#include "quakedef.h" typedef struct { float m[3][4]; } zymbonematrix; // LordHavoc: vertex array float *aliasvert; float *modelaliasvert; float *aliasvertnorm; byte *aliasvertcolor; byte *aliasvertcolor2; zymbonematrix *zymbonepose; int *aliasvertusage; int chrometexture; void makechrometexture() { int i; byte noise[64*64]; byte data[64*64][4]; fractalnoise(noise, 64, 16); // convert to RGBA data for (i = 0;i < 64*64;i++) { data[i][0] = data[i][1] = data[i][2] = noise[i]; data[i][3] = 255; } chrometexture = GL_LoadTexture ("chrometexture", 64, 64, &data[0][0], true, false, 4); } void gl_models_start() { // allocate vertex processing arrays aliasvert = qmalloc(sizeof(float[MD2MAX_VERTS][3])); modelaliasvert = qmalloc(sizeof(float[MD2MAX_VERTS][3])); aliasvertnorm = qmalloc(sizeof(float[MD2MAX_VERTS][3])); aliasvertcolor = qmalloc(sizeof(byte[MD2MAX_VERTS][4])); aliasvertcolor2 = qmalloc(sizeof(byte[MD2MAX_VERTS][4])); // used temporarily for tinted coloring zymbonepose = qmalloc(sizeof(zymbonematrix[256])); aliasvertusage = qmalloc(sizeof(int[MD2MAX_VERTS])); makechrometexture(); } void gl_models_shutdown() { qfree(aliasvert); qfree(aliasvertnorm); qfree(aliasvertcolor); qfree(aliasvertcolor2); qfree(zymbonepose); qfree(aliasvertusage); } void GL_Models_Init() { R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown); } extern vec3_t softwaretransform_x; extern vec3_t softwaretransform_y; extern vec3_t softwaretransform_z; extern vec_t softwaretransform_scale; extern vec3_t softwaretransform_offset; extern cvar_t r_modelsdonttransformnormals; void R_AliasLerpVerts(int vertcount, float lerp, trivert2 *verts1, vec3_t scale1, vec3_t translate1, trivert2 *verts2, vec3_t scale2, vec3_t translate2) { int i; vec3_t point, matrix_x, matrix_y, matrix_z; float *av, *avn; av = aliasvert; avn = aliasvertnorm; VectorScale(softwaretransform_x, softwaretransform_scale, matrix_x); VectorScale(softwaretransform_y, softwaretransform_scale, matrix_y); VectorScale(softwaretransform_z, softwaretransform_scale, matrix_z); if (lerp < 0) lerp = 0; if (lerp > 1) lerp = 1; if (lerp != 0) { float ilerp, ilerp127, lerp127, scalex1, scalex2, translatex, scaley1, scaley2, translatey, scalez1, scalez2, translatez; ilerp = 1 - lerp; ilerp127 = ilerp * (1.0 / 127.0); lerp127 = lerp * (1.0 / 127.0); // calculate combined interpolation variables scalex1 = scale1[0] * ilerp;scalex2 = scale2[0] * lerp;translatex = translate1[0] * ilerp + translate2[0] * lerp; scaley1 = scale1[1] * ilerp;scaley2 = scale2[1] * lerp;translatey = translate1[1] * ilerp + translate2[1] * lerp; scalez1 = scale1[2] * ilerp;scalez2 = scale2[2] * lerp;translatez = translate1[2] * ilerp + translate2[2] * lerp; // generate vertices if (r_modelsdonttransformnormals.value) { float *modelav = modelaliasvert; for (i = 0;i < vertcount;i++) { // rotate, scale, and translate the vertex locations point[0] = verts1->v[0] * scalex1 + verts2->v[0] * scalex2 + translatex; point[1] = verts1->v[1] * scaley1 + verts2->v[1] * scaley2 + translatey; point[2] = verts1->v[2] * scalez1 + verts2->v[2] * scalez2 + translatez; // save mostly un-transformed copy for lighting modelav[0] = point[0] * softwaretransform_scale; modelav[1] = point[1] * softwaretransform_scale; modelav[2] = point[2] * softwaretransform_scale; av[0] = point[0] * matrix_x[0] + point[1] * matrix_y[0] + point[2] * matrix_z[0] + softwaretransform_offset[0]; av[1] = point[0] * matrix_x[1] + point[1] * matrix_y[1] + point[2] * matrix_z[1] + softwaretransform_offset[1]; av[2] = point[0] * matrix_x[2] + point[1] * matrix_y[2] + point[2] * matrix_z[2] + softwaretransform_offset[2]; // decompress