2 Copyright (C) 1999-2006 Id Software, Inc. and contributors.
3 For a list of contributors, see the accompanying CONTRIBUTORS file.
5 This file is part of GtkRadiant.
7 GtkRadiant is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 GtkRadiant is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GtkRadiant; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "brush_primit.h"
24 #include "debugging/debugging.h"
27 #include "itextures.h"
32 #include "texturelib.h"
33 #include "math/matrix.h"
34 #include "math/plane.h"
35 #include "math/aabb.h"
38 #include "preferences.h"
42 \brief Construct a transform from XYZ space to ST space (3d to 2d).
43 This will be one of three axis-aligned spaces, depending on the surface normal.
44 NOTE: could also be done by swapping values.
46 void Normal_GetTransform( const Vector3& normal, Matrix4& transform ){
47 switch ( projectionaxis_for_normal( normal ) )
49 case eProjectionAxisZ:
62 case eProjectionAxisY:
75 case eProjectionAxisX:
89 transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0;
94 \brief Construct a transform in ST space from the texdef.
95 Transforms constructed from quake's texdef format are (-shift)*(1/scale)*(-rotate) with x translation sign flipped.
96 This would really make more sense if it was inverseof(shift*rotate*scale).. oh well.
98 inline void Texdef_toTransform( const texdef_t& texdef, float width, float height, Matrix4& transform ){
99 double inverse_scale[2];
101 // transform to texdef shift/scale/rotate
102 inverse_scale[0] = 1 / ( texdef.scale[0] * width );
103 inverse_scale[1] = 1 / ( texdef.scale[1] * -height );
104 transform[12] = texdef.shift[0] / width;
105 transform[13] = -texdef.shift[1] / -height;
106 double c = cos( degrees_to_radians( -texdef.rotate ) );
107 double s = sin( degrees_to_radians( -texdef.rotate ) );
108 transform[0] = static_cast<float>( c * inverse_scale[0] );
109 transform[1] = static_cast<float>( s * inverse_scale[1] );
110 transform[4] = static_cast<float>( -s * inverse_scale[0] );
111 transform[5] = static_cast<float>( c * inverse_scale[1] );
112 transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0;
113 transform[10] = transform[15] = 1;
116 inline void BPTexdef_toTransform( const brushprimit_texdef_t& bp_texdef, Matrix4& transform ){
117 transform = g_matrix4_identity;
118 transform.xx() = bp_texdef.coords[0][0];
119 transform.yx() = bp_texdef.coords[0][1];
120 transform.tx() = bp_texdef.coords[0][2];
121 transform.xy() = bp_texdef.coords[1][0];
122 transform.yy() = bp_texdef.coords[1][1];
123 transform.ty() = bp_texdef.coords[1][2];
126 inline void Texdef_toTransform( const TextureProjection& projection, float width, float height, Matrix4& transform ){
127 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
128 BPTexdef_toTransform( projection.m_brushprimit_texdef, transform );
132 Texdef_toTransform( projection.m_texdef, width, height, transform );
136 // handles degenerate cases, just in case library atan2 doesn't
137 inline double arctangent_yx( double y, double x ){
138 if ( fabs( x ) > 1.0E-6 ) {
139 return atan2( y, x );
150 inline void Texdef_fromTransform( texdef_t& texdef, float width, float height, const Matrix4& transform ){
151 texdef.scale[0] = static_cast<float>( ( 1.0 / vector2_length( Vector2( transform[0], transform[4] ) ) ) / width );
152 texdef.scale[1] = static_cast<float>( ( 1.0 / vector2_length( Vector2( transform[1], transform[5] ) ) ) / height );
154 texdef.rotate = static_cast<float>( -radians_to_degrees( arctangent_yx( -transform[4], transform[0] ) ) );
156 if ( texdef.rotate == -180.0f ) {
157 texdef.rotate = 180.0f;
160 texdef.shift[0] = transform[12] * width;
161 texdef.shift[1] = transform[13] * height;
163 // If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale.
164 if ( vector2_cross( Vector2( transform[0], transform[4] ), Vector2( transform[1], transform[5] ) ) > 0 ) {
165 if ( texdef.rotate >= 180.0f ) {
166 texdef.rotate -= 180.0f;
167 texdef.scale[0] = -texdef.scale[0];
171 texdef.scale[1] = -texdef.scale[1];
174 //globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n";
177 inline void BPTexdef_fromTransform( brushprimit_texdef_t& bp_texdef, const Matrix4& transform ){
178 bp_texdef.coords[0][0] = transform.xx();
179 bp_texdef.coords[0][1] = transform.yx();
180 bp_texdef.coords[0][2] = transform.tx();
181 bp_texdef.coords[1][0] = transform.xy();
182 bp_texdef.coords[1][1] = transform.yy();
183 bp_texdef.coords[1][2] = transform.ty();
186 inline void Texdef_fromTransform( TextureProjection& projection, float width, float height, const Matrix4& transform ){
187 ASSERT_MESSAGE( ( transform[0] != 0 || transform[4] != 0 )
188 && ( transform[1] != 0 || transform[5] != 0 ), "invalid texture matrix" );
190 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
191 BPTexdef_fromTransform( projection.m_brushprimit_texdef, transform );
195 Texdef_fromTransform( projection.m_texdef, width, height, transform );
199 inline void Texdef_normalise( texdef_t& texdef, float width, float height ){
200 // it may be useful to also normalise the rotation here, if this function is used elsewhere.
