
9338
9339         if (!model->brush.data_leafs && !cl_decals_models.integer)
9340         {
9341                 if (decalsystem->model)
9342                         R_DecalSystem_Reset(decalsystem);
9343                 return;
9344         }
9345
9346         if (decalsystem->model != model)
9347                 R_DecalSystem_Reset(decalsystem);
9348         decalsystem->model = model;
9349
9350         RSurf_ActiveModelEntity(ent, true, false, false);
9351
9352         Matrix4x4_Transform(&rsurface.inversematrix, worldorigin, localorigin);
9353         Matrix4x4_Transform3x3(&rsurface.inversematrix, worldnormal, localnormal);
9354         VectorNormalize(localnormal);
9355         localsize = worldsize*rsurface.inversematrixscale;
9356         localmins[0] = localorigin[0] - localsize;
9357         localmins[1] = localorigin[1] - localsize;
9358         localmins[2] = localorigin[2] - localsize;
9359         localmaxs[0] = localorigin[0] + localsize;
9360         localmaxs[1] = localorigin[1] + localsize;
9361         localmaxs[2] = localorigin[2] + localsize;
9362
9363         //VectorCopy(localnormal, planes[4]);
9364         //VectorVectors(planes[4], planes[2], planes[0]);
9365         AnglesFromVectors(angles, localnormal, NULL, false);
9366         AngleVectors(angles, planes[0], planes[2], planes[4]);
9367         VectorNegate(planes[0], planes[1]);
9368         VectorNegate(planes[2], planes[3]);
9369         VectorNegate(planes[4], planes[5]);
9370         planes[0][3] = DotProduct(planes[0], localorigin) - localsize;
9371         planes[1][3] = DotProduct(planes[1], localorigin) - localsize;
9372         planes[2][3] = DotProduct(planes[2], localorigin) - localsize;
9373         planes[3][3] = DotProduct(planes[3], localorigin) - localsize;
9374         planes[4][3] = DotProduct(planes[4], localorigin) - localsize;
9375         planes[5][3] = DotProduct(planes[5], localorigin) - localsize;
9376
9377 #if 1
9378 // works
9379 {
9380         matrix4x4_t forwardprojection;
9381         Matrix4x4_CreateFromQuakeEntity(&forwardprojection, localorigin[0], localorigin[1], localorigin[2], angles[0], angles[1], angles[2], localsize);
9382         Matrix4x4_Invert_Simple(&projection, &forwardprojection);
9383 }
9384 #else
9385 // broken
9386 {
9387         float projectionvector[4][3];
9388         VectorScale(planes[0], ilocalsize, projectionvector[0]);
9389         VectorScale(planes[2], ilocalsize, projectionvector[1]);
9390         VectorScale(planes[4], ilocalsize, projectionvector[2]);
9391         projectionvector[0][0] = planes[0][0] * ilocalsize;
9392         projectionvector[0][1] = planes[1][0] * ilocalsize;
9393         projectionvector[0][2] = planes[2][0] * ilocalsize;
9394         projectionvector[1][0] = planes[0][1] * ilocalsize;
9395         projectionvector[1][1] = planes[1][1] * ilocalsize;
9396         projectionvector[1][2] = planes[2][1] * ilocalsize;
9397         projectionvector[2][0] = planes[0][2] * ilocalsize;
9398         projectionvector[2][1] = planes[1][2] * ilocalsize;
9399         projectionvector[2][2] = planes[2][2] * ilocalsize;
9400         projectionvector[3][0] = -(localorigin[0]*projectionvector[0][0]+localorigin[1]*projectionvector[1][0]+localorigin[2]*projectionvector[2][0]);
9401         projectionvector[3][1] = -(localorigin[0]*projectionvector[0][1]+localorigin[1]*projectionvector[1][1]+localorigin[2]*projectionvector[2][1]);
9402         projectionvector[3][2] = -(localorigin[0]*projectionvector[0][2]+localorigin[1]*projectionvector[1][2]+localorigin[2]*projectionvector[2][2]);
9403         Matrix4x4_FromVectors(&projection, projectionvector[0], projectionvector[1], projectionvector[2], projectionvector[3]);
9404 }
9405 #endif
9406
9407         dynamic = model->surfmesh.isanimated;
9408         numsurfacelist = model->nummodelsurfaces;
9409         surfacelist = model->sortedmodelsurfaces;
9410         surfaces = model->data_surfaces;
9411
9412         bih = NULL;
9413         bih_triangles_count = -1;
9414         if(!dynamic)
9415         {
9416                 if(model->render_bih.numleafs)
9417                         bih = &model->render_bih;
9418                 else if(model->collision_bih.numleafs)
9419                         bih = &model->collision_bih;
9420         }
9421         if(bih)
9422                 bih_triangles_count = BIH_GetTriangleListForBox(bih, sizeof(bih_triangles) / sizeof(*bih_triangles), bih_triangles, bih_surfaces, localmins, localmaxs);
9423         if(bih_triangles_count == 0)
9424                 return;
9425         if(bih_triangles_count > (int) (sizeof(bih_triangles) / sizeof(*bih_triangles))) // hit too many, likely bad anyway
9426                 return;
9427         if(bih_triangles_count > 0)
9428         {
9429                 for (triangleindex = 0; triangleindex < bih_triangles_count; ++triangleindex)
9430                 {
9431                         surfaceindex = bih_surfaces[triangleindex];
9432                         surface = surfaces + surfaceindex;
9433                         texture = surface->texture;
9434                         if (!texture)
9435                                 continue;
9436                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9437                                 continue;
