X-Git-Url: http://git.xonotic.org/?a=blobdiff_plain;f=matrixlib.c;h=78c859cfed39673b9e6f7f6628ca8dae90c91e50;hb=fa561c1a0e1f754cab309168853a0e3b253081c8;hp=f84e922d506dce80ac34ed6e69f081b59d1b56eb;hpb=175ee5655dc60d9bce48e942716fde78503dc514;p=xonotic%2Fdarkplaces.git diff --git a/matrixlib.c b/matrixlib.c index f84e922d..78c859cf 100644 --- a/matrixlib.c +++ b/matrixlib.c @@ -146,54 +146,54 @@ void Matrix4x4_Transpose (matrix4x4_t *out, const matrix4x4_t *in1) // added helper for common subexpression elimination by eihrul, and other optimizations by div0 int Matrix4x4_Invert_Full (matrix4x4_t *out, const matrix4x4_t *in1) { - float det; - - // note: orientation does not matter, as transpose(invert(transpose(m))) == invert(m), proof: - // transpose(invert(transpose(m))) * m - // = transpose(invert(transpose(m))) * transpose(transpose(m)) - // = transpose(transpose(m) * invert(transpose(m))) - // = transpose(identity) - // = identity - - // this seems to help gcc's common subexpression elimination, and also makes the code look nicer - float m00 = in1->m[0][0], m01 = in1->m[0][1], m02 = in1->m[0][2], m03 = in1->m[0][3], - m10 = in1->m[1][0], m11 = in1->m[1][1], m12 = in1->m[1][2], m13 = in1->m[1][3], - m20 = in1->m[2][0], m21 = in1->m[2][1], m22 = in1->m[2][2], m23 = in1->m[2][3], - m30 = in1->m[3][0], m31 = in1->m[3][1], m32 = in1->m[3][2], m33 = in1->m[3][3]; - - // calculate the adjoint - out->m[0][0] = (m11*(m22*m33 - m23*m32) - m21*(m12*m33 - m13*m32) + m31*(m12*m23 - m13*m22)); - out->m[0][1] = -(m01*(m22*m33 - m23*m32) - m21*(m02*m33 - m03*m32) + m31*(m02*m23 - m03*m22)); - out->m[0][2] = (m01*(m12*m33 - m13*m32) - m11*(m02*m33 - m03*m32) + m31*(m02*m13 - m03*m12)); - out->m[0][3] = -(m01*(m12*m23 - m13*m22) - m11*(m02*m23 - m03*m22) + m21*(m02*m13 - m03*m12)); - out->m[1][0] = -(m10*(m22*m33 - m23*m32) - m20*(m12*m33 - m13*m32) + m30*(m12*m23 - m13*m22)); - out->m[1][1] = (m00*(m22*m33 - m23*m32) - m20*(m02*m33 - m03*m32) + m30*(m02*m23 - m03*m22)); - out->m[1][2] = -(m00*(m12*m33 - m13*m32) - m10*(m02*m33 - m03*m32) + m30*(m02*m13 - m03*m12)); - out->m[1][3] = (m00*(m12*m23 - m13*m22) - m10*(m02*m23 - m03*m22) + m20*(m02*m13 - m03*m12)); - out->m[2][0] = (m10*(m21*m33 - m23*m31) - m20*(m11*m33 - m13*m31) + m30*(m11*m23 - m13*m21)); - out->m[2][1] = -(m00*(m21*m33 - m23*m31) - m20*(m01*m33 - m03*m31) + m30*(m01*m23 - m03*m21)); - out->m[2][2] = (m00*(m11*m33 - m13*m31) - m10*(m01*m33 - m03*m31) + m30*(m01*m13 - m03*m11)); - out->m[2][3] = -(m00*(m11*m23 - m13*m21) - m10*(m01*m23 - m03*m21) + m20*(m01*m13 - m03*m11)); - out->m[3][0] = -(m10*(m21*m32 - m22*m31) - m20*(m11*m32 - m12*m31) + m30*(m11*m22 - m12*m21)); - out->m[3][1] = (m00*(m21*m32 - m22*m31) - m20*(m01*m32 - m02*m31) + m30*(m01*m22 - m02*m21)); - out->m[3][2] = -(m00*(m11*m32 - m12*m31) - m10*(m01*m32 - m02*m31) + m30*(m01*m12 - m02*m11)); - out->m[3][3] = (m00*(m11*m22 - m12*m21) - m10*(m01*m22 - m02*m21) + m20*(m01*m12 - m02*m11)); - - // calculate the determinant (as inverse == 1/det * adjoint, adjoint * m == identity * det, so this calculates the det) - det = m00*out->m[0][0] + m10*out->m[0][1] + m20*out->m[0][2] + m30*out->m[0][3]; - if (det == 0.0f) - return 0; - - // multiplications are faster than divisions, usually - det = 1.0f / det; - - // manually unrolled loop to multiply all