201 texdef.shift[0] = float_mod( texdef.shift[0], width );
202 texdef.shift[1] = float_mod( texdef.shift[1], height );
203 //globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n";
206 inline void BPTexdef_normalise( brushprimit_texdef_t& bp_texdef, float width, float height ){
207 bp_texdef.coords[0][2] = float_mod( bp_texdef.coords[0][2], width );
208 bp_texdef.coords[1][2] = float_mod( bp_texdef.coords[1][2], height );
211 /// \brief Normalise \p projection for a given texture \p width and \p height.
213 /// All texture-projection translation (shift) values are congruent modulo the dimensions of the texture.
214 /// This function normalises shift values to the smallest positive congruent values.
215 void Texdef_normalise( TextureProjection& projection, float width, float height ){
216 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
217 BPTexdef_normalise( projection.m_brushprimit_texdef, width, height );
221 Texdef_normalise( projection.m_texdef, width, height );
225 void ComputeAxisBase( const Vector3& normal, Vector3& texS, Vector3& texT );
227 inline void DebugAxisBase( const Vector3& normal ){
229 ComputeAxisBase( normal, x, y );
230 globalOutputStream() << "BP debug: " << x << y << normal << "\n";
233 void Texdef_basisForNormal( const TextureProjection& projection, const Vector3& normal, Matrix4& basis ){
234 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
235 basis = g_matrix4_identity;
236 ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) );
237 vector4_to_vector3( basis.z() ) = normal;
238 matrix4_transpose( basis );
239 //DebugAxisBase(normal);
241 else if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) {
242 basis = g_matrix4_identity;
243 vector4_to_vector3( basis.x() ) = projection.m_basis_s;
244 vector4_to_vector3( basis.y() ) = vector3_negated( projection.m_basis_t );
245 vector4_to_vector3( basis.z() ) = vector3_normalised( vector3_cross( vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ) );
246 matrix4_multiply_by_matrix4( basis, matrix4_rotation_for_z_degrees( -projection.m_texdef.rotate ) );
247 //globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n";
248 matrix4_transpose( basis );
252 Normal_GetTransform( normal, basis );
256 void Texdef_EmitTextureCoordinates( const TextureProjection& projection, std::size_t width, std::size_t height, Winding& w, const Vector3& normal, const Matrix4& localToWorld ){
257 if ( w.numpoints < 3 ) {
260 //globalOutputStream() << "normal: " << normal << "\n";
263 Texdef_toTransform( projection, (float)width, (float)height, local2tex );
264 //globalOutputStream() << "texdef: " << static_cast<const Vector3&>(local2tex.x()) << static_cast<const Vector3&>(local2tex.y()) << "\n";
268 TextureProjection tmp;
269 Texdef_fromTransform( tmp, (float)width, (float)height, local2tex );
270 Matrix4 tmpTransform;
271 Texdef_toTransform( tmp, (float)width, (float)height, tmpTransform );
272 ASSERT_MESSAGE( matrix4_equal_epsilon( local2tex, tmpTransform, 0.0001f ), "bleh" );
278 // we don't care if it's not normalised...
279 Texdef_basisForNormal( projection, matrix4_transformed_direction( localToWorld, normal ), xyz2st );
280 //globalOutputStream() << "basis: " << static_cast<const Vector3&>(xyz2st.x()) << static_cast<const Vector3&>(xyz2st.y()) << static_cast<const Vector3&>(xyz2st.z()) << "\n";
281 matrix4_multiply_by_matrix4( local2tex, xyz2st );
284 Vector3 tangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).x() ) ) );
285 Vector3 bitangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).y() ) ) );
287 matrix4_multiply_by_matrix4( local2tex, localToWorld );
289 for ( Winding::iterator i = w.begin(); i != w.end(); ++i )
291 Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex );
292 ( *i ).texcoord[0] = texcoord[0];
293 ( *i ).texcoord[1] = texcoord[1];
295 ( *i ).tangent = tangent;
296 ( *i ).bitangent = bitangent;
301 \brief Provides the axis-base of the texture ST space for this normal,
302 as they had been transformed to world XYZ space.
304 void TextureAxisFromNormal( const Vector3& normal, Vector3& s, Vector3& t ){
305 switch ( projectionaxis_for_normal( normal ) )
307 case eProjectionAxisZ:
317 case eProjectionAxisY:
327 case eProjectionAxisX:
340 void Texdef_Assign( texdef_t& td, const texdef_t& other ){
344 void Texdef_Shift( texdef_t& td, float s, float t ){
349 void Texdef_Scale( texdef_t& td, float s, float t ){
354 void Texdef_Rotate( texdef_t& td, float angle ){
356 td.rotate = static_cast<float>( float_to_integer( td.rotate ) % 360 );
359 // NOTE: added these from Ritual's Q3Radiant
360 void ClearBounds( Vector3& mins, Vector3& maxs ){
361 mins[0] = mins[1] = mins[2] = 99999;
362 maxs[0] = maxs[1] = maxs[2] = -99999;
365 void AddPointToBounds( const Vector3& v, Vector3& mins, Vector3& maxs ){
369 for ( i = 0 ; i < 3 ; i++ )
372 if ( val < mins[i] ) {
375 if ( val > maxs[i] ) {
381 template<typename Element>
382 inline BasicVector3<Element> vector3_inverse( const BasicVector3<Element>& self ){
383 return BasicVector3<Element>(
384 Element( 1.0 / self.x() ),
385 Element( 1.0 / self.y() ),
386 Element( 1.0 / self.z() )
390 // low level functions .. put in mathlib?