9438                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9439                                 continue;
9440                         R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, bih_triangles[triangleindex], surfaceindex);
9441                 }
9442         }
9443         else
9444         {
9445                 for (surfacelistindex = 0;surfacelistindex < numsurfacelist;surfacelistindex++)
9446                 {
9447                         surfaceindex = surfacelist[surfacelistindex];
9448                         surface = surfaces + surfaceindex;
9449                         // check cull box first because it rejects more than any other check
9450                         if (!dynamic && !BoxesOverlap(surface->mins, surface->maxs, localmins, localmaxs))
9451                                 continue;
9452                         // skip transparent surfaces
9453                         texture = surface->texture;
9454                         if (!texture)
9455                                 continue;
9456                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9457                                 continue;
9458                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9459                                 continue;
9460                         numtriangles = surface->num_triangles;
9461                         for (triangleindex = 0; triangleindex < numtriangles; triangleindex++)
9462                                 R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, triangleindex + surface->num_firsttriangle, surfaceindex);
9463                 }
9464         }
9465 }
9466
9467 // do not call this outside of rendering code - use R_DecalSystem_SplatEntities instead
9468 static void R_DecalSystem_ApplySplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9469 {
9470         int renderentityindex;
9471         float worldmins[3];
9472         float worldmaxs[3];
9473         entity_render_t *ent;
9474
9475         worldmins[0] = worldorigin[0] - worldsize;
9476         worldmins[1] = worldorigin[1] - worldsize;
9477         worldmins[2] = worldorigin[2] - worldsize;
9478         worldmaxs[0] = worldorigin[0] + worldsize;
9479         worldmaxs[1] = worldorigin[1] + worldsize;
9480         worldmaxs[2] = worldorigin[2] + worldsize;
9481
9482         R_DecalSystem_SplatEntity(r_refdef.scene.worldentity, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9483
9484         for (renderentityindex = 0;renderentityindex < r_refdef.scene.numentities;renderentityindex++)
9485         {
9486                 ent = r_refdef.scene.entities[renderentityindex];
9487                 if (!BoxesOverlap(ent->mins, ent->maxs, worldmins, worldmaxs))
9488                         continue;
9489
9490                 R_DecalSystem_SplatEntity(ent, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9491         }
9492 }
9493
9494 typedef struct r_decalsystem_splatqueue_s
9495 {
9496         vec3_t worldorigin;
9497         vec3_t worldnormal;
9498         float color[4];
9499         float tcrange[4];
9500         float worldsize;
9501         unsigned int decalsequence;
9502 }
9503 r_decalsystem_splatqueue_t;
9504
9505 int r_decalsystem_numqueued = 0;
9506 r_decalsystem_splatqueue_t r_decalsystem_queue[MAX_DECALSYSTEM_QUEUE];
9507
9508 void R_DecalSystem_SplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize)
9509 {
9510         r_decalsystem_splatqueue_t *queue;
9511
9512         if (r_decalsystem_numqueued == MAX_DECALSYSTEM_QUEUE)
9513                 return;
9514
9515         queue = &r_decalsystem_queue[r_decalsystem_numqueued++];
9516         VectorCopy(worldorigin, queue->worldorigin);
9517         VectorCopy(worldnormal, queue->worldnormal);
9518         Vector4Set(queue->color, r, g, b, a);
9519         Vector4Set(queue->tcrange, s1, t1, s2, t2);
9520         queue->worldsize = worldsize;
9521         queue->decalsequence = cl.decalsequence++;
9522 }
9523
9524 static void R_DecalSystem_ApplySplatEntitiesQueue(void)
9525 {
9526         int i;
9527         r_decalsystem_splatqueue_t *queue;
9528
9529         for (i = 0, queue = r_decalsystem_queue;i < r_decalsystem_numqueued;i++, queue++)
9530                 R_DecalSystem_ApplySplatEntities(queue->worldorigin, queue->worldnormal, queue->color[0], queue->color[1], queue->color[2], queue->color[3], queue->tcrange[0], queue->tcrange[1], queue->tcrange[2], queue->tcrange[3], queue->worldsize, queue->decalsequence);
9531         r_decalsystem_numqueued = 0;
9532 }
9533
9534 extern cvar_t cl_decals_max;
9535 static void R_DrawModelDecals_FadeEntity(entity_render_t *ent)
9536 {
9537         int i;
9538         decalsystem_t *decalsystem = &ent->decalsystem;
9539         int numdecals;
9540         unsigned int killsequence;
9541         tridecal_t *decal;
9542         float frametime;
9543         float lifetime;
9544
9545         if (!decalsystem->numdecals)
9546                 return;
9547
9548         if (r_showsurfaces.integer)
9549                 return;
9550
9551         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9552         {
9553                 R_DecalSystem_Reset(decalsystem);
9554                 return;
9555         }
9556
9557         killsequence = cl.decalsequence - bound(1, (unsigned int) cl_decals_max.integer, cl.decalsequence);
9558         lifetime = cl_decals_time.value + cl_decals_fadetime.value;