but do not transform the normals avn[0] = verts1->n[0] * ilerp127 + verts2->n[0] * lerp127; avn[1] = verts1->n[1] * ilerp127 + verts2->n[1] * lerp127; avn[2] = verts1->n[2] * ilerp127 + verts2->n[2] * lerp127; modelav += 3; av += 3; avn += 3; verts1++;verts2++; } } else { for (i = 0;i < vertcount;i++) { // rotate, scale, and translate the vertex locations point[0] = verts1->v[0] * scalex1 + verts2->v[0] * scalex2 + translatex; point[1] = verts1->v[1] * scaley1 + verts2->v[1] * scaley2 + translatey; point[2] = verts1->v[2] * scalez1 + verts2->v[2] * scalez2 + translatez; av[0] = point[0] * matrix_x[0] + point[1] * matrix_y[0] + point[2] * matrix_z[0] + softwaretransform_offset[0]; av[1] = point[0] * matrix_x[1] + point[1] * matrix_y[1] + point[2] * matrix_z[1] + softwaretransform_offset[1]; av[2] = point[0] * matrix_x[2] + point[1] * matrix_y[2] + point[2] * matrix_z[2] + softwaretransform_offset[2]; // rotate the normals point[0] = verts1->n[0] * ilerp127 + verts2->n[0] * lerp127; point[1] = verts1->n[1] * ilerp127 + verts2->n[1] * lerp127; point[2] = verts1->n[2] * ilerp127 + verts2->n[2] * lerp127; avn[0] = point[0] * softwaretransform_x[0] + point[1] * softwaretransform_y[0] + point[2] * softwaretransform_z[0]; avn[1] = point[0] * softwaretransform_x[1] + point[1] * softwaretransform_y[1] + point[2] * softwaretransform_z[1]; avn[2] = point[0] * softwaretransform_x[2] + point[1] * softwaretransform_y[2] + point[2] * softwaretransform_z[2]; av += 3; avn += 3; verts1++;verts2++; } } } else { // generate vertices if (r_modelsdonttransformnormals.value) { float *modelav = modelaliasvert; for (i = 0;i < vertcount;i++) { // rotate, scale, and translate the vertex locations point[0] = verts1->v[0] * scale1[0] + translate1[0]; point[1] = verts1->v[1] * scale1[1] + translate1[1]; point[2] = verts1->v[2] * scale1[2] + translate1[2]; // save mostly un-transformed copy for lighting modelav[0] = point[0] * softwaretransform_scale; modelav[1] = point[1] * softwaretransform_scale; modelav[2] = point[2] * softwaretransform_scale; av[0] = point[0] * matrix_x[0] + point[1] * matrix_y[0] + point[2] * matrix_z[0] + softwaretransform_offset[0]; av[1] = point[0] * matrix_x[1] + point[1] * matrix_y[1] + point[2] * matrix_z[1] + softwaretransform_offset[1]; av[2] = point[0] * matrix_x[2] + point[1] * matrix_y[2] + point[2] * matrix_z[2] + softwaretransform_offset[2]; // decompress normal but do not rotate it avn[0] = verts1->n[0] * (1.0f / 127.0f); avn[1] = verts1->n[1] * (1.0f / 127.0f); avn[2] = verts1->n[2] * (1.0f / 127.0f); modelav += 3; av += 3; avn += 3; verts1++; } } else { for (i = 0;i < vertcount;i++) { // rotate, scale, and translate the vertex locations point[0] = verts1->v[0] * scale1[0] + translate1[0]; point[1] = verts1->v[1] * scale1[1] + translate1[1]; point[2] = verts1->v[2] * scale1[2] + translate1[2]; av[0] = point[0] * matrix_x[0] + point[1] * matrix_y[0] + point[2] * matrix_z[0] + softwaretransform_offset[0]; av[1] = point[0] * matrix_x[1] + point[1] * matrix_y[1] + point[2] * matrix_z[1] + softwaretransform_offset[1]; av[2] = point[0] * matrix_x[2] + point[1] * matrix_y[2] + point[2] * matrix_z[2] + softwaretransform_offset[2]; // rotate the normals point[0] = verts1->n[0] * (1.0f / 127.0f); point[1] = verts1->n[1] * (1.0f / 127.0f); point[2] = verts1->n[2] * (1.0f / 127.0f); avn[0] = point[0] * softwaretransform_x[0] + point[1] * softwaretransform_y[0] + point[2] * softwaretransform_z[0]; avn[1] = point[0] * softwaretransform_x[1] + point[1] * softwaretransform_y[1] + point[2] * softwaretransform_z[1]; avn[2] = point[0] * softwaretransform_x[2] + point[1] * softwaretransform_y[2] + point[2] * softwaretransform_z[2]; av += 3; avn += 3; verts1++; } } } } float R_CalcAnimLerp(entity_t *ent, int pose, float lerpscale) { if (ent->draw_lastmodel == ent->model && ent->draw_lerpstart <= cl.time) { if (pose != ent->draw_pose) { ent->draw_lastpose = ent->draw_pose; ent->draw_pose = pose; ent->draw_lerpstart = cl.time; return 0; } else return ((cl.time - ent->draw_lerpstart) * lerpscale); } else // uninitialized { ent->draw_lastmodel = ent->model; ent->draw_lastpose = ent->draw_pose = pose; ent->draw_lerpstart = cl.time; return 0; } } void GL_DrawModelMesh(int skin, byte *colors, maliashdr_t *maliashdr) { int i; if (!r_render.value) return; glBindTexture(GL_TEXTURE_2D, skin); if (!colors) { if (lighthalf) glColor3f(0.5f, 0.5f, 0.5f); else glColor3f(1.0f, 1.0f, 1.0f); } if (gl_vertexarrays.value) { if (colors) { qglColorPointer(4, GL_UNSIGNED_BYTE, 0, colors); glEnableClientState(GL_COLOR_ARRAY); } qglTexCoordPointer(2, GL_FLOAT, 0, (void *)((int) maliashdr->texdata + (int) maliashdr)); glEnableClientState(GL_TEXTURE_COORD_ARRAY); qglDrawElements(GL_TRIANGLES, maliashdr->numtris * 3, GL_UNSIGNED_SHORT, (void *)((int) maliashdr + maliashdr->tridata)); glDisableClientState(GL_TEXTURE_COORD_ARRAY); if (colors) glDisableClientState(GL_COLOR_ARRAY); } else { unsigned short *in, index; float *tex; in = (void *)((int) maliashdr + maliashdr->tridata); glBegin(GL_TRIANGLES); tex = (void *)((int) maliashdr + maliashdr->texdata); for (i = 0;i < maliashdr->numtris * 3;i++) { index = *in++; glTexCoord2f(tex[index*2], tex[index*2+1]); if (colors) glColor4f(colors[index*4] * (1.0f / 255.0f), colors[index*4+1] * (1.0f / 255.0f), colors[index*4+2] * (1.0f / 255.0f), colors[index*4+3] * (1.0f / 255.0f)); glVertex3fv(&aliasvert[index*3]); } glEnd(); } // leave it in a state for additional passes glDepthMask(0); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE); // additive } void R_TintModel(byte *in, byte *out, int verts, byte *color) { int i; byte r = color[0]; byte g = color[1]; byte b = color[2]; for (i = 0;i < verts;i++) { out[0] = (byte) ((in[0] * r) >> 8); out[1] = (byte) ((in[1] * g) >> 8); out[2] = (byte) ((in[2] * b) >> 8); out[3] = in[3]; in += 4; out += 4; } } /* ================= R_DrawAliasFrame ================= */ extern vec3_t lightspot; void R_LightModel(int numverts, vec3_t center, vec3_t basecolor); void R_DrawAliasFrame (maliashdr_t *maliashdr, float alpha, vec3_t color, entity_t *ent, int shadow, vec3_t org, vec3_t angles, int frame, int *skin, int colormap, int effects, int flags) { int i, pose; float lerpscale, lerp; maliasframe_t *frameinfo; softwaretransformforentity(ent); if ((frame >= maliashdr->numframes) || (frame < 0)) { Con_DPrintf ("R_AliasSetupFrame: no such frame %d\n", frame); frame = 0; } frameinfo = ((maliasframe_t *)((int) maliashdr + maliashdr->framedata)) + frame; pose = frameinfo->start; if (frameinfo->length > 1) { lerpscale = frameinfo->rate; pose += (int)(cl.time * frameinfo->rate) % frameinfo->length; } else lerpscale = 10.0f; lerp = R_CalcAnimLerp(ent, pose, lerpscale); R_AliasLerpVerts(maliashdr->numverts, lerp, (trivert2 *)((int) maliashdr + maliashdr->posedata) + ent->draw_lastpose * maliashdr->numverts, maliashdr->scale, maliashdr->scale_origin, (trivert2 *)((int) maliashdr + maliashdr->posedata) + ent->draw_pose * maliashdr->numverts, maliashdr->scale, maliashdr->scale_origin); // prep the vertex array as early as possible if (r_render.value) { if (gl_vertexarrays.value) { qglVertexPointer(3, GL_FLOAT, 0, aliasvert); glEnableClientState(GL_VERTEX_ARRAY); } } R_LightModel(maliashdr->numverts, org, color); if (!r_render.value) return; glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glShadeModel(GL_SMOOTH); if (effects & EF_ADDITIVE) { glBlendFunc(GL_SRC_ALPHA, GL_ONE); // additive rendering glEnable(GL_BLEND); glDepthMask(0); } else if (alpha != 1.0) { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); glDepthMask(0); } else { glDisable(GL_BLEND); glDepthMask(1); } if (skin[0] || skin[1] || skin[2] || skin[3] || skin[4]) { if (colormap >= 0 && (skin[0] || skin[1] || skin[2])) { int c; if (skin[0]) GL_DrawModelMesh(skin[0], aliasvertcolor, maliashdr); if (skin[1]) { c = (colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12; // 128-224 are backwards ranges R_TintModel(aliasvertcolor, aliasvertcolor2, maliashdr->numverts, (byte *) (&d_8to24table[c])); GL_DrawModelMesh(skin[1], aliasvertcolor2, maliashdr); } if (skin[2]) { c = colormap & 0xF0 ;c += (c >= 128 && c < 224) ? 4 : 12; // 128-224 are backwards ranges R_TintModel(aliasvertcolor, aliasvertcolor2, maliashdr->numverts, (byte *) (&d_8to24table[c])); GL_DrawModelMesh(skin[2], aliasvertcolor2, maliashdr); } } else { if (skin[4]) GL_DrawModelMesh(skin[4], aliasvertcolor, maliashdr); else { if (skin[0]) GL_DrawModelMesh(skin[0], aliasvertcolor, maliashdr); if (skin[1]) GL_DrawModelMesh(skin[1], aliasvertcolor, maliashdr); if (skin[2]) GL_DrawModelMesh(skin[2], aliasvertcolor, maliashdr); } } if (skin[3]) GL_DrawModelMesh(skin[3], NULL, maliashdr); } else GL_DrawModelMesh(0, NULL, maliashdr); if (fogenabled) { vec3_t diff; glDisable (GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates VectorSubtract(org, r_refdef.vieworg, diff); glColor4f(fogcolor[0], fogcolor[1], fogcolor[2], exp(fogdensity/DotProduct(diff,diff))); if (gl_vertexarrays.value) { qglDrawElements(GL_TRIANGLES, maliashdr->numtris * 3, GL_UNSIGNED_SHORT, (void *)((int) maliashdr + maliashdr->tridata)); } else { unsigned short *in; in = (void *)((int) maliashdr + maliashdr->tridata); glBegin(GL_TRIANGLES); for (i = 0;i < maliashdr->numtris * 3;i++) glVertex3fv(&aliasvert[*in++ * 3]); glEnd(); } glEnable (GL_TEXTURE_2D); glColor3f (1,1,1); } if (gl_vertexarrays.value) glDisableClientState(GL_VERTEX_ARRAY); if (!fogenabled && r_shadows.value && !(effects & EF_ADDITIVE) && shadow) { // flatten it to make a shadow float *av = aliasvert + 2, l = lightspot[2] + 0.125; av = aliasvert + 2; for (i = 0;i < maliashdr->numverts;i++, av+=3) if (*av > l) *av = l; glDisable (GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates glColor4f (0,0,0,0.5 * alpha); if (gl_vertexarrays.value) { qglVertexPointer(3, GL_FLOAT, 0, aliasvert); glEnableClientState(GL_VERTEX_ARRAY); qglDrawElements(GL_TRIANGLES, maliashdr->numtris * 3, GL_UNSIGNED_SHORT, (void *)((int) maliashdr + maliashdr->tridata)); glDisableClientState(GL_VERTEX_ARRAY); } else { unsigned short *in; in = (void *)((int) maliashdr + maliashdr->tridata); glBegin(GL_TRIANGLES); for (i = 0;i < maliashdr->numtris * 3;i++) glVertex3fv(&aliasvert[*in++ * 3]); glEnd(); } glEnable (GL_TEXTURE_2D); glColor3f (1,1,1); } glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(1); } /* ================= R_DrawQ2AliasFrame ================= */ void R_DrawQ2AliasFrame (md2mem_t *pheader, float alpha, vec3_t color, entity_t *ent, int shadow, vec3_t org, vec3_t angles, int frame, int skin, int effects, int flags) { int *order, count; float lerp; md2memframe_t *frame1, *frame2; if (r_render.value) glBindTexture(GL_TEXTURE_2D, skin); softwaretransformforentity(ent); if ((frame >= pheader->num_frames) || (frame < 0)) { Con_DPrintf ("R_SetupQ2AliasFrame: no such frame %d\n", frame); frame = 0; } lerp = R_CalcAnimLerp(ent, frame, 10); frame1 = (void *)((int) pheader + pheader->ofs_frames + (pheader->framesize * ent->draw_lastpose)); frame2 = (void *)((int) pheader + pheader->ofs_frames + (pheader->framesize * ent->draw_pose)); R_AliasLerpVerts(pheader->num_xyz, lerp, frame1->verts, frame1->scale, frame1->translate, frame2->verts, frame2->scale, frame2->translate); R_LightModel(pheader->num_xyz, org, color); if (!r_render.value) return; if (gl_vertexarrays.value) { // LordHavoc: big mess... // using arrays only slightly, although it is enough to prevent duplicates // (saving half the transforms) qglVertexPointer(3, GL_FLOAT, 0, aliasvert); qglColorPointer(4, GL_UNSIGNED_BYTE, 0, aliasvertcolor); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); order = (int *)((int)pheader + pheader->ofs_glcmds); while(1) { if (!(count = *order++)) break; if (count > 0) glBegin(GL_TRIANGLE_STRIP); else { glBegin(GL_TRIANGLE_FAN); count = -count; } do { glTexCoord2f(((float *)order)[0], ((float *)order)[1]); qglArrayElement(order[2]); order += 3; } while (count--); } glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); } else { order = (int *)((int)pheader + pheader->ofs_glcmds); while(1) { if (!(count = *order++)) break; if (count > 0) glBegin(GL_TRIANGLE_STRIP); else { glBegin(GL_TRIANGLE_FAN); count = -count; } do { glTexCoord2f(((float *)order)[0], ((float *)order)[1]); glColor4f(aliasvertcolor[order[2] * 4] * (1.0f / 255.0f), aliasvertcolor[order[2] * 4 + 1] * (1.0f / 255.0f), aliasvertcolor[order[2] * 4 + 2] * (1.0f / 255.0f), aliasvertcolor[order[2] * 4 + 3] * (1.0f / 255.0f)); glVertex3fv(&aliasvert[order[2] * 3]); order += 3; } while (count--); } } if (fogenabled) { glDisable (GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates { vec3_t diff; VectorSubtract(org, r_refdef.vieworg, diff); glColor4f(fogcolor[0], fogcolor[1], fogcolor[2], exp(fogdensity/DotProduct(diff,diff))); } if (gl_vertexarrays.value) { // LordHavoc: big mess... // using arrays only slightly, although it is enough to prevent duplicates // (saving half the transforms) qglVertexPointer(3, GL_FLOAT, 0, aliasvert); glEnableClientState(GL_VERTEX_ARRAY); order = (int *)((int)pheader + pheader->ofs_glcmds); while(1) { if (!(count = *order++)) break; if (count > 0) glBegin(GL_TRIANGLE_STRIP); else { glBegin(GL_TRIANGLE_FAN); count = -count; } do { qglArrayElement(order[2]); order += 3; } while (count--); } glDisableClientState(GL_VERTEX_ARRAY); } else { order = (int *)((int)pheader + pheader->ofs_glcmds); while(1) { if (!(count = *order++)) break; if (count > 0) glBegin(GL_TRIANGLE_STRIP); else { glBegin(GL_TRIANGLE_FAN); count = -count; } do { glVertex3fv(&aliasvert[order[2] * 3]); order += 3; } while (count--); } } glEnable (GL_TEXTURE_2D); glColor3f (1,1,1); } if (!fogenabled && r_shadows.value && !(effects & EF_ADDITIVE) && shadow) { int i; float *av = aliasvert + 2, l = lightspot[2] + 0.125; av = aliasvert + 2; for (i = 0;i < pheader->num_xyz;i++, av+=3) if (*av > l) *av = l; glDisable (GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates glColor4f (0,0,0,0.5 * alpha); if (gl_vertexarrays.value) { qglVertexPointer(3, GL_FLOAT, 0, aliasvert); glEnableClientState(GL_VERTEX_ARRAY); while(1) { if (!(count = *order++)) break; if (count > 0) glBegin(GL_TRIANGLE_STRIP); else { glBegin(GL_TRIANGLE_FAN); count = -count; } do { qglArrayElement(order[2]); order += 3; } while (count--); } glDisableClientState(GL_VERTEX_ARRAY); } else { while(1) { if (!