391 #define BPMatCopy( a,b ) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2]; }
392 // apply a scale transformation to the BP matrix
393 #define BPMatScale( m,sS,sT ) {m[0][0] *= sS; m[1][0] *= sS; m[0][1] *= sT; m[1][1] *= sT; }
394 // apply a translation transformation to a BP matrix
395 #define BPMatTranslate( m,s,t ) {m[0][2] += m[0][0] * s + m[0][1] * t; m[1][2] += m[1][0] * s + m[1][1] * t; }
396 // 2D homogeneous matrix product C = A*B
397 void BPMatMul( float A[2][3], float B[2][3], float C[2][3] );
398 // apply a rotation (degrees)
399 void BPMatRotate( float A[2][3], float theta );
401 void BPMatDump( float A[2][3] );
409 bp_globals_t g_bp_globals;
410 float g_texdef_default_scale;
412 // compute a determinant using Sarrus rule
413 //++timo "inline" this with a macro
414 // NOTE : the three vectors are understood as columns of the matrix
415 inline float SarrusDet( const Vector3& a, const Vector3& b, const Vector3& c ){
416 return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2]
417 - c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1];
420 // in many case we know three points A,B,C in two axis base B1 and B2
421 // and we want the matrix M so that A(B1) = T * A(B2)
422 // NOTE: 2D homogeneous space stuff
423 // NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling
424 // NOTE: the third coord of the A,B,C point is ignored
425 // NOTE: see the commented out section to fill M and D
426 //++timo TODO: update the other members to use this when possible
427 void MatrixForPoints( Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T ){
428 // Vector3 M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way)
431 M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f;
433 // fill the data vectors
434 M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0];
435 M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1];
436 M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f;
445 det = SarrusDet( M[0], M[1], M[2] );
446 T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
447 T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
448 T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
449 T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
450 T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
451 T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
454 //++timo replace everywhere texX by texS etc. ( ----> and in q3map !)
455 // NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME !
456 // WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0
457 // rotation by (0,RotY,RotZ) assigns X to normal
458 void ComputeAxisBase( const Vector3& normal, Vector3& texS, Vector3& texT ){
460 const Vector3 up( 0, 0, 1 );
461 const Vector3 down( 0, 0, -1 );
463 if ( vector3_equal_epsilon( normal, up, float(1e-6) ) ) {
464 texS = Vector3( 0, 1, 0 );
465 texT = Vector3( 1, 0, 0 );
467 else if ( vector3_equal_epsilon( normal, down, float(1e-6) ) ) {
468 texS = Vector3( 0, 1, 0 );
469 texT = Vector3( -1, 0, 0 );
473 texS = vector3_normalised( vector3_cross( normal, up ) );
474 texT = vector3_normalised( vector3_cross( normal, texS ) );
475 vector3_negate( texS );
482 if (fabs(normal[0])<1e-6)
484 if (fabs(normal[1])<1e-6)
486 if (fabs(normal[2])<1e-6)
489 RotY = -atan2( normal[2],sqrt( normal[1] * normal[1] + normal[0] * normal[0] ) );
490 RotZ = atan2( normal[1],normal[0] );
491 // rotate (0,1,0) and (0,0,1) to compute texS and texT
492 texS[0] = -sin( RotZ );
493 texS[1] = cos( RotZ );
495 // the texT vector is along -Z ( T texture coorinates axis )
496 texT[0] = -sin( RotY ) * cos( RotZ );
497 texT[1] = -sin( RotY ) * sin( RotZ );
498 texT[2] = -cos( RotY );
502 #if 0 // texdef conversion
503 void FaceToBrushPrimitFace( face_t *f ){
506 // ST of (0,0) (1,0) (0,1)
507 float ST[3][5]; // [ point index ] [ xyz ST ]
508 //++timo not used as long as brushprimit_texdef and texdef are static
509 /* f->brushprimit_texdef.contents=f->texdef.contents;
510 f->brushprimit_texdef.flags=f->texdef.flags;
511 f->brushprimit_texdef.value=f->texdef.value;
512 strcpy(f->brushprimit_texdef.name,f->texdef.name); */
514 if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) {
515 globalOutputStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n";
518 if ( !f->d_texture ) {
519 globalOutputStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n";
524 ComputeAxisBase( f->plane.normal,texX,texY );
525 // compute projection vector
526 VectorCopy( f->plane.normal,proj );
527 VectorScale( proj,f->plane.dist,proj );
528 // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane
529 // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane
530 // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane
531 // use old texture code to compute the ST coords of these points
532 VectorCopy( proj,ST[0] );
533 EmitTextureCoordinates( ST[0], f->pShader->getTexture(), f );
534 VectorCopy( texX,ST[1] );
535 VectorAdd( ST[1],proj,ST[1] );
536 EmitTextureCoordinates( ST[1], f->pShader->getTexture(), f );
537 VectorCopy( texY,ST[2] );
538 VectorAdd( ST[2],proj,ST[2] );
539 EmitTextureCoordinates( ST[2], f->pShader->getTexture(), f );
540 // compute texture matrix
541 f->brushprimit_texdef.coords[0][2] = ST[0][3];
542 f->brushprimit_texdef.coords[1][2] = ST[0][4];
543 f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2];
544 f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2];
545 f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2];
546 f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2];
549 // compute texture coordinates for the winding points
550 void EmitBrushPrimitTextureCoordinates( face_t * f, Winding * w ){
554 ComputeAxisBase( f->plane.normal,texX,texY );
555 // in case the texcoords matrix is empty, build a default one
556 // same behaviour as if scale[0]==0 && scale[1]==0 in old code
557 if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) {
558 f->brushprimit_texdef.coords[0][0] = 1.0f;
559 f->brushprimit_texdef.coords[1][1] = 1.0f;
560 ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() );
563 for ( i = 0 ; i < w.numpoints ; i++ )
565 x = vector3_dot( w.point_at( i ),texX );
566 y = vector3_dot( w.point_at( i ),texY );
569 if ( g_bp_globals.bNeedConvert ) {
570 // check we compute the same ST as the traditional texture computation used before
571 float S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2];
572 float T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2];
573 if ( fabs( S - w.point_at( i )[3] ) > 1e-2 || fabs( T - w.point_at( i )[4] ) > 1e-2 ) {
574 if ( fabs( S - w.point_at( i )[3] ) > 1e-4 || fabs( T - w.point_at( i )[4] ) > 1e-4 ) {
575 globalOutputStream() << "Warning : precision loss in brush -> brush primitive texture computation\n";
578 globalOutputStream() << "Warning : brush -> brush primitive texture computation bug detected\n";