9559
9560         if (decalsystem->lastupdatetime)
9561                 frametime = (r_refdef.scene.time - decalsystem->lastupdatetime);
9562         else
9563                 frametime = 0;
9564         decalsystem->lastupdatetime = r_refdef.scene.time;
9565         numdecals = decalsystem->numdecals;
9566
9567         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9568         {
9569                 if (decal->color4f[0][3])
9570                 {
9571                         decal->lived += frametime;
9572                         if (killsequence > decal->decalsequence || decal->lived >= lifetime)
9573                         {
9574                                 memset(decal, 0, sizeof(*decal));
9575                                 if (decalsystem->freedecal > i)
9576                                         decalsystem->freedecal = i;
9577                         }
9578                 }
9579         }
9580         decal = decalsystem->decals;
9581         while (numdecals > 0 && !decal[numdecals-1].color4f[0][3])
9582                 numdecals--;
9583
9584         // collapse the array by shuffling the tail decals into the gaps
9585         for (;;)
9586         {
9587                 while (decalsystem->freedecal < numdecals && decal[decalsystem->freedecal].color4f[0][3])
9588                         decalsystem->freedecal++;
9589                 if (decalsystem->freedecal == numdecals)
9590                         break;
9591                 decal[decalsystem->freedecal] = decal[--numdecals];
9592         }
9593
9594         decalsystem->numdecals = numdecals;
9595
9596         if (numdecals <= 0)
9597         {
9598                 // if there are no decals left, reset decalsystem
9599                 R_DecalSystem_Reset(decalsystem);
9600         }
9601 }
9602
9603 extern skinframe_t *decalskinframe;
9604 static void R_DrawModelDecals_Entity(entity_render_t *ent)
9605 {
9606         int i;
9607         decalsystem_t *decalsystem = &ent->decalsystem;
9608         int numdecals;
9609         tridecal_t *decal;
9610         float faderate;
9611         float alpha;
9612         float *v3f;
9613         float *c4f;
9614         float *t2f;
9615         const int *e;
9616         const unsigned char *surfacevisible = ent == r_refdef.scene.worldentity ? r_refdef.viewcache.world_surfacevisible : NULL;
9617         int numtris = 0;
9618
9619         numdecals = decalsystem->numdecals;
9620         if (!numdecals)
9621                 return;
9622
9623         if (r_showsurfaces.integer)
9624                 return;
9625
9626         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9627         {
9628                 R_DecalSystem_Reset(decalsystem);
9629                 return;
9630         }
9631
9632         // if the model is static it doesn't matter what value we give for
9633         // wantnormals and wanttangents, so this logic uses only rules applicable
9634         // to a model, knowing that they are meaningless otherwise
9635         RSurf_ActiveModelEntity(ent, false, false, false);
9636
9637         decalsystem->lastupdatetime = r_refdef.scene.time;
9638
9639         faderate = 1.0f / max(0.001f, cl_decals_fadetime.value);
9640
9641         // update vertex positions for animated models
9642         v3f = decalsystem->vertex3f;
9643         c4f = decalsystem->color4f;
9644         t2f = decalsystem->texcoord2f;
9645         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9646         {
9647                 if (!decal->color4f[0][3])
9648                         continue;
9649
9650                 if (surfacevisible && !surfacevisible[decal->surfaceindex])
9651                         continue;
9652
9653                 // skip backfaces
9654                 if (decal->triangleindex < 0 && DotProduct(r_refdef.view.origin, decal->plane) < decal->plane[3])
9655                         continue;
9656
9657                 // update color values for fading decals
9658                 if (decal->lived >= cl_decals_time.value)
9659                         alpha = 1 - faderate * (decal->lived - cl_decals_time.value);
9660                 else
9661                         alpha = 1.0f;
9662
9663                 c4f[ 0] = decal->color4f[0][0] * alpha;
9664                 c4f[ 1] = decal->color4f[0][1] * alpha;
9665                 c4f[ 2] = decal->color4f[0][2] * alpha;
9666                 c4f[ 3] = 1;
9667                 c4f[ 4] = decal->color4f[1][0] * alpha;
9668                 c4f[ 5] = decal->color4f[1][1] * alpha;
9669                 c4f[ 6] = decal->color4f[1][2] * alpha;
9670                 c4f[ 7] = 1;
9671                 c4f[ 8] = decal->color4f[2][0] * alpha;
9672                 c4f[ 9] = decal->color4f[2][1] * alpha;
9673                 c4f[10] = decal->color4f[2][2] * alpha;
9674                 c4f[11] = 1;
9675
9676                 t2f[0] = decal->texcoord2f[0][0];
9677                 t2f[1] = decal->texcoord2f[0][1];
9678                 t2f[2] = decal->texcoord2f[1][0];
9679                 t2f[3] = decal->texcoord2f[1][1];
9680                 t2f[4] = decal->texcoord2f[2][0];
9681                 t2f[5] = decal->texcoord2f[2][1];
9682
9683                 // update vertex positions for animated models
9684                 if (decal->triangleindex >= 0 && decal->triangleindex < rsurface.modelnumtriangles)