matrix elements by 1/det - out->m[0][0] *= det; out->m[0][1] *= det; out->m[0][2] *= det; out->m[0][3] *= det; - out->m[1][0] *= det; out->m[1][1] *= det; out->m[1][2] *= det; out->m[1][3] *= det; - out->m[2][0] *= det; out->m[2][1] *= det; out->m[2][2] *= det; out->m[2][3] *= det; - out->m[3][0] *= det; out->m[3][1] *= det; out->m[3][2] *= det; out->m[3][3] *= det; - - return 1; + float det; + + // note: orientation does not matter, as transpose(invert(transpose(m))) == invert(m), proof: + // transpose(invert(transpose(m))) * m + // = transpose(invert(transpose(m))) * transpose(transpose(m)) + // = transpose(transpose(m) * invert(transpose(m))) + // = transpose(identity) + // = identity + + // this seems to help gcc's common subexpression elimination, and also makes the code look nicer + float m00 = in1->m[0][0], m01 = in1->m[0][1], m02 = in1->m[0][2], m03 = in1->m[0][3], + m10 = in1->m[1][0], m11 = in1->m[1][1], m12 = in1->m[1][2], m13 = in1->m[1][3], + m20 = in1->m[2][0], m21 = in1->m[2][1], m22 = in1->m[2][2], m23 = in1->m[2][3], + m30 = in1->m[3][0], m31 = in1->m[3][1], m32 = in1->m[3][2], m33 = in1->m[3][3]; + + // calculate the adjoint + out->m[0][0] = (m11*(m22*m33 - m23*m32) - m21*(m12*m33 - m13*m32) + m31*(m12*m23 - m13*m22)); + out->m[0][1] = -(m01*(m22*m33 - m23*m32) - m21*(m02*m33 - m03*m32) + m31*(m02*m23 - m03*m22)); + out->m[0][2] = (m01*(m12*m33 - m13*m32) - m11*(m02*m33 - m03*m32) + m31*(m02*m13 - m03*m12)); + out->m[0][3] = -(m01*(m12*m23 - m13*m22) - m11*(m02*m23 - m03*m22) + m21*(m02*m13 - m03*m12)); + out->m[1][0] = -(m10*(m22*m33 - m23*m32) - m20*(m12*m33 - m13*m32) + m30*(m12*m23 - m13*m22)); + out->m[1][1] = (m00*(m22*m33 - m23*m32) - m20*(m02*m33 - m03*m32) + m30*(m02*m23 - m03*m22)); + out->m[1][2] = -(m00*(m12*m33 - m13*m32) - m10*(m02*m33 - m03*m32) + m30*(m02*m13 - m03*m12)); + out->m[1][3] = (m00*(m12*m23 - m13*m22) - m10*(m02*m23 - m03*m22) + m20*(m02*m13 - m03*m12)); + out->m[2][0] = (m10*(m21*m33 - m23*m31) - m20*(m11*m33 - m13*m31) + m30*(m11*m23 - m13*m21)); + out->m[2][1] = -(m00*(m21*m33 - m23*m31) - m20*(m01*m33 - m03*m31) + m30*(m01*m23 - m03*m21)); + out->m[2][2] = (m00*(m11*m33 - m13*m31) - m10*(m01*m33 - m03*m31) + m30*(m01*m13 - m03*m11)); + out->m[2][3] = -(m00*(m11*m23 - m13*m21) - m10*(m01*m23 - m03*m21) + m20*(m01*m13 - m03*m11)); + out->m[3][0] = -(m10*(m21*m32 - m22*m31) - m20*(m11*m32 - m12*m31) + m30*(m11*m22 - m12*m21)); + out->m[3][1] = (m00*(m21*m32 - m22*m31) - m20*(m01*m32 - m02*m31) + m30*(m01*m22 - m02*m21)); + out->m[3][2] = -(m00*(m11*m32 - m12*m31) - m10*(m01*m32 - m02*m31) + m30*(m01*m12 - m02*m11)); + out->m[3][3] = (m00*(m11*m22 - m12*m21) - m10*(m01*m22 - m02*m21) + m20*(m01*m12 - m02*m11)); + + // calculate the determinant (as inverse == 1/det * adjoint, adjoint * m == identity * det, so this calculates the det) + det = m00*out->m[0][0] + m10*out->m[0][1] + m20*out->m[0][2] + m30*out->m[0][3]; + if (det == 0.0f) + return 0; + + // multiplications are faster than divisions, usually + det = 1.0f / det; + + // manually unrolled loop to multiply all matrix elements by 1/det + out->m[0][0] *= det; out->m[0][1] *= det; out->m[0][2] *= det; out->m[0][3] *= det; + out->m[1][0] *= det; out->m[1][1] *= det; out->m[1][2] *= det; out->m[1][3] *= det; + out->m[2][0] *= det; out->m[2][1] *= det; out->m[2][2] *= det; out->m[2][3] *= det; + out->m[3][0] *= det; out->m[3][1] *= det; out->m[3][2] *= det; out->m[3][3] *= det; + + return 