584 w.point_at( i )[3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2];
585 w.point_at( i )[4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2];
590 typedef float texmat_t[2][3];
592 void TexMat_Scale( texmat_t texmat, float s, float t ){
601 void TexMat_Assign( texmat_t texmat, const texmat_t other ){
602 texmat[0][0] = other[0][0];
603 texmat[0][1] = other[0][1];
604 texmat[0][2] = other[0][2];
605 texmat[1][0] = other[1][0];
606 texmat[1][1] = other[1][1];
607 texmat[1][2] = other[1][2];
610 void ConvertTexMatWithDimensions( const texmat_t texmat1, std::size_t w1, std::size_t h1,
611 texmat_t texmat2, std::size_t w2, std::size_t h2 ){
612 TexMat_Assign( texmat2, texmat1 );
613 TexMat_Scale( texmat2, static_cast<float>( w1 ) / static_cast<float>( w2 ), static_cast<float>( h1 ) / static_cast<float>( h2 ) );
617 // convert a texture matrix between two qtexture_t
618 // if 0 for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates )
619 void ConvertTexMatWithQTexture( const float texMat1[2][3], const qtexture_t *qtex1, float texMat2[2][3], const qtexture_t *qtex2 ){
620 ConvertTexMatWithDimensions( texMat1, ( qtex1 ) ? qtex1->width : 2, ( qtex1 ) ? qtex1->height : 2,
621 texMat2, ( qtex2 ) ? qtex2->width : 2, ( qtex2 ) ? qtex2->height : 2 );
624 void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtexture_t *qtex1, brushprimit_texdef_t *texMat2, const qtexture_t *qtex2 ){
625 ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 );
629 // compute a fake shift scale rot representation from the texture matrix
630 // these shift scale rot values are to be understood in the local axis base
631 // Note: this code looks similar to Texdef_fromTransform, but the algorithm is slightly different.
633 void TexMatToFakeTexCoords( const brushprimit_texdef_t& bp_texdef, texdef_t& texdef ){
634 texdef.scale[0] = static_cast<float>( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[1][0] ) ) );
635 texdef.scale[1] = static_cast<float>( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][1], bp_texdef.coords[1][1] ) ) );
637 texdef.rotate = -static_cast<float>( radians_to_degrees( arctangent_yx( bp_texdef.coords[1][0], bp_texdef.coords[0][0] ) ) );
639 texdef.shift[0] = -bp_texdef.coords[0][2];
640 texdef.shift[1] = bp_texdef.coords[1][2];
642 // determine whether or not an axis is flipped using a 2d cross-product
643 double cross = vector2_cross( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ), Vector2( bp_texdef.coords[1][0], bp_texdef.coords[1][1] ) );
645 // This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped,
646 // we pick one (rather arbitrarily) using the following convention: If the X-axis is between
647 // 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and
648 // subtract out 180 degrees to compensate.
649 if ( texdef.rotate >= 180.0f ) {
650 texdef.rotate -= 180.0f;
651 texdef.scale[0] = -texdef.scale[0];
655 texdef.scale[1] = -texdef.scale[1];
660 // compute back the texture matrix from fake shift scale rot
661 void FakeTexCoordsToTexMat( const texdef_t& texdef, brushprimit_texdef_t& bp_texdef ){
662 double r = degrees_to_radians( -texdef.rotate );
665 double x = 1.0f / texdef.scale[0];
666 double y = 1.0f / texdef.scale[1];
667 bp_texdef.coords[0][0] = static_cast<float>( x * c );
668 bp_texdef.coords[1][0] = static_cast<float>( x * s );
669 bp_texdef.coords[0][1] = static_cast<float>( y * -s );
670 bp_texdef.coords[1][1] = static_cast<float>( y * c );
671 bp_texdef.coords[0][2] = -texdef.shift[0];
672 bp_texdef.coords[1][2] = texdef.shift[1];
675 #if 0 // texture locking (brush primit)
676 // used for texture locking
677 // will move the texture according to a geometric vector
678 void ShiftTextureGeometric_BrushPrimit( face_t *f, Vector3& delta ){
681 Vector3 M[3]; // columns of the matrix .. easier that way
684 // compute plane axis base ( doesn't change with translation )
685 ComputeAxisBase( f->plane.normal, texS, texT );
686 // compute translation vector in plane axis base
687 tx = vector3_dot( delta, texS );
688 ty = vector3_dot( delta, texT );
689 // fill the data vectors
690 M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx;
691 M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty;
692 M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f;
693 D[0][0] = f->brushprimit_texdef.coords[0][2];
694 D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2];
695 D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2];
696 D[1][0] = f->brushprimit_texdef.coords[1][2];
697 D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2];
698 D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2];
700 det = SarrusDet( M[0], M[1], M[2] );
701 f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
702 f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
703 f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
704 f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
705 f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
706 f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
709 // shift a texture (texture adjustments) along it's current texture axes
710 // x and y are geometric values, which we must compute as ST increments
711 // this depends on the texture size and the pixel/texel ratio
712 void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y ){
714 // as a ratio against texture size
715 // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
716 s = ( x * 2.0 ) / (float)f->pShader->getTexture().width;
717 t = ( y * 2.0 ) / (float)f->pShader->getTexture().height;
718 f->brushprimit_texdef.coords[0][2] -= s;
719 f->brushprimit_texdef.coords[1][2] -= t;
723 // TTimo: FIXME: I don't like that, it feels broken
724 // (and it's likely that it's not used anymore)
725 // best fitted 2D vector is x.X+y.Y
726 void ComputeBest2DVector( Vector3& v, Vector3& X, Vector3& Y, int &x, int &y ){
728 sx = vector3_dot( v, X );
729 sy = vector3_dot( v, Y );
730 if ( fabs( sy ) > fabs( sx ) ) {
752 #if 0 // texdef conversion
753 void BrushPrimitFaceToFace( face_t *face ){
754 // we have parsed brush primitives and need conversion back to standard format
755 // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it
756 // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling
757 // I tried various tweaks, no luck .. seems shifting is lost
758 brushprimit_texdef_t aux;
759 ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 );
760 TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale );
761 face->texdef.scale[0] /= 2.0;
762 face->texdef.scale[1] /= 2.0;
767 #if 0 // texture locking (brush primit)
768 // TEXTURE LOCKING -----------------------------------------------------------------------------------------------------
769 // (Relevant to the editor only?)