9685                 {
9686                         e = rsurface.modelelement3i + 3*decal->triangleindex;
9687                         VectorCopy(rsurface.modelvertex3f + 3*e[0], v3f);
9688                         VectorCopy(rsurface.modelvertex3f + 3*e[1], v3f + 3);
9689                         VectorCopy(rsurface.modelvertex3f + 3*e[2], v3f + 6);
9690                 }
9691                 else
9692                 {
9693                         VectorCopy(decal->vertex3f[0], v3f);
9694                         VectorCopy(decal->vertex3f[1], v3f + 3);
9695                         VectorCopy(decal->vertex3f[2], v3f + 6);
9696                 }
9697
9698                 if (r_refdef.fogenabled)
9699                 {
9700                         alpha = RSurf_FogVertex(v3f);
9701                         VectorScale(c4f, alpha, c4f);
9702                         alpha = RSurf_FogVertex(v3f + 3);
9703                         VectorScale(c4f + 4, alpha, c4f + 4);
9704                         alpha = RSurf_FogVertex(v3f + 6);
9705                         VectorScale(c4f + 8, alpha, c4f + 8);
9706                 }
9707
9708                 v3f += 9;
9709                 c4f += 12;
9710                 t2f += 6;
9711                 numtris++;
9712         }
9713
9714         if (numtris > 0)
9715         {
9716                 r_refdef.stats[r_stat_drawndecals] += numtris;
9717
9718                 // now render the decals all at once
9719                 // (this assumes they all use one particle font texture!)
9720                 RSurf_ActiveCustomEntity(&rsurface.matrix, &rsurface.inversematrix, rsurface.ent_flags, ent->shadertime, 1, 1, 1, 1, numdecals*3, decalsystem->vertex3f, decalsystem->texcoord2f, NULL, NULL, NULL, decalsystem->color4f, numtris, decalsystem->element3i, decalsystem->element3s, false, false);
9721 //              R_Mesh_ResetTextureState();
9722                 R_Mesh_PrepareVertices_Generic_Arrays(numtris * 3, decalsystem->vertex3f, decalsystem->color4f, decalsystem->texcoord2f);
9723                 GL_DepthMask(false);
9724                 GL_DepthRange(0, 1);
9725                 GL_PolygonOffset(rsurface.basepolygonfactor + r_polygonoffset_decals_factor.value, rsurface.basepolygonoffset + r_polygonoffset_decals_offset.value);
9726                 GL_DepthTest(true);
9727                 GL_CullFace(GL_NONE);
9728                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
9729                 R_SetupShader_Generic(decalskinframe->base, false, false, false);
9730                 R_Mesh_Draw(0, numtris * 3, 0, numtris, decalsystem->element3i, NULL, 0, decalsystem->element3s, NULL, 0);
9731         }
9732 }
9733
9734 static void R_DrawModelDecals(void)
9735 {
9736         int i, numdecals;
9737
9738         // fade faster when there are too many decals
9739         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9740         for (i = 0;i < r_refdef.scene.numentities;i++)
9741                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9742
9743         R_DrawModelDecals_FadeEntity(r_refdef.scene.worldentity);
9744         for (i = 0;i < r_refdef.scene.numentities;i++)
9745                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9746                         R_DrawModelDecals_FadeEntity(r_refdef.scene.entities[i]);
9747
9748         R_DecalSystem_ApplySplatEntitiesQueue();
9749
9750         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9751         for (i = 0;i < r_refdef.scene.numentities;i++)
9752                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9753
9754         r_refdef.stats[r_stat_totaldecals] += numdecals;
9755
9756         if (r_showsurfaces.integer || !r_drawdecals.integer)
9757                 return;
9758
9759         R_DrawModelDecals_Entity(r_refdef.scene.worldentity);
9760
9761         for (i = 0;i < r_refdef.scene.numentities;i++)
9762         {
9763                 if (!r_refdef.viewcache.entityvisible[i])
9764                         continue;
9765                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9766                         R_DrawModelDecals_Entity(r_refdef.scene.entities[i]);
9767         }
9768 }
9769
9770 static void R_DrawDebugModel(void)
9771 {
9772         entity_render_t *ent = rsurface.entity;
9773         int i, j, flagsmask;
9774         const msurface_t *surface;
9775         model_t *model = ent->model;
9776
9777         if (!sv.active  && !cls.demoplayback && ent != r_refdef.scene.worldentity)
9778                 return;
9779
9780         if (r_showoverdraw.value > 0)
9781         {
9782                 float c = r_refdef.view.colorscale * r_showoverdraw.value * 0.125f;
9783                 flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9784                 R_SetupShader_Generic_NoTexture(false, false);
9785                 GL_DepthTest(false);
9786                 GL_DepthMask(false);
9787                 GL_DepthRange(0, 1);
9788                 GL_BlendFunc(GL_ONE, GL_ONE);
9789                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9790                 {
9791                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9792                                 continue;
