X-Git-Url: http://git.xonotic.org/?a=blobdiff_plain;f=qcsrc%2Flib%2Fmath.qh;h=f20b1c66e5bf120be7748737dabe8b9e8dec9f88;hb=6ea97246f03651c514be506bf57cbc0c2351e935;hp=92d45bf142573663919fcfe5b6f93f09dc2a8f16;hpb=a394baa72a77a2db64709e44caa89a6fb4aaf5f4;p=xonotic%2Fxonotic-data.pk3dir.git diff --git a/qcsrc/lib/math.qh b/qcsrc/lib/math.qh index 92d45bf14..f20b1c66e 100644 --- a/qcsrc/lib/math.qh +++ b/qcsrc/lib/math.qh @@ -1,18 +1,22 @@ #pragma once +#include "lib/float.qh" + +ERASEABLE void mean_accumulate(entity e, .float a, .float c, float mean, float value, float weight) { if (weight == 0) return; - if (mean == 0) e.(a) *= pow(value, weight); - else e.(a) += pow(value, mean) * weight; + if (mean == 0) e.(a) *= (value ** weight); + else e.(a) += (value ** mean) * weight; e.(c) += weight; } +ERASEABLE float mean_evaluate(entity e, .float a, .float c, float mean) { if (e.(c) == 0) return 0; - if (mean == 0) return pow(e.(a), 1.0 / e.(c)); - else return pow(e.(a) / e.(c), 1.0 / mean); + if (mean == 0) return (e.(a) ** (1.0 / e.(c))); + else return ((e.(a) / e.(c)) ** (1.0 / mean)); } #define MEAN_ACCUMULATE(s, prefix, v, w) mean_accumulate(s, prefix##_accumulator, prefix##_count, prefix##_mean, v, w) @@ -30,6 +34,7 @@ Angc used for animations */ +ERASEABLE float angc(float a1, float a2) { while (a1 > 180) @@ -48,11 +53,13 @@ float angc(float a1, float a2) return a; } +ERASEABLE float fsnap(float val, float fsize) { return rint(val / fsize) * fsize; } +ERASEABLE vector vsnap(vector point, float fsize) { vector vret; @@ -64,11 +71,13 @@ vector vsnap(vector point, float fsize) return vret; } +ERASEABLE vector lerpv(float t0, vector v0, float t1, vector v1, float t) { return v0 + (v1 - v0) * ((t - t0) / (t1 - t0)); } +ERASEABLE vector bezier_quadratic_getpoint(vector a, vector b, vector c, float t) { return (c - 2 * b + a) * (t * t) @@ -76,12 +85,14 @@ vector bezier_quadratic_getpoint(vector a, vector b, vector c, float t) + a; } +ERASEABLE vector bezier_quadratic_getderivative(vector a, vector b, vector c, float t) { return (c - 2 * b + a) * (2 * t) + (b - a) * 2; } +ERASEABLE float cubic_speedfunc(float startspeedfactor, float endspeedfactor, float spd) { return (((startspeedfactor + endspeedfactor - 2 @@ -90,6 +101,7 @@ float cubic_speedfunc(float startspeedfactor, float endspeedfactor, float spd) ) * spd; } +ERASEABLE bool cubic_speedfunc_is_sane(float startspeedfactor, float endspeedfactor) { if (startspeedfactor < 0 || endspeedfactor < 0) return false; @@ -154,28 +166,40 @@ bool cubic_speedfunc_is_sane(float startspeedfactor, float endspeedfactor) } /** continuous function mapping all reals into -1..1 */ +ERASEABLE float float2range11(float f) { return f / (fabs(f) + 1); } /** continuous function mapping all reals into 0..1 */ +ERASEABLE float float2range01(float f) { return 0.5 + 0.5 * float2range11(f); } +ERASEABLE float median(float a, float b, float c) { return (a < c) ? bound(a, b, c) : bound(c, b, a); } +ERASEABLE float almost_equals(float a, float b) { float eps = (max(a, -a) + max(b, -b)) * 0.001; return a - b < eps && b - a < eps; } +ERASEABLE +float almost_equals_eps(float a, float b, float times_eps) +{ + float eps = max(fabs(a), fabs(b)) * FLOAT_EPSILON * times_eps; + return a - b < eps && b - a < eps; +} + +ERASEABLE float almost_in_bounds(float a, float b, float c) { float eps = (max(a, -a) + max(c, -c)) * 0.001; @@ -183,18 +207,17 @@ float almost_in_bounds(float a, float b, float c) return b == median(a - eps, b, c + eps); } +ERASEABLE float ExponentialFalloff(float mindist, float maxdist, float halflifedist, float d) { - if (halflifedist > 0) return pow(0.5, (bound(mindist, d, maxdist) - mindist) / halflifedist); - else if (halflifedist < 0) return pow(0.5, (bound(mindist, d, maxdist) - maxdist) / halflifedist); + if (halflifedist > 0) return (0.5 ** ((bound(mindist, d, maxdist) - mindist) / halflifedist)); + else if (halflifedist < 0) return (0.5 ** ((bound(mindist, d, maxdist) - maxdist) / halflifedist)); else return 1; } -float power2of(float e) -{ - return pow(2, e); -} +#define power2of(e) (2 ** e) +ERASEABLE float log2of(float e) { // NOTE: generated code @@ -247,6 +270,7 @@ float log2of(float e) } /** ax^2 + bx + c = 0 */ +ERASEABLE vector solve_quadratic(float a, float b, float c) { vector v; @@ -298,3 +322,25 @@ vector solve_quadratic(float a, float b, float c) } return v; } + +/// Maps values between the src and dest range: src_min to dest_min, src_max to dest_max, values between them +/// to the curresponding values between and extrapolates for values outside the range. +/// +/// src_min and src_max must not be the same or division by zero accurs. +/// +/// dest_max can be smaller than dest_min if you want the resulting range to be inverted, all values can be negative. +ERASEABLE +float map_ranges(float value, float src_min, float src_max, float dest_min, float dest_max) { + float src_diff = src_max - src_min; + float dest_diff = dest_max - dest_min; + float ratio = (value - src_min) / src_diff; + return dest_min + dest_diff * ratio; +} + +/// Same as `map_ranges` except that values outside the source range are clamped to min or max. +ERASEABLE +float map_bound_ranges(float value, float src_min, float src_max, float dest_min, float dest_max) { + if (value <= src_min) return dest_min; + if (value >= src_max) return dest_max; + return map_ranges(value, src_min, src_max, dest_min, dest_max); +}