771 // internally used for texture locking on rotation and flipping
772 // the general algorithm is the same for both lockings, it's only the geometric transformation part that changes
773 // so I wanted to keep it in a single function
774 // if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best
775 // (but right now I want to keep brush_primit.cpp striclty C)
777 bool txlock_bRotation;
779 // rotation locking params
784 // flip locking params
785 Vector3 txl_matrix[3];
788 void TextureLockTransformation_BrushPrimit( face_t *f ){
789 Vector3 Orig,texS,texT; // axis base of initial plane
790 // used by transformation algo
792 Vector3 vRotate; // rotation vector
794 Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base }
795 Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane
796 Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging )
801 // compute plane axis base
802 ComputeAxisBase( f->plane.normal, texS, texT );
803 VectorSet( Orig, 0.0f, 0.0f, 0.0f );
805 // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation
806 // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base )
807 // input: Orig, texS, texT (and the global locking params)
808 // ouput: rOrig, rvecS, rvecT, rNormal
809 if ( txlock_bRotation ) {
811 VectorSet( vRotate, 0.0f, 0.0f, 0.0f );
812 vRotate[txl_nAxis] = txl_fDeg;
813 VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig );
814 VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS );
815 VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT );
816 // compute normal of plane after rotation
817 VectorRotate( f->plane.normal, vRotate, rNormal );
821 for ( j = 0 ; j < 3 ; j++ )
822 rOrig[j] = vector3_dot( vector3_subtracted( Orig, txl_origin ), txl_matrix[j] ) + txl_origin[j];
823 for ( j = 0 ; j < 3 ; j++ )
824 rvecS[j] = vector3_dot( vector3_subtracted( texS, txl_origin ), txl_matrix[j] ) + txl_origin[j];
825 for ( j = 0 ; j < 3 ; j++ )
826 rvecT[j] = vector3_dot( vector3_subtracted( texT, txl_origin ), txl_matrix[j] ) + txl_origin[j];
827 // we also need the axis base of the target plane, apply the transformation matrix to the normal too..
828 for ( j = 0 ; j < 3 ; j++ )
829 rNormal[j] = vector3_dot( f->plane.normal, txl_matrix[j] );
832 // compute rotated plane axis base
833 ComputeAxisBase( rNormal, rtexS, rtexT );
834 // compute S/T coordinates of the three points in rotated axis base ( in M matrix )
835 lOrig[0] = vector3_dot( rOrig, rtexS );
836 lOrig[1] = vector3_dot( rOrig, rtexT );
837 lvecS[0] = vector3_dot( rvecS, rtexS );
838 lvecS[1] = vector3_dot( rvecS, rtexT );
839 lvecT[0] = vector3_dot( rvecT, rtexS );
840 lvecT[1] = vector3_dot( rvecT, rtexT );
841 M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f;
842 M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f;
843 M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f;
845 D[0][0] = f->brushprimit_texdef.coords[0][2];
846 D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2];
847 D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2];
848 D[1][0] = f->brushprimit_texdef.coords[1][2];
849 D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2];
850 D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2];
852 det = SarrusDet( M[0], M[1], M[2] );
853 f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
854 f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
855 f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
856 f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
857 f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
858 f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
862 // called before the points on the face are actually rotated
863 void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, Vector3& vOrigin ){
864 // this is a placeholder to call the general texture locking algorithm
865 txlock_bRotation = true;
868 VectorCopy( vOrigin, txl_vOrigin );
869 TextureLockTransformation_BrushPrimit( f );
872 // compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation)
873 // this matches the select_matrix algo used in select.cpp
874 // this needs to be called on the face BEFORE any geometric transformation
875 // it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done
876 void ApplyMatrix_BrushPrimit( face_t *f, Vector3 matrix[3], Vector3& origin ){
877 // this is a placeholder to call the general texture locking algorithm
878 txlock_bRotation = false;
879 VectorCopy( matrix[0], txl_matrix[0] );
880 VectorCopy( matrix[1], txl_matrix[1] );
881 VectorCopy( matrix[2], txl_matrix[2] );
882 VectorCopy( origin, txl_origin );
883 TextureLockTransformation_BrushPrimit( f );
888 void BPMatMul( float A[2][3], float B[2][3], float C[2][3] ){
889 C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0];
890 C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0];
891 C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1];
892 C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1];
893 C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2];
894 C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2];
897 void BPMatDump( float A[2][3] ){
898 globalOutputStream() << "" << A[0][0]
907 void BPMatRotate( float A[2][3], float theta ){