9793                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9794                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9795                         {
9796                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, 1, &surface);
9797                                 GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
9798                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9799                                         GL_Color(c, 0, 0, 1.0f);
9800                                 else if (ent == r_refdef.scene.worldentity)
9801                                         GL_Color(c, c, c, 1.0f);
9802                                 else
9803                                         GL_Color(0, c, 0, 1.0f);
9804                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9805                                 RSurf_DrawBatch();
9806                         }
9807                 }
9808                 rsurface.texture = NULL;
9809         }
9810
9811         flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9812
9813 //      R_Mesh_ResetTextureState();
9814         R_SetupShader_Generic_NoTexture(false, false);
9815         GL_DepthRange(0, 1);
9816         GL_DepthTest(!r_showdisabledepthtest.integer);
9817         GL_DepthMask(false);
9818         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9819
9820         if (r_showcollisionbrushes.value > 0 && model->collision_bih.numleafs)
9821         {
9822                 int triangleindex;
9823                 int bihleafindex;
9824                 qbool cullbox = false;
9825                 const q3mbrush_t *brush;
9826                 const bih_t *bih = &model->collision_bih;
9827                 const bih_leaf_t *bihleaf;
9828                 float vertex3f[3][3];
9829                 GL_PolygonOffset(r_refdef.polygonfactor + r_showcollisionbrushes_polygonfactor.value, r_refdef.polygonoffset + r_showcollisionbrushes_polygonoffset.value);
9830                 for (bihleafindex = 0, bihleaf = bih->leafs;bihleafindex < bih->numleafs;bihleafindex++, bihleaf++)
9831                 {
9832                         if (cullbox && R_CullBox(bihleaf->mins, bihleaf->maxs))
9833                                 continue;
9834                         switch (bihleaf->type)
9835                         {
9836                         case BIH_BRUSH:
9837                                 brush = model->brush.data_brushes + bihleaf->itemindex;
9838                                 if (brush->colbrushf && brush->colbrushf->numtriangles)
9839                                 {
9840                                         GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9841                                         R_Mesh_PrepareVertices_Generic_Arrays(brush->colbrushf->numpoints, brush->colbrushf->points->v, NULL, NULL);
9842                                         R_Mesh_Draw(0, brush->colbrushf->numpoints, 0, brush->colbrushf->numtriangles, brush->colbrushf->elements, NULL, 0, NULL, NULL, 0);
9843                                 }
9844                                 break;
9845                         case BIH_COLLISIONTRIANGLE:
9846                                 triangleindex = bihleaf->itemindex;
9847                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+0], vertex3f[0]);
9848                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+1], vertex3f[1]);
9849                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+2], vertex3f[2]);
9850                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9851                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9852                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9853                                 break;
9854                         case BIH_RENDERTRIANGLE:
9855                                 triangleindex = bihleaf->itemindex;
9856                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+0], vertex3f[0]);
9857                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+1], vertex3f[1]);
9858                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+2], vertex3f[2]);
9859                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9860                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9861                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9862                                 break;
9863                         }
9864                 }
9865         }
9866
9867         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9868
9869 #ifndef USE_GLES2
9870         if (r_showtris.value > 0 && qglPolygonMode)
9871         {
9872                 if (r_showdisabledepthtest.integer)
9873                 {
9874                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9875                         GL_DepthMask(false);
9876                 }
9877                 else
9878                 {
9879                         GL_BlendFunc(GL_ONE, GL_ZERO);
9880                         GL_DepthMask(true);
9881                 }
9882                 qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);CHECKGLERROR
9883                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9884                 {
9885                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9886                                 continue;