(count = *order++)) break; if (count > 0) glBegin(GL_TRIANGLE_STRIP); else { glBegin(GL_TRIANGLE_FAN); count = -count; } do { glVertex3fv(&aliasvert[order[2] * 3]); order += 3; } while (count--); } } glEnable (GL_TEXTURE_2D); glColor3f (1,1,1); } glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(1); } void ZymoticLerpBones(int count, float lerp2, zymbonematrix *bone1, zymbonematrix *bone2, zymbone_t *bone, float rootorigin[3], float rootangles[3]) { float lerp1; zymbonematrix *out, rootmatrix, m; lerp1 = 1 - lerp2; out = zymbonepose; AngleVectors(rootangles, rootmatrix.m[0], rootmatrix.m[1], rootmatrix.m[2]); rootmatrix.m[0][3] = rootorigin[0]; rootmatrix.m[1][3] = rootorigin[1]; rootmatrix.m[2][3] = rootorigin[2]; if (lerp1 != 1) // interpolation { while(count--) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone2++; bone++; out++; } } else // no interpolation { while(count--) { if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &bone1->m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &bone1->m[0], &out->m[0]); bone1++; bone++; out++; } } } void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert) { int c; float *out = aliasvert; zymbonematrix *matrix; while(vertcount--) { c = *bonecounts++; if (c == 1) { matrix = &zymbonepose[vert->bonenum]; out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } else { VectorClear(out); while(c--) { matrix = &zymbonepose[vert->bonenum]; out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } } out += 3; } } float ixtable[4096]; void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist) { int a, b, c, d; float *out, v1[3], v2[3], normal[3]; int *u; if (!ixtable[1]) { ixtable[0] = 0; for (a = 1;a < 4096;a++) ixtable[a] = 1.0f / a; } // clear normals memset(aliasvertnorm, 0, sizeof(float[3]) * vertcount); memset(aliasvertusage, 0, sizeof(int) * vertcount); // parse render list and accumulate surface normals while(shadercount--) { d = *renderlist++; while (d--) { a = renderlist[0]*3; b = renderlist[1]*3; c = renderlist[2]*3; v1[0] = aliasvert[a+0] - aliasvert[b+0]; v1[1] = aliasvert[a+1] - aliasvert[b+1]; v1[2] = aliasvert[a+2] - aliasvert[b+2]; v2[0] = aliasvert[c+0] - aliasvert[b+0]; v2[1] = aliasvert[c+1] - aliasvert[b+1]; v2[2] = aliasvert[c+2] - aliasvert[b+2]; CrossProduct(v1, v2, normal); VectorNormalize(normal); // add surface normal to vertices aliasvertnorm[a+0] += normal[0]; aliasvertnorm[a+1] += normal[1]; aliasvertnorm[a+2] += normal[2]; aliasvertusage[a]++; aliasvertnorm[b+0] += normal[0]; aliasvertnorm[b+1] += normal[1]; aliasvertnorm[b+2] += normal[2]; aliasvertusage[b]++; aliasvertnorm[c+0] += normal[0]; aliasvertnorm[c+1] += normal[1]; aliasvertnorm[c+2] += normal[2]; aliasvertusage[c]++; renderlist += 3; } } // average surface normals out = aliasvertnorm; u = aliasvertusage; while(vertcount--) { if (*u > 1) { a = ixtable[*u]; out[0] *= a; out[1] *= a; out[2] *= a; } u++; out += 3; } } void GL_DrawZymoticModelMesh(byte *colors, zymtype1header_t *m) { int i, c, *renderlist, *texturenum; if (!r_render.value) return; renderlist = (int *)(m->lump_render.start + (int) m); texturenum = (int *)(m->lump_shaders.start + (int) m); if (gl_vertexarrays.value) { qglVertexPointer(3, GL_FLOAT, 0, aliasvert); glEnableClientState(GL_VERTEX_ARRAY); qglColorPointer(4, GL_UNSIGNED_BYTE, 0, colors); glEnableClientState(GL_COLOR_ARRAY); qglTexCoordPointer(2, GL_FLOAT, 0, (float *)(m->lump_texcoords.start + (int) m)); glEnableClientState(GL_TEXTURE_COORD_ARRAY); for (i = 0;i < m->numshaders;i++) { c = (*renderlist++) * 3; glBindTexture(GL_TEXTURE_2D, *texturenum++); qglDrawElements(GL_TRIANGLES, c, GL_UNSIGNED_INT, renderlist); renderlist += c; } glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); } else { int index; float *tex; tex = (float *)(m->lump_texcoords.start + (int) m); for (i = 0;i < m->numshaders;i++) { c = *renderlist++; glBindTexture(GL_TEXTURE_2D, *texturenum++); glBegin(GL_TRIANGLES); while (c--) { index = *renderlist++; glTexCoord2fv(tex + index*2); glColor4ubv(colors + index*4); glVertex3fv(aliasvert + index*3); index = *renderlist++; glTexCoord2fv(tex + index*2); glColor4ubv(colors + index*4); glVertex3fv(aliasvert + index*3); index = *renderlist++; glTexCoord2fv(tex + index*2); glColor4ubv(colors + index*4); glVertex3fv(aliasvert + index*3); } glEnd(); } } } void GL_DrawZymoticModelMeshFog(vec3_t org, zymtype1header_t *m) { vec3_t diff; int i, c, *renderlist; if (!r_render.value) return; renderlist = (int *)(m->lump_render.start + (int) m); glDisable(GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates VectorSubtract(org, r_refdef.vieworg, diff); glColor4f(fogcolor[0], fogcolor[1], fogcolor[2], exp(fogdensity/DotProduct(diff,diff))); if (gl_vertexarrays.value) { qglVertexPointer(3, GL_FLOAT, 0, aliasvert); glEnableClientState(GL_VERTEX_ARRAY); for (i = 0;i < m->numshaders;i++) { c = (*renderlist++) * 3; qglDrawElements(GL_TRIANGLES, c, GL_UNSIGNED_INT, renderlist); renderlist += c; } glDisableClientState(GL_VERTEX_ARRAY); } else { int index; float *tex; tex = (float *)(m->lump_texcoords.start + (int) m); glBegin(GL_TRIANGLES); for (i = 0;i < m->numshaders;i++) { c = *renderlist++; while (c--) { index = *renderlist++; glVertex3fv(aliasvert + index*3); index = *renderlist++; glVertex3fv(aliasvert + index*3); index = *renderlist++; glVertex3fv(aliasvert + index*3); } } glEnd(); } glEnable(GL_TEXTURE_2D); glColor3f (1,1,1); } void GL_DrawZymoticModelMeshShadow(zymtype1header_t *m) { int i, c, *renderlist; float *av, l; if (!r_render.value) return; // flatten it to make a shadow av = aliasvert + 2; l = lightspot[2] + 0.125; for (i = 0;i < m->numverts;i++, av+=3) if (*av > l) *av = l; renderlist = (int *)(m->lump_render.start + (int) m); glDisable(GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates glColor4f(0.0f, 0.0f, 0.0f, 0.5f); if (gl_vertexarrays.value) { qglVertexPointer(3, GL_FLOAT, 0, aliasvert); glEnableClientState(GL_VERTEX_ARRAY); for (i = 0;i < m->numshaders;i++) { c = (*renderlist++) * 3; qglDrawElements(GL_TRIANGLES, c, GL_UNSIGNED_INT, renderlist); renderlist += c; } glDisableClientState(GL_VERTEX_ARRAY); } else { int index; float *tex; tex = (float *)(m->lump_texcoords.start + (int) m); glBegin(GL_TRIANGLES); for (i = 0;i < m->numshaders;i++) { c = *renderlist++; while (c--) { index = *renderlist++; glVertex3fv(aliasvert + index*3); index = *renderlist++; glVertex3fv(aliasvert + index*3); index = *renderlist++; glVertex3fv(aliasvert + index*3); } } glEnd(); } glEnable(GL_TEXTURE_2D); glColor3f (1,1,1); } /* ================= R_DrawZymoticFrame ================= */ void R_DrawZymoticFrame (zymtype1header_t *m, float alpha, vec3_t color, entity_t *ent, int shadow, vec3_t org, vec3_t angles, int frame, int skinblah, int effects, int flags) { zymscene_t *scene; float scenetime, scenefrac; int sceneframe1, sceneframe2; zymbonematrix *basebonepose; if ((frame >= m->numscenes) || (frame < 0)) { Con_DPrintf ("R_ZymoticSetupFrame: no such frame %d\n", frame); frame = 0; } scene = (zymscene_t *)(m->lump_scenes.start + (int) m) + frame; if (ent->draw_lastmodel != ent->model || ent->draw_pose != frame || ent->draw_lerpstart >= cl.time) { ent->draw_lastmodel = ent->model; ent->draw_lastpose = -1; ent->draw_pose = frame; ent->draw_lerpstart = cl.time; } scenetime = (cl.time - ent->draw_lerpstart) * scene->framerate; sceneframe1 = (int) scenetime; sceneframe2 = sceneframe1 + 1; scenefrac = scenetime - sceneframe1; if (scene->flags & ZYMSCENEFLAG_NOLOOP) { if (sceneframe1 > (scene->length - 1)) sceneframe1 = (scene->length - 1); if (sceneframe2 > (scene->length - 1)) sceneframe2 = (scene->length - 1); } else { sceneframe1 %= scene->length; sceneframe2 %= scene->length; } if (sceneframe2 == sceneframe1) scenefrac = 0; basebonepose = (zymbonematrix *)(m->lump_poses.start + (int) m); ZymoticLerpBones(m->numbones, scenefrac, basebonepose + sceneframe1 * m->numbones, basebonepose + sceneframe2 * m->numbones, (zymbone_t *)(m->lump_bones.start + (int) m), org, angles); ZymoticTransformVerts(m->numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m)); ZymoticCalcNormals(m->numverts, m->numshaders, (int *)(m->lump_render.start + (int) m)); R_LightModel(m->numverts, org, color); if (!r_render.value) return; glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glShadeModel(GL_SMOOTH); if (effects & EF_ADDITIVE) { glBlendFunc(GL_SRC_ALPHA, GL_ONE); // additive rendering glEnable(GL_BLEND); glDepthMask(0); } else if (alpha != 1.0) { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); glDepthMask(0); } else { glDisable(GL_BLEND); glDepthMask(1); } GL_DrawZymoticModelMesh(aliasvertcolor, m); if (fogenabled) GL_DrawZymoticModelMeshFog(org, m); if (!fogenabled && r_shadows.value && !(effects & EF_ADDITIVE) && shadow) GL_DrawZymoticModelMeshShadow(m); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(1); } int modeldlightbits[8]; extern int r_dlightframecount; /* ================= R_DrawAliasModel ================= */ void R_DrawAliasModel (entity_t *ent, int cull, float alpha, model_t *clmodel, int frame, int skin, vec3_t org, vec3_t angles, int effects, int flags, int colormap) { int i; vec3_t mins, maxs, color; mleaf_t *leaf; void *modelheader; int *skinset; if (alpha < (1.0 / 64.0)) return; // basically completely transparent VectorAdd (org, clmodel->mins, mins); VectorAdd (org, clmodel->maxs, maxs); if (cull && R_CullBox (mins, maxs)) return; c_models++; leaf = Mod_PointInLeaf (org, cl.worldmodel); if (leaf->dlightframe == r_dlightframecount) for (i = 0;i < 8;i++) modeldlightbits[i] = leaf->dlightbits[i]; else for (i = 0;i < 8;i++) modeldlightbits[i] = 0; // get lighting information if ((flags & EF_FULLBRIGHT) || (effects & EF_FULLBRIGHT)) color[0] = color[1] = color[2] = 256; else R_LightPoint (color, org); if (r_render.value) glDisable(GL_ALPHA_TEST); if (frame < 0 || frame >= clmodel->numframes) { frame = 0; Con_DPrintf("invalid skin number %d for model %s\n", frame, clmodel->name); } if (skin < 0 || skin >= clmodel->numskins) { skin = 0; Con_DPrintf("invalid skin number %d for model %s\n", skin, clmodel->name); } modelheader = Mod_Extradata (clmodel); { // int *skinanimrange = (int *) (clmodel->skinanimrange + (int) modelheader) + skin * 2; // int *skinanim = (int *) (clmodel->skinanim + (int) modelheader); int *skinanimrange = clmodel->skinanimrange + skin * 2; int *skinanim = clmodel->skinanim; i = skinanimrange[0]; if (skinanimrange[1] > 1) // animated i += ((int) (cl.time * 10) % skinanimrange[1]); skinset = skinanim + i*5; } if (r_render.value) glEnable (GL_TEXTURE_2D); c_alias_polys += clmodel->numtris; if (clmodel->aliastype == ALIASTYPE_ZYM) R_DrawZymoticFrame (modelheader, alpha, color, ent, ent != &cl.viewent, org, angles, frame, 0, effects, flags); else if (clmodel->aliastype == ALIASTYPE_MD2) R_DrawQ2AliasFrame (modelheader, alpha, color, ent, ent != &cl.viewent, org, angles, frame, skinset[0], effects, flags); else R_DrawAliasFrame (modelheader, alpha, color, ent, ent != &cl.viewent, org, angles, frame, skinset, colormap, effects, flags); }