910 memset( &m, 0, sizeof( float ) * 6 );
911 m[0][0] = static_cast<float>( cos( degrees_to_radians( theta ) ) );
912 m[0][1] = static_cast<float>( -sin( degrees_to_radians( theta ) ) );
915 BPMatMul( A, m, aux );
919 #if 0 // camera-relative texture shift
920 // get the relative axes of the current texturing
921 void BrushPrimit_GetRelativeAxes( face_t *f, Vector3& vecS, Vector3& vecT ){
923 // first we compute them as expressed in plane axis base
924 // BP matrix has coordinates of plane axis base expressed in geometric axis base
925 // so we use the line vectors
926 vS[0] = f->brushprimit_texdef.coords[0][0];
927 vS[1] = f->brushprimit_texdef.coords[0][1];
928 vT[0] = f->brushprimit_texdef.coords[1][0];
929 vT[1] = f->brushprimit_texdef.coords[1][1];
930 // now compute those vectors in geometric space
931 Vector3 texS, texT; // axis base of the plane (geometric)
932 ComputeAxisBase( f->plane.normal, texS, texT );
933 // vecS[] = vS[0].texS[] + vS[1].texT[]
934 // vecT[] = vT[0].texS[] + vT[1].texT[]
935 vecS[0] = vS[0] * texS[0] + vS[1] * texT[0];
936 vecS[1] = vS[0] * texS[1] + vS[1] * texT[1];
937 vecS[2] = vS[0] * texS[2] + vS[1] * texT[2];
938 vecT[0] = vT[0] * texS[0] + vT[1] * texT[0];
939 vecT[1] = vT[0] * texS[1] + vT[1] * texT[1];
940 vecT[2] = vT[0] * texS[2] + vT[1] * texT[2];
943 // brush primitive texture adjustments, use the camera view to map adjustments
944 // ShiftTextureRelative_BrushPrimit ( s , t ) will shift relative to the texture
945 void ShiftTextureRelative_Camera( face_t *f, int x, int y ){
947 float XY[2]; // the values we are going to send for translation
948 float sgn[2]; // +1 or -1
952 // get the two relative texture axes for the current texturing
953 BrushPrimit_GetRelativeAxes( f, vecS, vecT );
955 // center point of the face, project it on the camera space
959 for ( i = 0; i < f->face_winding->numpoints; i++ )
961 VectorAdd( C,f->face_winding->point_at( i ),C );
963 VectorScale( C,1.0 / f->face_winding->numpoints,C );
965 pCam = g_pParentWnd->GetCamWnd();
966 pCam->MatchViewAxes( C, vecS, axis[0], sgn[0] );
967 pCam->MatchViewAxes( C, vecT, axis[1], sgn[1] );
969 // this happens when the two directions can't be mapped on two different directions on the screen
970 // then the move will occur against a single axis
971 // (i.e. the user is not positioned well enough to send understandable shift commands)
972 // NOTE: in most cases this warning is not very relevant because the user would use one of the two axes
973 // for which the solution is easy (the other one being unknown)
974 // so this warning could be removed
975 if ( axis[0] == axis[1] ) {
976 globalOutputStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n";
979 // compute the X Y geometric increments
980 // those geometric increments will be applied along the texture axes (the ones we computed above)
985 XY[axis[0]] += sgn[0] * x;
988 XY[axis[1]] += sgn[1] * y;
990 // we worked out a move along vecS vecT, and we now it's geometric amplitude
992 ShiftTextureRelative_BrushPrimit( f, XY[0], XY[1] );
997 void BPTexdef_Assign( brushprimit_texdef_t& bp_td, const brushprimit_texdef_t& bp_other ){
1001 void BPTexdef_Shift( brushprimit_texdef_t& bp_td, float s, float t ){
1002 // shift a texture (texture adjustments) along it's current texture axes
1003 // x and y are geometric values, which we must compute as ST increments
1004 // this depends on the texture size and the pixel/texel ratio
1005 // as a ratio against texture size
1006 // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
1007 bp_td.coords[0][2] -= s;
1008 bp_td.coords[1][2] += t;
1011 void BPTexdef_Scale( brushprimit_texdef_t& bp_td, float s, float t ){
1012 // apply same scale as the spinner button of the surface inspector
1014 // compute fake shift scale rot
1015 TexMatToFakeTexCoords( bp_td, texdef );
1017 texdef.scale[0] += s;
1018 texdef.scale[1] += t;
1019 // compute new normalized texture matrix
1020 FakeTexCoordsToTexMat( texdef, bp_td );
1023 void BPTexdef_Rotate( brushprimit_texdef_t& bp_td, float angle ){
1024 // apply same scale as the spinner button of the surface inspector
1026 // compute fake shift scale rot
1027 TexMatToFakeTexCoords( bp_td, texdef );
1029 texdef.rotate += angle;
1030 // compute new normalized texture matrix
1031 FakeTexCoordsToTexMat( texdef, bp_td );
1034 void BPTexdef_Construct( brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height ){
1035 bp_td.coords[0][0] = 1.0f;
1036 bp_td.coords[1][1] = 1.0f;
1037 ConvertTexMatWithDimensions( bp_td.coords, 2, 2, bp_td.coords, width, height );
1040 void Texdef_Assign( TextureProjection& projection, const TextureProjection& other ){
1041 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
1042 BPTexdef_Assign( projection.m_brushprimit_texdef, other.m_brushprimit_texdef );
1046 Texdef_Assign( projection.m_texdef, other.m_texdef );
1047 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) {
1048 projection.m_basis_s = other.m_basis_s;
1049 projection.m_basis_t = other.m_basis_t;
1054 void Texdef_Shift( TextureProjection& projection, float s, float t ){
1055 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
1056 BPTexdef_Shift( projection.m_brushprimit_texdef, s, t );