9887                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9888                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9889                         {
9890                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9891                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9892                                         GL_Color(r_refdef.view.colorscale, 0, 0, r_showtris.value);
9893                                 else if (ent == r_refdef.scene.worldentity)
9894                                         GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, r_showtris.value);
9895                                 else
9896                                         GL_Color(0, r_refdef.view.colorscale, 0, r_showtris.value);
9897                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9898                                 RSurf_DrawBatch();
9899                         }
9900                 }
9901                 qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);CHECKGLERROR
9902                 rsurface.texture = NULL;
9903         }
9904
9905 # if 0
9906         // FIXME!  implement r_shownormals with just triangles
9907         if (r_shownormals.value != 0 && qglBegin)
9908         {
9909                 int l, k;
9910                 vec3_t v;
9911                 if (r_showdisabledepthtest.integer)
9912                 {
9913                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9914                         GL_DepthMask(false);
9915                 }
9916                 else
9917                 {
9918                         GL_BlendFunc(GL_ONE, GL_ZERO);
9919                         GL_DepthMask(true);
9920                 }
9921                 for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++)
9922                 {
9923                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9924                                 continue;
9925                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9926                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9927                         {
9928                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9929                                 qglBegin(GL_LINES);
9930                                 if (r_shownormals.value < 0 && rsurface.batchnormal3f)
9931                                 {
9932                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9933                                         {
9934                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9935                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9936                                                 qglVertex3f(v[0], v[1], v[2]);
9937                                                 VectorMA(v, -r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9938                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9939                                                 qglVertex3f(v[0], v[1], v[2]);
9940                                         }
9941                                 }
9942                                 if (r_shownormals.value > 0 && rsurface.batchsvector3f)
9943                                 {
9944                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9945                                         {
9946                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9947                                                 GL_Color(r_refdef.view.colorscale, 0, 0, 1);
9948                                                 qglVertex3f(v[0], v[1], v[2]);
9949                                                 VectorMA(v, r_shownormals.value, rsurface.batchsvector3f + l * 3, v);
9950                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9951                                                 qglVertex3f(v[0], v[1], v[2]);
9952                                         }
9953                                 }
9954                                 if (r_shownormals.value > 0 && rsurface.batchtvector3f)
9955                                 {
9956                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9957                                         {
9958                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9959                                                 GL_Color(0, r_refdef.view.colorscale, 0, 1);
9960                                                 qglVertex3f(v[0], v[1], v[2]);
9961                                                 VectorMA(v, r_shownormals.value, rsurface.batchtvector3f + l * 3, v);
9962                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9963                                                 qglVertex3f(v[0], v[1], v[2]);
9964                                         }
9965                                 }
9966                                 if (r_shownormals.value > 0 && rsurface.batchnormal3f)
9967                                 {
9968                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9969                                         {
9970                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9971                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9972                                                 qglVertex3f(v[0], v[1], v[2]);