1; } #elif 1 // Adapted from code contributed to Mesa by David Moore (Mesa 7.6 under SGI Free License B - which is MIT/X11-type) @@ -1550,22 +1550,22 @@ void Matrix4x4_FromDoom3Joint(matrix4x4_t *m, double ox, double oy, double oz, d #endif } -void Matrix4x4_FromBonePose6s(matrix4x4_t *m, float originscale, const short *pose6s) +void Matrix4x4_FromBonePose7s(matrix4x4_t *m, float originscale, const short *pose7s) { float origin[3]; float quat[4]; - origin[0] = pose6s[0] * originscale; - origin[1] = pose6s[1] * originscale; - origin[2] = pose6s[2] * originscale; - quat[0] = pose6s[3] * (1.0f / 32767.0f); - quat[1] = pose6s[4] * (1.0f / 32767.0f); - quat[2] = pose6s[5] * (1.0f / 32767.0f); - quat[3] = 1.0f - (quat[0]*quat[0]+quat[1]*quat[1]+quat[2]*quat[2]); - quat[3] = quat[3] > 0.0f ? -sqrt(quat[3]) : 0.0f; + float quatscale = pose7s[6] > 0 ? -1.0f / 32767.0f : 1.0f / 32767.0f; + origin[0] = pose7s[0] * originscale; + origin[1] = pose7s[1] * originscale; + origin[2] = pose7s[2] * originscale; + quat[0] = pose7s[3] * quatscale; + quat[1] = pose7s[4] * quatscale; + quat[2] = pose7s[5] * quatscale; + quat[3] = pose7s[6] * quatscale; Matrix4x4_FromOriginQuat(m, origin[0], origin[1], origin[2], quat[0], quat[1], quat[2], quat[3]); } -void Matrix4x4_ToBonePose6s(const matrix4x4_t *m, float origininvscale, short *pose6s) +void Matrix4x4_ToBonePose7s(const matrix4x4_t *m, float origininvscale, short *pose7s) { float origin[3]; float quat[4]; @@ -1577,12 +1577,13 @@ void Matrix4x4_ToBonePose6s(const matrix4x4_t *m, float origininvscale, short *p quatscale = (quat[3] >= 0 ? -32767.0f : 32767.0f) / sqrt(quatscale); // use a negative scale on the quat because the above function produces a // positive quat[3] and canonical quaternions have negative quat[3] - pose6s[0] = origin[0] * origininvscale; - pose6s[1] = origin[1] * origininvscale; - pose6s[2] = origin[2] * origininvscale; - pose6s[3] = quat[0] * quatscale; - pose6s[4] = quat[1] * quatscale; - pose6s[5] = quat[2] * quatscale; + pose7s[0] = origin[0] * origininvscale; + pose7s[1] = origin[1] * origininvscale; + pose7s[2] = origin[2] * origininvscale; + pose7s[3] = quat[0] * quatscale; + pose7s[4] = quat[1] * quatscale; + pose7s[5] = quat[2] * quatscale; + pose7s[6] = quat[3] * quatscale; } void Matrix4x4_Blend (matrix4x4_t *out, const matrix4x4_t *in1, const matrix4x4_t *in2, double blend) @@ -1811,14 +1812,14 @@ void Matrix4x4_Scale (matrix4x4_t *out, double rotatescale, double originscale) void Matrix4x4_Abs (matrix4x4_t *out) { - out->m[0][0] = fabs(out->m[0][0]); - out->m[0][1] = fabs(out->m[0][1]); - out->m[0][2] = fabs(out->m[0][2]); - out->m[1][0] = fabs(out->m[1][0]); - out->m[1][1] = fabs(out->m[1][1]); - out->m[1][2] = fabs(out->m[1][2]); - out->m[2][0] = fabs(out->m[2][0]); - out->m[2][1] = fabs(out->m[2][1]); - out->m[2][2] = fabs(out->m[2][2]); + out->m[0][0] = fabs(out->m[0][0]); + out->m[0][1] = fabs(out->m[0][1]); + out->m[0][2] = fabs(out->m[0][2]); + out->m[1][0] = fabs(out->m[1][0]); + out->m[1][1] = fabs(out->m[1][1]); + out->m[1][2] = fabs(out->m[1][2]); + out->m[2][0] = fabs(out->m[2][0]); + out->m[2][1] = fabs(out->m[2][1]); + out->m[2][2] = fabs(out->m[2][2]); }