1060 Texdef_Shift( projection.m_texdef, s, t );
1064 void Texdef_Scale( TextureProjection& projection, float s, float t ){
1065 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
1066 BPTexdef_Scale( projection.m_brushprimit_texdef, s, t );
1070 Texdef_Scale( projection.m_texdef, s, t );
1074 void Texdef_Rotate( TextureProjection& projection, float angle ){
1075 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
1076 BPTexdef_Rotate( projection.m_brushprimit_texdef, angle );
1080 Texdef_Rotate( projection.m_texdef, angle );
1084 void Texdef_FitTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat ){
1085 if ( w.numpoints < 3 ) {
1090 Texdef_toTransform( projection, (float)width, (float)height, st2tex );
1092 // the current texture transform
1093 Matrix4 local2tex = st2tex;
1096 Texdef_basisForNormal( projection, normal, xyz2st );
1097 matrix4_multiply_by_matrix4( local2tex, xyz2st );
1100 // the bounds of the current texture transform
1102 for ( Winding::const_iterator i = w.begin(); i != w.end(); ++i )
1104 Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex );
1105 aabb_extend_by_point_safe( bounds, texcoord );
1107 bounds.origin.z() = 0;
1108 bounds.extents.z() = 1;
1110 // the bounds of a perfectly fitted texture transform
1111 AABB perfect( Vector3( s_repeat * 0.5, t_repeat * 0.5, 0 ), Vector3( s_repeat * 0.5, t_repeat * 0.5, 1 ) );
1113 // the difference between the current texture transform and the perfectly fitted transform
1114 Matrix4 matrix( matrix4_translation_for_vec3( bounds.origin - perfect.origin ) );
1115 matrix4_pivoted_scale_by_vec3( matrix, bounds.extents / perfect.extents, perfect.origin );
1116 matrix4_affine_invert( matrix );
1118 // apply the difference to the current texture transform
1119 matrix4_premultiply_by_matrix4( st2tex, matrix );
1121 Texdef_fromTransform( projection, (float)width, (float)height, st2tex );
1122 Texdef_normalise( projection, (float)width, (float)height );
1125 float Texdef_getDefaultTextureScale(){
1126 return g_texdef_default_scale;
1129 void TexDef_Construct_Default( TextureProjection& projection ){
1130 projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale();
1131 projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale();
1133 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
1134 FakeTexCoordsToTexMat( projection.m_texdef, projection.m_brushprimit_texdef );
1140 void ShiftScaleRotate_fromFace( texdef_t& shiftScaleRotate, const TextureProjection& projection ){
1141 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
1142 TexMatToFakeTexCoords( projection.m_brushprimit_texdef, shiftScaleRotate );
1146 shiftScaleRotate = projection.m_texdef;
1150 void ShiftScaleRotate_toFace( const texdef_t& shiftScaleRotate, TextureProjection& projection ){
1151 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
1152 // compute texture matrix
1153 // the matrix returned must be understood as a qtexture_t with width=2 height=2
1154 FakeTexCoordsToTexMat( shiftScaleRotate, projection.m_brushprimit_texdef );
1158 projection.m_texdef = shiftScaleRotate;
1163 inline void print_vector3( const Vector3& v ){
1164 globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n";
1167 inline void print_3x3( const Matrix4& m ){
1168 globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) "
1169 << "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) "
1170 << "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n";
1174 inline Matrix4 matrix4_rotation_for_vector3( const Vector3& x, const Vector3& y, const Vector3& z ){
1176 x.x(), x.y(), x.z(), 0,
1177 y.x(), y.y(), y.z(), 0,
1178 z.x(), z.y(), z.z(), 0,
1183 inline Matrix4 matrix4_swap_axes( const Vector3& from, const Vector3& to ){
1184 if ( from.x() != 0 && to.y() != 0 ) {
1185 return matrix4_rotation_for_vector3( to, from, g_vector3_axis_z );
1188 if ( from.x() != 0 && to.z() != 0 ) {
1189 return matrix4_rotation_for_vector3( to, g_vector3_axis_y, from );
1192 if ( from.y() != 0 && to.z() != 0 ) {
1193 return matrix4_rotation_for_vector3( g_vector3_axis_x, to, from );
1196 if ( from.y() != 0 && to.x() != 0 ) {
1197 return matrix4_rotation_for_vector3( from, to, g_vector3_axis_z );
1200 if ( from.z() != 0 && to.x() != 0 ) {
1201 return matrix4_rotation_for_vector3( from, g_vector3_axis_y, to );
1204 if ( from.z() != 0 && to.y() != 0 ) {
1205 return matrix4_rotation_for_vector3( g_vector3_axis_x, from, to );
1208 ERROR_MESSAGE( "unhandled axis swap case" );
1210 return g_matrix4_identity;
1213 inline Matrix4 matrix4_reflection_for_plane( const Plane3& plane ){
1215 static_cast<float>( 1 - ( 2 * plane.a * plane.a ) ),
1216 static_cast<float>( -2 * plane.a * plane.b ),
1217 static_cast<float>( -2 * plane.a * plane.c ),
1219 static_cast<float>( -2 * plane.b * plane.a ),
1220 static_cast<float>( 1 - ( 2 * plane.b * plane.b ) ),
1221 static_cast<float>( -2 * plane.b * plane.c ),
1223 static_cast<float>( -2 * plane.c * plane.a ),
1224 static_cast<float>( -2 * plane.c * plane.b ),
1225 static_cast<float>( 1 - ( 2 * plane.c * plane.c ) ),
1227 static_cast<float>( -2 * plane.d * plane.a ),
1228 static_cast<float>( -2 * plane.d * plane.b ),