9973                                                 VectorMA(v, r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9974                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9975                                                 qglVertex3f(v[0], v[1], v[2]);
9976                                         }
9977                                 }
9978                                 qglEnd();
9979                                 CHECKGLERROR
9980                         }
9981                 }
9982                 rsurface.texture = NULL;
9983         }
9984 # endif
9985 #endif
9986 }
9987
9988 int r_maxsurfacelist = 0;
9989 const msurface_t **r_surfacelist = NULL;
9990 void R_DrawModelSurfaces(entity_render_t *ent, qbool skysurfaces, qbool writedepth, qbool depthonly, qbool debug, qbool prepass, qbool ui)
9991 {
9992         int i, j, endj, flagsmask;
9993         model_t *model = ent->model;
9994         msurface_t *surfaces;
9995         unsigned char *update;
9996         int numsurfacelist = 0;
9997         if (model == NULL)
9998                 return;
9999
10000         if (r_maxsurfacelist < model->num_surfaces)
10001         {
10002                 r_maxsurfacelist = model->num_surfaces;
10003                 if (r_surfacelist)
10004                         Mem_Free((msurface_t **)r_surfacelist);
10005                 r_surfacelist = (const msurface_t **) Mem_Alloc(r_main_mempool, r_maxsurfacelist * sizeof(*r_surfacelist));
10006         }
10007
10008         if (r_showsurfaces.integer && r_showsurfaces.integer != 3)
10009                 RSurf_ActiveModelEntity(ent, false, false, false);
10010         else if (prepass)
10011                 RSurf_ActiveModelEntity(ent, true, true, true);
10012         else if (depthonly)
10013                 RSurf_ActiveModelEntity(ent, model->wantnormals, model->wanttangents, false);
10014         else
10015                 RSurf_ActiveModelEntity(ent, true, true, false);
10016
10017         surfaces = model->data_surfaces;
10018         update = model->brushq1.lightmapupdateflags;
10019
10020         // update light styles
10021         if (!skysurfaces && !depthonly && !prepass && model->brushq1.num_lightstyles && r_refdef.scene.lightmapintensity > 0)
10022         {
10023                 model_brush_lightstyleinfo_t *style;
10024                 // Iterate over each active style
10025                 for (i = 0, style = model->brushq1.data_lightstyleinfo;i < model->brushq1.num_lightstyles;i++, style++)
10026                 {
10027                         if (style->value != r_refdef.scene.lightstylevalue[style->style])
10028                         {
10029                                 int *list = style->surfacelist;
10030                                 style->value = r_refdef.scene.lightstylevalue[style->style];
10031                                 // Iterate over every surface this style applies to
10032                                 for (j = 0;j < style->numsurfaces;j++)
10033                                         // Update brush entities even if not visible otherwise they'll render solid black.
10034                                         if(r_refdef.viewcache.world_surfacevisible[list[j]] || ent != r_refdef.scene.worldentity)
10035                                                 update[list[j]] = true;
10036                         }
10037                 }
10038         }
10039
10040         flagsmask = skysurfaces ? MATERIALFLAG_SKY : MATERIALFLAG_WALL;
10041
10042         if (debug)
10043         {
10044                 R_DrawDebugModel();
10045                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10046                 return;
10047         }
10048
10049         rsurface.lightmaptexture = NULL;
10050         rsurface.deluxemaptexture = NULL;
10051         rsurface.uselightmaptexture = false;
10052         rsurface.texture = NULL;
10053         rsurface.rtlight = NULL;
10054         numsurfacelist = 0;
10055         // add visible surfaces to draw list
10056         if (ent == r_refdef.scene.worldentity)
10057         {
10058                 // for the world entity, check surfacevisible
10059                 for (i = 0;i < model->nummodelsurfaces;i++)
10060                 {
10061                         j = model->sortedmodelsurfaces[i];
10062                         if (r_refdef.viewcache.world_surfacevisible[j])
10063                                 r_surfacelist[numsurfacelist++] = surfaces + j;
10064                 }
10065         }
10066         else if (ui)
10067         {
10068                 // for ui we have to preserve the order of surfaces
10069                 for (i = 0; i < model->nummodelsurfaces; i++)
10070                         r_surfacelist[numsurfacelist++] = surfaces + model->firstmodelsurface + i;
10071         }
10072         else
10073         {
10074                 // add all surfaces
10075                 for (i = 0; i < model->nummodelsurfaces; i++)
10076                         r_surfacelist[numsurfacelist++] = surfaces + model->sortedmodelsurfaces[i];
10077         }
10078         // don't do anything if there were no surfaces
10079         if (!numsurfacelist)
10080         {
10081                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10082                 return;
10083         }
10084         // update lightmaps if needed