1229 static_cast<float>( -2 * plane.d * plane.c ),
1234 inline Matrix4 matrix4_reflection_for_plane45( const Plane3& plane, const Vector3& from, const Vector3& to ){
1235 Vector3 first = from;
1236 Vector3 second = to;
1238 if ( (vector3_dot( from, plane.normal() ) > 0) == (vector3_dot( to, plane.normal() ) > 0) ) {
1239 first = vector3_negated( first );
1240 second = vector3_negated( second );
1244 globalOutputStream() << "normal: ";
1245 print_vector3( plane.normal() );
1247 globalOutputStream() << "from: ";
1248 print_vector3( first );
1250 globalOutputStream() << "to: ";
1251 print_vector3( second );
1254 Matrix4 swap = matrix4_swap_axes( first, second );
1256 /*Matrix4 tmp =*/ matrix4_reflection_for_plane( plane );
1258 swap.tx() = -static_cast<float>( -2 * plane.a * plane.d );
1259 swap.ty() = -static_cast<float>( -2 * plane.b * plane.d );
1260 swap.tz() = -static_cast<float>( -2 * plane.c * plane.d );
1265 void Texdef_transformLocked( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed ){
1266 //globalOutputStream() << "identity2transformed: " << identity2transformed << "\n";
1268 //globalOutputStream() << "plane.normal(): " << plane.normal() << "\n";
1270 Vector3 normalTransformed( matrix4_transformed_direction( identity2transformed, plane.normal() ) );
1272 //globalOutputStream() << "normalTransformed: " << normalTransformed << "\n";
1274 // identity: identity space
1275 // transformed: transformation
1276 // stIdentity: base st projection space before transformation
1277 // stTransformed: base st projection space after transformation
1278 // stOriginal: original texdef space
1280 // stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal
1282 Matrix4 identity2stIdentity;
1283 Texdef_basisForNormal( projection, plane.normal(), identity2stIdentity );
1284 //globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n";
1286 if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE ) {
1287 matrix4_transform_direction( identity2transformed, projection.m_basis_s );
1288 matrix4_transform_direction( identity2transformed, projection.m_basis_t );
1291 Matrix4 transformed2stTransformed;
1292 Texdef_basisForNormal( projection, normalTransformed, transformed2stTransformed );
1294 Matrix4 stTransformed2identity( matrix4_affine_inverse( matrix4_multiplied_by_matrix4( transformed2stTransformed, identity2transformed ) ) );
1296 Vector3 originalProjectionAxis( vector4_to_vector3( matrix4_affine_inverse( identity2stIdentity ).z() ) );
1298 Vector3 transformedProjectionAxis( vector4_to_vector3( stTransformed2identity.z() ) );
1300 Matrix4 stIdentity2stOriginal;
1301 Texdef_toTransform( projection, (float)width, (float)height, stIdentity2stOriginal );
1302 Matrix4 identity2stOriginal( matrix4_multiplied_by_matrix4( stIdentity2stOriginal, identity2stIdentity ) );
1304 //globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n";
1305 //globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n";
1306 double dot = vector3_dot( originalProjectionAxis, transformedProjectionAxis );
1307 //globalOutputStream() << "dot: " << dot << "\n";
1309 // The projection axis chosen for the transformed normal is at 90 degrees
1310 // to the transformed projection axis chosen for the original normal.
1311 // This happens when the projection axis is ambiguous - e.g. for the plane
1312 // 'X == Y' the projection axis could be either X or Y.
1313 //globalOutputStream() << "flipped\n";
1315 globalOutputStream() << "projection off by 90\n";
1316 globalOutputStream() << "normal: ";
1317 print_vector3( plane.normal() );
1318 globalOutputStream() << "original projection: ";
1319 print_vector3( originalProjectionAxis );
1320 globalOutputStream() << "transformed projection: ";
1321 print_vector3( transformedProjectionAxis );
1324 Matrix4 identityCorrected = matrix4_reflection_for_plane45( plane, originalProjectionAxis, transformedProjectionAxis );
1326 identity2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, identityCorrected );
1329 Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, stTransformed2identity );
1331 Texdef_fromTransform( projection, (float)width, (float)height, stTransformed2stOriginal );
1332 Texdef_normalise( projection, (float)width, (float)height );
1336 void Q3_to_matrix( const texdef_t& texdef, float width, float height, const Vector3& normal, Matrix4& matrix ){
1337 Normal_GetTransform( normal, matrix );
1341 Texdef_toTransform( texdef, width, height, transform );
1343 matrix4_multiply_by_matrix4( matrix, transform );
1346 void BP_from_matrix( brushprimit_texdef_t& bp_texdef, const Vector3& normal, const Matrix4& transform ){
1348 basis = g_matrix4_identity;
1349 ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) );
1350 vector4_to_vector3( basis.z() ) = normal;
1351 matrix4_transpose( basis );
1352 matrix4_affine_invert( basis );
1354 Matrix4 basis2texture = matrix4_multiplied_by_matrix4( basis, transform );
1356 BPTexdef_fromTransform( bp_texdef, basis2texture );
1359 void Q3_to_BP( const texdef_t& texdef, float width, float height, const Vector3& normal, brushprimit_texdef_t& bp_texdef ){
1361 Q3_to_matrix( texdef, width, height, normal, matrix );
1362 BP_from_matrix( bp_texdef, normal, matrix );