10085         if (update)
10086         {
10087                 for (j = model->firstmodelsurface, endj = model->firstmodelsurface + model->nummodelsurfaces;j < endj;j++)
10088                 {
10089                         if (update[j])
10090                                 R_BuildLightMap(ent, surfaces + j);
10091                 }
10092         }
10093
10094         R_QueueModelSurfaceList(ent, numsurfacelist, r_surfacelist, flagsmask, writedepth, depthonly, prepass, ui);
10095
10096         // add to stats if desired
10097         if (r_speeds.integer && !skysurfaces && !depthonly)
10098         {
10099                 r_refdef.stats[r_stat_entities_surfaces] += numsurfacelist;
10100                 for (j = 0;j < numsurfacelist;j++)
10101                         r_refdef.stats[r_stat_entities_triangles] += r_surfacelist[j]->num_triangles;
10102         }
10103
10104         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10105 }
10106
10107 void R_DebugLine(vec3_t start, vec3_t end)
10108 {
10109         model_t *mod = CL_Mesh_UI();
10110         msurface_t *surf;
10111         int e0, e1, e2, e3;
10112         float offsetx, offsety, x1, y1, x2, y2, width = 1.0f;
10113         float r1 = 1.0f, g1 = 0.0f, b1 = 0.0f, alpha1 = 0.25f;
10114         float r2 = 1.0f, g2 = 1.0f, b2 = 0.0f, alpha2 = 0.25f;
10115         vec4_t w[2], s[2];
10116
10117         // transform to screen coords first
10118         Vector4Set(w[0], start[0], start[1], start[2], 1);
10119         Vector4Set(w[1], end[0], end[1], end[2], 1);
10120         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[0], s[0]);
10121         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[1], s[1]);
10122         x1 = s[0][0] * vid_conwidth.value / vid.width;
10123         y1 = (vid.height - s[0][1]) * vid_conheight.value / vid.height;
10124         x2 = s[1][0] * vid_conwidth.value / vid.width;
10125         y2 = (vid.height - s[1][1]) * vid_conheight.value / vid.height;
10126         //Con_DPrintf("R_DebugLine: %.0f,%.0f to %.0f,%.0f\n", x1, y1, x2, y2);
10127
10128         // add the line to the UI mesh for drawing later
10129
10130         // width is measured in real pixels
10131         if (fabs(x2 - x1) > fabs(y2 - y1))
10132         {
10133                 offsetx = 0;
10134                 offsety = 0.5f * width * vid_conheight.value / vid.height;
10135         }
10136         else
10137         {
10138                 offsetx = 0.5f * width * vid_conwidth.value / vid.width;
10139                 offsety = 0;
10140         }
10141         surf = Mod_Mesh_AddSurface(mod, Mod_Mesh_GetTexture(mod, "white", 0, 0, MATERIALFLAG_WALL | MATERIALFLAG_VERTEXCOLOR | MATERIALFLAG_ALPHAGEN_VERTEX | MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW), true);
10142         e0 = Mod_Mesh_IndexForVertex(mod, surf, x1 - offsetx, y1 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10143         e1 = Mod_Mesh_IndexForVertex(mod, surf, x2 - offsetx, y2 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10144         e2 = Mod_Mesh_IndexForVertex(mod, surf, x2 + offsetx, y2 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10145         e3 = Mod_Mesh_IndexForVertex(mod, surf, x1 + offsetx, y1 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10146         Mod_Mesh_AddTriangle(mod, surf, e0, e1, e2);
10147         Mod_Mesh_AddTriangle(mod, surf, e0, e2, e3);
10148
10149 }
10150
10151
10152 void R_DrawCustomSurface(skinframe_t *skinframe, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10153 {
10154         static texture_t texture;
10155
10156         // fake enough texture and surface state to render this geometry
10157
10158         texture.update_lastrenderframe = -1; // regenerate this texture
10159         texture.basematerialflags = materialflags | MATERIALFLAG_CUSTOMSURFACE | MATERIALFLAG_WALL;
10160         texture.basealpha = 1.0f;
10161         texture.currentskinframe = skinframe;
10162         texture.currenttexmatrix = *texmatrix; // requires MATERIALFLAG_CUSTOMSURFACE
10163         texture.offsetmapping = OFFSETMAPPING_OFF;
10164         texture.offsetscale = 1;
10165         texture.specularscalemod = 1;
10166         texture.specularpowermod = 1;
10167         texture.transparentsort = TRANSPARENTSORT_DISTANCE;
10168
10169         R_DrawCustomSurface_Texture(&texture, texmatrix, materialflags, firstvertex, numvertices, firsttriangle, numtriangles, writedepth, prepass, ui);
10170 }
10171
10172 void R_DrawCustomSurface_Texture(texture_t *texture, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10173 {
10174         static msurface_t surface;
10175         const msurface_t *surfacelist = &surface;
10176
10177         // fake enough texture and surface state to render this geometry
10178         surface.texture = texture;
10179         surface.num_triangles = numtriangles;
10180         surface.num_firsttriangle = firsttriangle;
10181         surface.num_vertices = numvertices;
10182         surface.num_firstvertex = firstvertex;
10183
10184         // now render it
10185         rsurface.texture = R_GetCurrentTexture(surface.texture);
10186         rsurface.lightmaptexture = NULL;
10187         rsurface.deluxemaptexture = NULL;
10188         rsurface.uselightmaptexture = false;
10189         R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass, ui);
10190 }